

CONTROLLORI PROGRAMMABILI

FPOR

Manuale Utente

ACGM0475V3.1IT

PRIMA DI COMINCIARE

Le versioni stampate in inglese e in giapponese del presente manuale di istruzioni sono le versioni originali.

Le versioni pubblicate in Internet in lingua inglese, francese, tedesca, italiana e spagnola sono copie prodotte da Panasonic Electric Works Europe AG.

Responsabilità e copyright per l'hardware

Questo manuale e tutto il suo contenuto sono protetti da diritto d'autore. Non è possibile pertanto effettuarne riproduzioni complete o parziali senza il consenso scritto di Panasonic Electric Works Europe AG (PEWEU).

PEWEU segue una politica di miglioramento continuo del design e delle prestazioni dei suoi prodotti. Pertanto si riserva il diritto di modificare manuale e prodotto senza preavviso. In ogni caso PEWEU non è responsabile di eventuali danni diretti, particolari, accidentali o consequenziali derivanti da difetti del prodotto o da errate indicazioni sul manuale, sebbene sia consapevole dell'eventualità che tali danni si verifichino.

Vi invitiamo ad inviare i vostri commenti su questo manuale per e-mail al seguente indirizzo:

techdoc.peweu@eu.panasonic.com.

Eventuali domande di carattere tecnico e richieste di supporto dovranno essere rivolte al rappresentante Panasonic locale.

LIMITI DI GARANZIA

Qualora vengano riscontrati difetti riconducibili alla distribuzione, PEWEU provvederà a sostituire o riparare il prodotto a proprie spese. Sono comunque esclusi dalla garanzia danni dovuti a:

- utilizzo o trattamento del prodotto diverso da quanto indicato nel presente manuale;
- apparecchiature difettose diverse dal prodotto venduto;
- modifiche o riparazioni non effettuate dal personale PEWEU;
- disastri naturali.

Legenda dei simboli

In questo documento possono essere utilizzati uno o più tra i simboli seguenti:

PERICOLO

Il triangolo di avvertenza indica istruzioni di sicurezza particolarmente importanti. Se tali istruzioni non vengono osservate, le conseguenze potrebbero essere letali o produrre ferite critiche.

AVVERTENZA

Indica istruzioni di sicurezza particolarmente importanti. Se tali istruzioni non vengono osservate, le conseguenze potrebbero produrre ferite medie o critiche.

PRECAUZIONI

Indica istruzioni di sicurezza particolarmente importanti. Se tali istruzioni non vengono osservate, le conseguenze potrebbero produrre ferite leggere o medie.

AVVISO

Indica istruzioni di sicurezza importanti. Se tali istruzioni non vengono osservate, le conseguenze potrebbero produrre danni agli strumenti.

Nota

Esempio

Contiene ulteriori informazioni.

Contiene un esempio illustrativo del testo descritto in precedenza.

Procedimento

Indica che segue una procedura graduale.

Riferimento

Indica dove si possono trovare ulteriori informazioni sull'argomento in questione.

Obiettivo di questo manuale

Il manuale utente dell'FPOR include:

- le specifiche relative ai diversi modelli di CPU e di unità di espansione FPOR
- le istruzioni di montaggio, cablaggio e manutenzione
- le informazioni generali di programmazione
- le segnalazioni errori
- caratteristiche tecniche
- un'appendice con:
 - disegni quotati delle unità
 - tabelle allocazioni I/O
 - tabelle area memoria
 - registri di sistema

Fare riferimento al Manuale di programmazione dei PLC serie FP oppure all'help online di Control FPWIN Pro o FPWIN GR per informazioni riguardanti:

- istruzioni di sistema
- relè interni speciali
- registri dati
- variabili di sistema (solo Control FPWIN Pro)
- esempi di programmazione

Per informazioni su una particolare unità utilizzata con FPOR, fare riferimento al manuale hardware per quella unità.

Tutti i manuali sono scaricabili dal sito Panasonic (<u>http://www.panasonic-electric-works.it</u>).

Terminologia ed esempi di programmazione

Gli esempi di programmazione presenti in questo manuale si riferiscono a Control FPWIN Pro. Per gli esempi con FPWIN GR fare riferimento a: Manuale utente FPOR ARCT1F475E

I programmi campione sono stati scritti nel diagramma contatti. In Control FPWIN Pro è anche possibile programmare in Testo strutturato (ST), Diagramma blocchi funzione (FBD), Lista istruzioni (IL) e Diagramma sequenziale (SFC). Per esempi in altri linguaggi di programmazione, fare riferimento all'Help Online di Control FPWIN Pro ed al manuale di programmazione.

Le abbreviazioni usate negli esempi hanno il seguente significato:

- POU: Unità Organizzazione Programmi
- DUT: Tipo Unità Dati
- GVL: Lista Variabili Globali

Questi ed altri termini sono spiegati nell'Help Online di Control FPWIN Pro e nel manuale di programmazione.

Il capitolo sul conteggio veloce e l'uscita ad impulsi contiene numerosi esempi che illustrano l'utilizzo delle istruzioni di posizionamento. Alcuni programmi campione possono essere aperti direttamente in Control FPWIN Pro. I progetti Control FPWIN Pro in codice LD ed ST possono essere scaricati dal sito Panasonic (<u>http://www.panasonic-electric-</u> <u>works.it/pewit/it/html/22164.php</u>).

Indice dei contenuti

1.	Mis	Misure di sicurezza12			
2.	Par	oramica	.14		
	2.1	Caratteristiche	. 14		
	2.2	Modelli	. 17		
		2.2.1 CPU	. 17		
		2.2.2 Unità di espansione I/O per FP0/FP0R	. 18		
		2.2.3 Unità intelligenti FP0	. 19		
		2.2.4 Unità di link serie FP	. 20		
		2.2.5 Unità di alimentazione	. 20		
		2.2.6 Accessori	. 21		
	2.3	Limitazioni sulle combinazioni delle unità	. 22		
	2.4	Tool di programmazione	. 23		
	2.5	Compatibilità con i programmi di FP0	. 24		
3.	Tipi	i di CPU	.27		
	3.1	Parti e funzioni della CPU	. 27		
	3.2	Specifiche ingressi della CPU	. 30		
	3.3	Specifiche uscite della CPU	. 32		
	3.4	Configurazione terminali	. 35		
	3.5	Funzioni di backup e orologio/calendario	. 38		
		3.5.1 Funzione di backup	. 40		
		3.5.2 Funzione orologio/calendario	. 41		
4.	Esp	ansioni	.45		
	4.1	Sistema di espansione	. 45		
	4.2	Parti e funzioni delle unità di espansione	. 46		
	4.3	Specifiche ingressi unità di espansione	. 47		
	4.4	Specifiche uscite unità di espansione	. 49		
	4.5	Configurazione terminali	. 52		
5.	Allo	ocazione I/O	.55		
	5.1	Introduzione	. 55		

	5.2	CPU	56
	5.3	Unità di espansione FP0/FP0R	56
6.	Inst	tallazione e cablaggio	
	6.1	Installazione	58
		6.1.1 Ambiente e spazio di installazione	58
		6.1.2 Uso delle barre DIN	60
		6.1.3 Piastre di montaggio opzionali	61
		6.1.3.1 Piastra di montaggio slim	61
		6.1.3.2 Piastra di montaggio flat	63
	6.2	Collegamento delle unità di espansione FP0/FP0R	65
	6.3	Istruzioni di sicurezza per il cablaggio	66
	6.4	Cavi di alimentazione	68
		6.4.1 Messa a terra	70
	6.5	Cablaggio I/O	72
		6.5.1 Cablaggio ingressi	72
		6.5.1.1 Precauzioni per il collegamento d'ingresso	75
		6.5.2 Cablaggio uscite	77
		6.5.2.1 Circuito di protezione per carichi induttivi	77
		6.5.2.2 Circuito di protezione per carichi capacitivi	78
	6.6	Cablaggio connettore MIL	79
	6.7	Cablaggio blocco terminali	82
	6.8	Cablaggio porta COM	84
		6.8.1 Cavi di trasmissione	87
7.	Cor	municazione	
	7.1	Modalità di comunicazione	88
		7.1.1 Terminologia in Control FPWIN Pro ed FPWIN GR	88
		7.1.2 MEWTOCOL-COM Master/Slave	89
		7.1.3 Comunicazione controllata da programma	89
		7.1.4 PLC Link	90
		7.1.5 Modbus RTU Master/Slave	91
	7.2	Porte: Nomi e funzioni delle porte	91
		7.2.1 Porta TOOL	92
		7.2.2 Porta COM	92
		7.2.3 Porta USB	93
		7.2.3.1 Installazione del driver USB	94

		7.2.3.2	Comunicazione con il tool di programmazione	
		7.2.3.3	Reinstallazione del driver USB	
7.3	Dati te	ecnici sull	a comunicazione	
7.4	Param	netri di co	municazione	101
	7.4.1	Imposta	zione dei registri di sistema nella modalità PROG	101
	7.4.2	Cambiar	re la modalità di comunicazione durante la modalità RUN	103
7.5	MEW	TOCOL-C	COM	104
	7.5.1	Svolgim	ento della comunicazione per MEWTOCOL-COM Slave	106
	7.5.2	Formato	di comando e risposta	107
	7.5.3	Comand	li	109
	7.5.4	Imposta	zione di parametri di comunicazione	110
		7.5.4.1	Modalità FP0 compatibile	111
	7.5.5	Comunio	cazione Slave 1:1	111
		7.5.5.1	Comunicazione 1:1 con un computer	112
		7.5.5.2	Comunicazione 1:1 con pannelli operatore della serie GT	113
	7.5.6	Comunio	cazione Slave 1:N	114
	7.5.7	Program	ma campione per la Comunicazione Master	116
7.6	Comu	nicazione	e controllata da programma	117
	7.6.1	Imposta	zione di parametri di comunicazione	119
		7.6.1.1	Programmazione nella modalità di compatibilità FP0	120
	7.6.2	Invio di d	dati	121
	7.6.3	Ricezior	ne di dati	123
		7.6.3.1	Impostare il buffer di ricezione per la CPU:	124
	7.6.4	Formato	dei dati da inviare e ricevere	128
	7.6.5	Significa	to dei flag nella comunicazione controllata da programma	129
		7.6.5.1	Codice iniziale: No-STX; codice finale: CR	131
		7.6.5.2	Codice iniziale: STX; codice finale: ETX	132
	7.6.6	Comunio	cazione 1:1	134
	7.6.7	Comunio	cazione 1:N	134
	7.6.8	Program	nmare in modalità FP0 compatibile	136
7.7	PLC L	.ink		136
	7.7.1	Imposta	zione di parametri di comunicazione	137
	7.7.2	Allocazio	one area di link	139
		7.7.2.1	Esempio per PLC link 0	140
		7.7.2.2	Esempio per PLC link 1	142
		7.7.2.3	Uso parziale di aree di link	144

			7.7.2.4	Istruzioni importanti per l'allocazione di aree di link	145
		7.7.3	Imposta	zione del numero di stazione più alto per un PLC link	147
		7.7.4	Allocazio	one PLC link 0 e 1	147
		7.7.5	Monitora	aggio	148
		7.7.6	Periodo	di risposta	150
			7.7.6.1	Riduzione del tempo di trasmissione	
			7.7.6.2	Tempo di rilevamento di errori di trasmissione	154
	7.8	Comu	nicazione	e Modbus RTU	155
		7.8.1	Imposta	zione di parametri di comunicazione	158
		7.8.2	Program	nma campione per la Comunicazione Master	159
8.	Со	ntator	e veloo	ce e uscita ad impulsi	160
	8.1	Carat	teristiche	generali	
	8.2	Carat	teristiche	tecniche e limitazioni	
		8.2.1	Funzion	e contatore veloce	
		8.2.2	Funzion	e di uscita ad impulsi	
		8.2.3	Funzion	e di uscita PWM	
		8.2.4	Velocità	di conteggio massima e frequenza di uscita	
	8.3	Funzi	one conta	atore veloce	
		8.3.1	Modalità	a di conteggio in ingresso	
		8.3.2	Larghez	za minima impulsi in ingresso	171
		8.3.3	Allocazio	one I/O	171
		8.3.4	Istruzion	ni e variabili di sistema	
			8.3.4.1	Scrittura del codice di controllo del contatore veloce	
			8.3.4.2	Scrittura e lettura del valore corrente per il contatore veloce	
			8.3.4.3	Uscita ON al raggiungimento del valore target	
			8.3.4.4	Uscita OFF al raggiungimento del valore target	178
			8.3.4.5	Misurazione periodo impulsi in ingresso	179
		8.3.5	Program	nmi a titolo di esempio	
			8.3.5.1	Posizionamento con una velocità	
			8.3.5.2	Posizionamento con due o più velocità	181
	8.4	Funzi	one di uso	cita ad impulsi	
		8.4.1	Modalità	a di uscita ad impulsi e di posizionamento	
		8.4.2	Allocazio	one I/O	
		8.4.3	Istruzion	ni e variabili di sistema	
			8.4.3.1	Scrittura del codice di controllo dell'uscita impulsi	191

ACGM0475V3IT.docx

		8.4. 8.4. 8.4. 8.4.	.3.2 .3.3 .3.4 .3.5	Scrittura e lettura del valore corrente dell'uscita ad impuls Uscita ON al raggiungimento del valore target Uscita OFF al raggiungimento del valore target Controllo trapezoidale	i 195 196 196 197
		8.4.	.3.6	Operazione JOG e posizionamento	199
		8.4.	.3.7	Operazione JOG	201
		8.4.	.3.8	Controllo mediante tabella di punti	202
		8.4.	.3.9	Interpolazione lineare	203
		8.4.	.3.10	Home Return	
	8.5	Funzione c	di usc	ta PWM	205
9	Fun	zioni di s	sicu	re772	207
•	9.1	Tipi di funz	zioni c	i sicurezza	
	9.2	Impostazio	ni di :	sicurezza in Control FPWIN Pro	
		9.2.1 Prot	tezior	e dal caricamento	
		9.2.2 Prot	tezior	e del PLC (Protezione con password)	
	9.3	FP Memor	y Loa	der	209
		9.3.1 Prot	tezior	e dal caricamento dati	209
		9.3.2 Prot	tezior	e dal trasferimento di dati	210
10.	Altr	e funzioi	ni		
	10.1	Backup ne	lle F-	ROM (P13_EPWT)	
	10.2	Andamento	o tem	oorale	
	10.3	Costante d	li tem	oo di ingresso	213
11.	Elin	ninazion	e di	errori	
	11.1	Indicazione	e dell	stato di funzionamento con LED	
	11.2	Funzionam	nento	in caso di errore	215
	11.3	ll LED di E	RRO	R/ALARM lampeggia	
	11.4	ll LED di E	RRO	R/ALARM è ON	
	11.5	Tutti i LED	sono	OFF	216
	11.6	Malfunzion	namer	to delle uscite	217
	11.7	PLC protet	tto da	password	
	11.8	Non si può	o com	nutare da PROG a RUN	218
12.	Car	atteristic	che 1	ecniche	219
	12.1	Caratteristi	iche g	enerali	219

	12.2	Caratteristiche prestazionali	220
	12.3	Dati tecnici sulla comunicazione	222
	12.4	Caratteristiche dell'alimentazione	225
	12.5	Corrente assorbita	225
13.	Арр	pendice 2	27
	13.1	Dimensioni	227
		13.1.1 CPU C10/C14 (morsettiera)	227
		13.1.2 CPU C16 (connettore MIL)	228
		13.1.3 CPU C32 (connettore MIL)	230
		13.1.4 Unità di alimentazione	231
		13.1.5 Montaggio su guide DIN	231
	13.2	Allocazione I/O	232
	13.3	Relè di bit e aree di memoria	234
	13.4	Registri di sistema	236
		13.4.1 Informazioni importanti sui registri di sistema	236
		13.4.2 Tipi di registri di sistema	236
		13.4.3 Verifica e impostazione dei registri di sistema	237
		13.4.4 Tabella dei registri di sistema	238
	13.5	Codici errore	245
		13.5.1 Codici errore da E1 a E8	245
		13.5.2 Codici di errore di autodiagnosi	246
		13.5.3 Codici di errore MEWTOCOL-COM	247
	13.6	Comandi MEWTOCOL-COM	248
	13.7	Tipi di dato	249
		13.7.1 Tipi di dati elementari	249
		13.7.2 Tipi di dato generici	250
	13.8	Codice esadecimale, binario e BCD	251
	13.9	Codici ASCII	252
Ind	lice .		254
Re	gistı	razione delle modifiche2	255

Capitolo 1

Misure di sicurezza

Ambiente operativo

Dopo aver installato l'unità, assicurarsi di usarla solo nelle seguenti condizioni ambientali:

- Temperatura ambiente: 0°C-+55°C
- Umidità ambiente: 10%–95% UR (a 25°C, non condensante)
- Livello di inquinamento: 2
- Non utilizzare l'unità negli ambienti seguenti:
 - in presenza di luce solare diretta
 - con improvvisi cambi di temperatura che generano condensa
 - in presenza di gas infiammabili o corrosivi
 - con eccessiva polvere, particelle metalliche o sali
 - in presenza di benzina, diluenti, alcool o altri solventi organici o soluzioni alcaline forti come ammoniaca o soda caustica
 - in presenza di vibrazioni dirette, urti o cadute dirette di acqua
 - nelle vicinanze di linee di trasmissione di potenza, cavi dell'alta tensione, cavi di potenza, alimentatori, radiotrasmittenti o qualsiasi altro dispositivo che potrebbe generare sovratensione. Mantenere almeno 100mm tra questi dispositivi e l'unità.

Elettricità statica

Prima di toccare l'unità o l'impianto, toccare sempre un metallo con messa a terra per scaricare l'elettricità statica che può essersi generata (soprattutto in luoghi asciutti). La scarica di elettricità statica può danneggiare parti e l'impianto.

Protezione alimentazione

- Utilizzare per l'alimentazione un cavo intrecciato.
- Isolare i sistemi di cablaggio verso la CPU, le unità I/O e l'azionamento a motore.
- Dovrebbe essere usata un'alimentazione isolata con circuito interno di protezione (Alimentazione FP-PS24). L'alimentazione per la CPU non è isolata, quindi se viene applicata direttamente una tensione non corretta, il circuito interno può essere danneggiato o distrutto.
- Se si utilizza un'unità di alimentazione senza circuito interno di protezione, occorre sempre che l'alimentazione sia fornita all'unità attraverso un elemento di protezione come un fusibile.
- CPU e unità di espansione devono essere alimentate dallo stesso alimentatore che deve essere attivato/disattivato simultaneamente per entrambe.

Sequenza alimentazione

L'alimentazione della CPU deve andare su OFF prima che venga disinserita l'alimentazione degli I/O. Se l'alimentazione degli ingressi va ad OFF prima dell'alimentazione della CPU, il PLC potrebbe rilevare il cambio di stato sugli ingressi ed eseguire delle operazioni errate e potenzialmente pericolose.

Prima della messa in funzione

Quando si mette in funzione il PLC per la prima volta, assicurarsi di prendere tutte le precauzioni sotto indicate.

- Durante l'installazione, controllare che sul PLC non ci siano frammenti di cavi o altri scarti.
- Verificare che il cablaggio dell'alimentazione e degli apparecchi I/O e la tensione di esercizio dell'alimentazione siano corretti.
- Serrare adeguatamente le viti di fissaggio e le viti dei terminali.
- Impostare il selettore sulla modalità PROG.

Prima di programmare

Assicurarsi di cancellare qualsiasi programma esistente prima di inserirne uno nuovo.

Procedimento

1. Online \rightarrow Modo online

- 2. Online \rightarrow Cancella il programma e resetta registri di sistema
- 3. Scegliere [OK] nella finestra di dialogo della conferma

Protezione dei programmi

Per evitare la perdita accidentale di programmi, l'utente dovrebbe adottare le seguenti misure:

- back up di programmi: per evitare la perdita accidentale di programmi, la distruzione di file, o la sovrascrittura di contenuti di un file, i documenti dovrebbero essere stampati e salvati.
- Specificare attentamente la password: l'impostazione della password serve ad evitare la sovrascrittura accidentale dei programmi. Se si perde la password, è impossibile sovrascrivere il programma anche volontariamente. Cancellando la password nel software, si cancella anche il programma. Si raccomanda quindi di conservare la password in un luogo sicuro.

Capitolo 2

Panoramica

2.1 Caratteristiche

L'FPOR è un PLC (controllore programmabile) ultra compatto con capacità di elaborazione ad alta velocità ed ampia capacità di memoria. Questo controllore utilizza il vasto set di istruzioni della serie FP ed è programmato con Control FPWIN Pro o FPWIN GR. Con Control FPWIN Pro, è possibile la programmazione secondo IEC 61131-3.

Porta USB 2.0 TOOL

La porta TOOL supporta USB 2.0 full speed e permette comunicazioni ultra veloci con tool di programmazione. Si possono scaricare programmi con fino a 32k passi in 5s.

Per i particolari, vedere pag. 93.

Memoria commenti ad ampia capacità separata

L'area memoria commenti è separata dall'area programma e può archiviare commenti I/O per 100 000 punti. La gestione del programma e la sua manutenzione è facile. Grazie all'area commenti separata, la lunghezza dei commenti è irrilevante per lo sviluppo dei programmi.

Controllo posizionamento tramite contatore veloce ed uscita impulsi

Le funzioni di contatore veloce ed uscita ad impulsi sono fornite come standard.

Modifica velocità target

• Operazione JOG

- 2 Numero di impulsi
- ③ Ingresso per inizio controllo di posizione
- Stop decelerato

- ① Trigger per stop decelerato
- ② Numero di impulsi
- Impostazione separata tempo di accelerazione e di decelerazione

Per i particolari, vedere pag. 162.

Unità supplementare con una funzione di backup senza batteria (tipo F32)

Il tipo F32 offre una funzione automatica di backup senza batteria per tutte le memorie di lavoro (relè interni, registri dati, temporizzatori/contatori). La manutenzione è stata significativamente migliorata, non essendoci la necessità di cambiare la batteria.

Per i particolari, vedere pag. 40.

Range completo funzioni di comunicazione

- PLC Link (supporta MEWNET-W0)
- MEWTOCOL-COM Master/Slave
- MODBUS RTU Master/Slave
- Comunicazione controllata da programma via porta TOOL o porta COM

Per i particolari, vedere pag. 88.

Funzioni di programmazione in "RUN mode" estese

Le nuove funzionalità per il download del programma in "RUN mode" permettono di modificare il programma senza bloccare il sistema. La modalità di programmazione in "RUN mode" non è più limitata a 512 passi. In "RUN mode" è ora possibile scaricare interi programmi nella memoria programma. Le informazioni sul progetto sono scritte nella memoria commenti. Per informazioni dettagliate si prega di consultare l'help online per Control FPWIN Pro.

Maggiore sicurezza

FPOR supporta password di 8 caratteri (alfanumerici), ed offre una funzione di protezione dal caricamento dati ed altre funzioni di sicurezza per FP Memory Loader.

Per i particolari, vedere pag. 207.

Compatibilità con FP0

La compatibilità con FPO permette ai programmi che sono stati usati precedentemente su un FPO di essere eseguiti su FPOR senza modifiche. Dato che entrambe le unità hanno la medesima forma e la stessa configurazione dei terminali, non è necessario controllare l'ingombro per il montaggio o modificare il cablaggio.

Per i particolari, vedere pag. 24.

2.2 Modelli

2.2.1 CPU

La tensione d'esercizio e la tensione nominale in ingresso sono di 24V DC per tutti i tipi di CPU.

Tipi a 16k (capacità di programma: 16k passi)

Tipo	Punti I/O	Uscita	Collegamento	Porta COM	Codice
					AFP0RC10RS
C10	10 (6/4)			RS232C	AFP0RC10CRS
		Dolàr 24	Blocco termi-	RS485	AFPORC10MRS
		Kele: ZA	nali		AFP0RC14RS
C14	14 (8/6)			RS232C	AFP0RC14CRS
				RS485	AFP0RC14MRS
		Transistor (NPN): 0,2A			AFP0RC16T
		Transistor (PNP): 0,2A	Connettore MIL		AFPORC16P
C16	16 (8/8)	Transistor (NPN):		RS232C	AFP0RC16CT
		0,2A		RS485	AFP0RC16MT
		Transistor (PNP):		RS232C	AFP0RC16CP
		0,2A		RS485	AFP0RC16MP

Tipi a 32k (capacità di programma: 32k passi)

Тіро	Punti I/O	Uscita	Collegamento	Porta COM	Codice
		Transistor (NPN): 0,2A		_	AFP0RC32T
			Transistor (PNP): 0,2A		
C32		Transistor		RS232C	AFP0RC32CT
		(NPN): 0,2A	A Connettore MIL A	RS485	AFP0RC32MT
		Transistor (PNP): 0,2A Transistor (NPN): 0,2A		RS232C	AFP0RC32CP
	30			RS485	AFP0RC32MP
	(16/16)			RS232C	AFP0RT32CT
T32				RS485	AFPORT32MT
(batteria		Transistor (PNP): 0,2A		RS232C	AFP0RT32CP
				RS485	AFPORT32MP
		Transistor		RS232C	AFP0RF32CT
F32		(NPN): 0,2A		RS485	AFPORF32MT
(FRAM in- corporata)		Transistor		RS232C	AFP0RF32CP
		(PNP): 0,2A		RS485	AFPORF32MP

2.2.2 Unità di espansione I/O per FP0/FP0R

Tipo	Punti I/O	Alimentazione	Ingresso	Uscita	Collegamento	Codice
	8 (8/-)	-	24V DC terminale ±COM	-	Connettore MIL	FPOR- E8X
	8 (4/4)	24V DC	24V DC terminale ±COM	Relè: 2A	Blocco termi- nali	FPOR- E8RS
E8	8 (-/8)	24V DC	-	Relè: 2A	Blocco termi- nali	FP0R- E8YRS
	8 (-/8)	-	-	Transistor (NPN): 0,3A	Connettore MIL	FPOR- E8YT
	8 (-/8)	-	-	Transistor (PNP): 0,3A	Connettore MIL	FPOR- E8YP
	16 (16/-)	-	24V DC terminale ±COM	-	Connettore MIL	FPOR- E16X
	16 (8/8)	24V DC	24V DC terminale ±COM	Relè: 2A	Blocco termi- nali	FPOR- E16RS
E16	16 (8/8)	-	24V DC terminale ±COM	Transistor: (NPN) 0,3A	Connettore MIL	FPOR- E16T
	16 (8/8)	-	24V DC terminale ±COM	Transistor: (PNP) 0,3A	Connettore MIL	FPOR- E16P
	16 (-/16)	-	-	Transistor: (NPN) 0,3A	Connettore MIL	FP0R- E16YT
	16 (-/16)	-	-	Transistor: (PNP) 0,3A	Connettore MIL	FPOR- E16YP
E32	32 (16/16)	-	24V DC terminale ±COM	Transistor: (NPN) 0,3A	Connettore MIL	FPOR- E32T
	32 (16/16)	-	24V DC terminale ±COM	Transistor: (PNP) 0,3A	Connettore MIL	FPOR- E32P

2.2.3 Unità intelligenti FP0

Тіро	Specifiche	Codice	Manuale	
Unità per termocop-	Termocoppie : K, J, T, R (Risolu- zione 0,1°C)	FP0-TC4	ARCT1F366	
pia FPO	Termocoppie : K, J, T, R (Risolu- zione 0,1°C)	FP0-TC8		
Unità I/O analogica FP0	 N.° ingressi: 2 Range ingressi (Risoluzione 1/4000): Tensione: 0-5V, -10-+10V Corrente: 0-20mA N.° uscite: 1 Range uscite (Risoluzione 1/4000): Tensione: -10-+10V 	FPO-A21	ARCT1F390	
	Corrente: 0–20mA			
Unità di conversione A/D FP0	 N.° ingressi: 8 Range ingressi (Risoluzione 1/4000): Tensione: 0-5V, -10-+10V, - 100-100mV Corrente: 0-20mA 	FP0-A80	ARCT1F321	
Unità di conversione	N.º uscite: 4 Range uscite (Risoluzione 1/4000):	FP0-A04V	ADCT15392	
D/A FP0	Tensione: -10-+10VCorrente: 4-20mA	FP0-A04I	ARCITES	
Unità FP0 RTD	Pt100, Pt1000, Ni1000 Risoluzione: 0,1°C/0,01°C (dipen- de dall'impostazione)	FP0-RTD6	ARCT1F445	

2.2.4 Unità di link serie FP

Тіро	Dati	Alimentazione	Codice	Manuale
Unità di I/O link FP0	Progettata per far funzionare FP0 come uno slave MEW- NET-F (sistema di I/O remo- ti).	24V DC	FP0-IOL	FAF35E5
FP0 DP Slave	Progettato per collegare il PLC al PROFIBUS-DP o per essere usato, senza essere collegato, come unità I/O remota.	24V DC	FP0-DPS2	ACGM0123
Adattatore C-NET S2	Adattatore RS485 per il col- legamento tra PLC e host via C-NET usando MEWTOCOL- COM. Fornito con un cavo per porta TOOL di 30cm FP0. Non è richiesta alimentazione.	-	_	ARCT1F96
FP Web- Server 2	Progettato per collegare i PLC serie FP all'Ethernet, per inviare e-mail e per presen- tare i dati del PLC come pa- gine HTML.	_	FP-WEB2	ARCT1F446
FP Web Expansion	Deve essere collegato a FP Web-Server 2. Alimentato con una porta USB ed RS485.	-	FPWEBEXP	ARCT1F446

2.2.5 Unità di alimentazione

Nome del prodotto	Dati	Codice
	Range tensione di ingresso: 100-240V DC Max. corrente in uscita: 1A (24V DC)	FP-PS24-024E
Alimentazione FP-PS24	Range tensione di ingresso: 100-240V DC Max. corrente in uscita: 2,5A (24V DC)	FP-PS24-060E
	Range tensione di ingresso: 100–240V DC Max. corrente in uscita: 5A (24V DC)	FP-PS24-120E

2.2.6 Accessori

Nome	Descrizione		Lunghezza cavo	Codice
Cavo I/O	Set di due cavi per CPU FP0R/FPΣ con connettori MIL 10 pin (blu, bianco o a diversi colori)		1m	AFP0521D AFP0521BLUED AFP0521COLD
			3m	AFP0523D AFP0523BLUED
Cavo di alimentazione per espansioni FP0/FP0R	Parte di ricambio (incluso nella fornitura delle espan- sioni)		1m	AFP0581
Cavo di alimentazione FPOR/FP Σ	Parte di ricambio (incluso nella fornitura della CPU)		1m	AFPG805
Connettore Phoenix (2 pz.)	Connettore I/O a vite (incluso nella for- nitura dei moduli a relè)			AFP0802
Connettore MIL (2 pz.)	Zoccolo collegato a connettore MIL a 10-pin; parte di ricambio (incluso nel tipo con uscita a transistor)			AFP0807
Pinza pressa-cavo	Per il cablaggio di connettori per uscite a transistor			AXY5200FP
Piastra di montaggio FP0 tipo slim (10 pz.)	Per il montaggio verticale di unità di espansione per FP0/FP0R			AFP0803
Piastra di montaggio tipo flat (10 pz.)	Per montaggio orizzontale della CPU			AFP0804
	Per la lettu-	Resetta le aree di memoria al termine dell'operazione di download		AFP8670
FP Memory Loader	da/verso PLC	Non resetta le aree di memoria al ter- mine dell'operazione di download		AFP8671

2.3 Limitazioni sulle combinazioni delle unità

Aggiungendo unità di espansione, il numero di punti I/O può essere aumentato. Ad ogni modo il numero massimo di unità di espansione per CPU è limitato.

Si possono collegare fino a massimo 3 unità di espansione sul lato destro della CPU FPOR, indipendentemente dal fatto che siano unità di espansione I/O o unità intelligenti. È possibile combinare uscite a relè e a transistor.

Massimo numero di punti I/O

C10	106
C14	110
C16	112
C32/T32/F32	128

Nota

- Installare l'unità FPO per termocoppia a destra delle unità di espansione. Se viene installata a sinistra, complessivamente peggiorerà la precisione. Per dettagli fare riferimento al manuale FPO per le termocoppie.
- Installare l'unità FP0 RTD a destra delle altre unità di espansione.

2.4 Tool di programmazione

(1) Tool di programmazione

(2) Cavo di programmazione RS232C o cavo USB

Tool di programmazione

Si può utilizzare il seguente tool di programmazione per programmare FPOR:

- Control FPWIN Pro versione 6 o successiva
- FPWIN GR versione 2 o successiva
- FP Memory Loader (AFP8670/AFP8671) possono essere utilizzati per trasferire i programmi ed i registri di sistema.

Cavo di programmazione

Potete connettere il vostro PC al FPOR tramite USB o RS232C.

Cavo Connettore		Descrizione	Codice	
Cavo USB	Tipo Mini-B a 5-pin	USB 2.0 Fullspeed (o 1.1), 2m	CABMINIUSB5D	
Cavo di programma- zione RS232C	Da 9-pin Sub-D a 5-pin Mini-DIN (rotondo)	Cavo di programma- zione per serie FP e GT	AFC8513D	

- ① Tipo A (maschio), lato PC
- (2) Tipo Mini-B a 5-pin (maschio), lato PLC

Al posto del cavo USB di Panasonic si può usare un qualsiasi cavo USB in commercio che risponda alle specifiche sopra indicate. La lunghezza massima ammessa per il cavo è di 5m.

2.5 Compatibilità con i programmi di FP0

I programmi dell'FPO possono essere utilizzati su FPOR, soltanto se:

- sono conformi alle specifiche dell'FPOR, o
- sono eseguiti in modalità "FP0 compatibile"

Utilizzo di programmi conformi alle specifiche per FP0R

Questo permette di ottimizzare al massimo l'uso delle prestazioni e funzioni dell'FPOR. Ad ogni modo, devono essere eseguite le seguenti modifiche al programma FPO prima di scaricarlo nel PLC:

- 1. Modificare il tipo di PLC da FPO a FPOR utilizzando il tool di programmazione.
- 2. Dato che i registri di sistema saranno inizializzati quando il tipo di PLC è variato, riconfigurare i registri di sistema se necessario.
- 3. Se necessario modificare i programmi secondo le specifiche dell'FPOR.

Esecuzione dei programmi in modalità "FP0 compatibile"

La modalità compatibilità con FPO permette di utilizzare i programmi esistenti di FPO senza modificarli. Salvo alcune piccole eccezioni, si applicano le stesse specifiche dell'FPO.

Per inserire la modalità "FP0 compatibile", utilizzare il tool di programmazione per il download del programma di FP0. Apparirà un messaggio di conferma e la modalità varierà automaticamente in modalità "FP0 compatibile". Il programma per FP0 può essere stato caricato da un FP0 o può essere stato creato su un FP0R in modalità FP0 (il tipo di PLC è FP0).

La modalità "FP0 compatibile" è supportata da Control FPWIN Pro V6.10 o successiva e da FPWIN GR V2.80 o successiva.

Nota

Grazie alla velocità di elaborazione più elevata dell'FPOR, il tempo di scan in modalità "FPO compatibile" potrebbe essere più breve del tempo originale di scan dell'FPO. Se è necessario un tempo di scans vicino all'originale, impostare un tempo di scan costante nei registri di sistema oppure aggiungere un programma dummy come ad es. un'operazione loop per aumentare il tempo di scan.

Affinché un programma FP0 possa svolgersi nella modalità "FP0 compatibile", i tipi di PLC (C10, C14, C16, C32, e T32) devono corrispondere perfettamente. La modalità "FP0 compatibile" non è disponibile per l'F32 tipo FP0R.

Nella maggior parte dei casi, i programmi di FPO non necessitano di essere modificati per essere eseguibili nella modalità "FPO compatibile". Tenere comunque presente le seguenti differenze nelle specifiche e modificare i programmi se necessario: 1. P13_EPWT, comando di scrittura su EEPROM

I tempi di esecuzione di questa istruzione variano a seconda del numero dei blocchi di scrittura.

N.° dei blocchi di scrittura (word)	FP0 [ms]	Modalità "FP0 compatibile" [ms]
1 (64)	≈5	≈100
2 (128)	≈10	≈100
4 (256)	≈20	≈100
8 (512)	≈40	≈100
16 (1024)	≈80	≈100
32 (2048)	≈160	≈100
33 (2112)	≈165	≈200
41 (2624)	≈205	≈200
64 (4096)	≈320	≈200
96 (6144)	≈480	≈300
256 (16320)	≈800	≈800

2. F170_PulseOutput_PWM, istruzione uscita PWM

Le frequenze impostabili sono diverse. In particolare non è possibile definire l'impostazione per la banda a bassa frequenza.

	FP0		Modalità "FP0 compatibile"	
K	Frequenza [Hz]	Tempo [ms]	Frequenza [Hz]	Tempo [ms]
8	0,15	6666,7		
7	0,3	3333,3	Non può essere specificato (errore)	
6	0,6	1666,7		
5	1,2	833,3		
4	2,4	416,7		
3	4,8	208,3	6	166,7
2	9,5	105,3	10	100
1	19	52,6	20	50
0	38	26,3	40	25
16	100	10,0	100	10
15	200	5,0	200	5
14	400	2,5	400	2,5
13	500	2,0	500	2
12	714	1,4	750	1,3
11	1000	1,0	1000	1

 La dimensione dei dati è diversa per il valore corrente e il valore target FP0: 24 bit Modalità "FP0 compatibile": 32 bit

4. F144_TRNS, comunicazione seriale dati

Quando si inviano i dati, tenere presente le seguenti differenze:

Тіро	FP0	Modalità "FP0 compatibile"
Invio elabora- zione buffer	Il buffer memorizza il nu- mero di byte da spedire. Questo numero decresce dopo ogni trasmissione da 1 byte.	Il numero di byte da spedire rimane invariato durante la trasmissione. Dopo che la tra- smissione è stata terminata, il buffer indica 0.
Limitazioni sul numero di byte Nessuna da spedire		2048 byte

5. F169_PulseOutput_Jog, operazione JOG

Ci sono due differenze tra le specifiche dell'FP0 e quelle dell'FP0R: Modalità conteggio: L'FP0R non supporta l'impostazione "nessun conteggio". Il conteggio avanti viene invece effettuato con l'istruzione uscita ad impulsi FP0 impostata su "nessun conteggio". Ampiozza impulsi: Nella modalità "EP0 compatibilo", il duty ratio à fissa-

Ampiezza impulsi: Nella modalità "FP0 compatibile", il duty ratio è fissato a 25%. Diverse impostazioni nei programmi di FP0 saranno ignorate.

6. F168_PulseOutput_Home, Home return (ritorno alla posizione iniziale)

Nella modalità "FP0 compatibile" si ha il conteggio del valore corrente durante lo Home return. Con FP0, il valore corrente è indefinito. In entrambi i casi, il valore corrente sarà resettato a 0 quando è stato completato lo Home return.

7. Processo di calcolo del numero reale

Da quando la precisione nel calcolo del numero reale è stata migliorata, i risultati del calcolo ottenuti in modalità "FP0 compatibile" possono differire dai risultati ottenuti nel programma esistente di FP0.

8. Se la batteria secondaria installata nel tipo T32 è scarica, l'elaborazione successiva sarà diversa:

FP0: Il valore nell'area ritentiva della memoria dati sarà instabile. Modalità "FP0 compatibile": il valore nell'area ritentiva della memoria dati sarà 0.

9. La funzione Andamento temporale non è disponibile in modalità "FP0 compatibile".

Capitolo 3

Tipi di CPU

3.1 Parti e funzioni della CPU

① LED indicatore dello stato di funzionamento

Visualizza la modalità corrente oppure il verificarsi di un errore.

LED	Descrizione		
RUN (verde)	Si accende quando è in modalità RUN e indica che si sta ese- guendo il programma.		
	Lampeggia con I/O forzati (RUN e PROG LED lampeggiano al- ternatamente).		
PROG. (verde)	Si accende quando è in modalità PROG e indica che l'operazio- ne si è fermata.		
	Lampeggia con I/O forzati (RUN e PROG LED lampeggiano al- ternativamente).		
ERROR/ALARM (rosso)	Lampeggia quando si è rilevato un errore con la funzione di auto-diagnostica (ERROR).		
	Si accende se si verifica un errore hardware o se l'operazione rallenta a causa del programma e perché è stato attivato watchdog timer (ALARM).		

2 Selettore

Utilizzato per cambiare la modalità del PLC.

Posizioni selezionabili	Modalità operativa
RUN (verso l'al- to)	Imposta la modalità RUN. Viene eseguito il programma ed ha inizio il funzionamento.
PROG. (verso il basso)	Imposta la modalità PROG. Arresto del funzionamento. In questa modalità è possibile la programmazione attraverso la porta TOOL.

Quando si esegue una commutazione remota con il tool di programmazione, la posizione del selettore può differire da quella della modalità operativa. Verificare la modalità con il LED indicatore dello stato di funzionamento. Altrimenti, riavviare l'FPOR e impostare la modalità con il selettore.

③ Porta USB (Tipo Mini-B a 5-pin)

Utilizzata per collegare un software di programmazione. Si può usare un cavo USB di Panasonic CABMINIUSB5D o un cavo commerciale USB2.0 AB.

Per utilizzare la porta USB, installare il driver USB (vedere pag. 93).

④ Porta TOOL (RS232C)

Utilizzata per collegare un software di programmazione.

- (5) Connettore ingressi
- (6) LED indicatori stato ingresso
- $\ensuremath{\overline{\textit{\imath}}}$ Connettore uscite
- (8) LED indicatori stato uscita
- (9) Connettore alimentazione (24V DC)

Utilizzare il cavo di alimentazione fornito. Codice: AFPG805

1 Aggancio per unità di espansione

Usato per fissare l'unità di espansione. L'aggancio è utilizzato anche per l'installazione su piastra di montaggio piatta (codice AFP0804).

1 Connettore per le unità di espansione dell' FP0/FP0R

Collega un'unità di espansione FPO/FPOR al circuito interno. Il connettore è posizionato sotto l'adesivo.

12 Leva di fissaggio barra DIN

Utilizzato per una facile installazione su barra DIN. La leva è usata anche per l'installazione su piastra di montaggio slim. Vedere "Piastre di montaggio opzionali" pag. 61.

(13) Porta COM (RS232C o RS485)

Utilizzata per comunicare con dispositivi esterni per es. un display programmabile.

3.2 Specifiche ingressi della CPU

Le specifiche degli ingressi sotto riportate si applicano a tutti i tipi di CPU.

Тіро		Descrizione	
Metodo di isolamento		Optoaccoppiatore	
Tensione nom ingresso	ninale in	24V DC	
Tensione d'es	ercizio	21,6-26,4V DC	
Corrente nom ingresso	ninale in	≈2,6mA	
Ingressi per comune		C10: 6 C14, C16: 8 C32, T32, F32: 16 (Al terminale comune degli ingressi possono essere con- nessi sia il polo positivo che il polo negativo dell'alimen- tazione.)	
Min. tensione ON/min. corrente ON		19,2V DC/2mA	
Max. tensione OFF/max. corrente OFF		2,4V DC/1,2mA	
Impedenza in	ingresso	9,1kΩ	
Tempo di risposta	FALSE → TRUE	≤20μs (vedere la nota)	
	TRUE → FALSE	un tempo costante in ingresso (0,1ms-64ms) puo essere impostato attraverso i registri di sistema.	
Indicatore modalità operativa		LED	

Nota

Si applicano queste specifiche quando la tensione nominale in ingresso è 24V DC e la temperatura è 25°C.

Limitazione sul numero di ingressi che sono simultaneamente TRUE

Mantenere il numero di ingressi per comune che sono contemporaneamente TRUE entro il seguente range come determinato dalla temperatura ambiente.

- x Temperatura ambiente [°C]
- y Ingressi per comune che sono contemporaneamente TRUE
- ① A 24V DC
- ② A 26,4V DC

Diagramma circuito interno

3.3 Specifiche uscite della CPU

Tipo a transistor (C32/C28)

Тіро		Descrizione	
		NPN	PNP
Metodo di isolamento		Optoaccoppiatore	
Tipo di uscita		Collettore aperto	
Tensione di carico nomi	inale	5V DC-24V DC	24V DC
Range tensione di com	nutazione	4,75-26,4V DC	21,6-26,4V DC
Max. corrente di carico		0,2A	
Punti uscita per comune		C16: 8 C32, T32, F32: 16	
Corrente di dispersione allo stato OFF		≤1µA	
Caduta di tensione allo stato ON		≤0,2V DC	
Tempo di risposta	$FALSE \to TRUE$	$≤20\mu$ s (Corrente di carico: $≥5mA$) ≤0,1ms (Corrente di carico: $≥0,5mA$)	
	$TRUE \to FALSE$	≤40µs (Corrente di carico: ≥5mA) ≤0,2ms (Corrente di carico: ≥0,5mA)	
	Tensione	21,6-26,4V DC	
Alimentazione esterna per circuito interno (terminali +/-)	Corrente	C16: ≤30mA C16: ≤35mA C32, T32, F32: ≤32, T32, F32: ≤60mA ≤70mA	
Assorbimento sovratensione		Diodo Zener	
Indicatore modalità operativa		LED	

Limitazione sul numero di uscite che sono simultaneamente TRUE

Il numero di uscite per comune che può essere a TRUE contemporaneamente dipende dalla temperatura ambiente.

- x Temperatura ambiente [°C]
- y Numero di punti uscita per comune che sono contemporaneamente TRUE
- ① A 24V DC
- 2 A 26,4V DC

Diagramma circuito interno

Tipo a relè (C10/C14)

Тіро		Descrizione
Tipo di uscita		Uscita 1a
Capacità nominale di commuta- zione (carico resistivo)		2A 250V AC, 2A 30V DC (≤4,5A/comune)
Punti uscita nor comuno		C10: 2+1+1
	omane	C14: 4+1+1
Tempo di rispo- sta	FALSE → TRUE	≈10ms
	$\begin{array}{l} TRUE \to FAL- \\ SE \end{array}$	≈8ms
Vita meccanica		≥20 000 000 operazioni (frequenza: 180 opera- zioni/min)
Vita elettrica		≥100 000 operazioni (frequenza con capacità nominale di commutazione: 20 operazioni/min)
Assorbimento sovratensione		-
Indicatore modalità operativa		LED

Diagramma circuito interno

ACGM0475V3IT.docx

3.4 Configurazione terminali

C10RS, C10CRS, C10RM, C10CRM

(La figura qui sopra mostra il blocco terminali).

A Ingresso

B Uscita

① Alimentazione

C14RS, C14CRS, C14RM, C14CRM

(La figura qui sopra mostra il blocco terminali).

A Ingresso

B Uscita

① Alimentazione

C16T, C16CT

I terminali COM dei circuiti d'ingresso sono connessi internamente.

A Ingresso

B Uscita
C16P, C16CP

I terminali COM dei circuiti d'ingresso sono connessi internamente.

- A Ingresso
- **B** Uscita

C32T, C32CT, T32CT, F32CT

I terminali + e - dei circuiti di uscita sono connessi internamente.

- A Ingresso
- **B** Uscita

C32P, C32CP, T32CP, F32CP

I terminali + e - dei circuiti di uscita sono connessi internamente.

A Ingresso

B Uscita

3.5 Funzioni di backup e orologio/calendario

La CPU FP0R-T32 è dotata di una batteria secondaria (di tipo ricaricabile). Questa batteria permette di usare:

- aree ritentive supplementari per i registri dati o altri dati
- funzione orologio/calendario

La CPU FP0R-F32 ha una FRAM incorporata, che permette di salvare tutti i dati senza batteria di backup. Il modello FP0R-F32 non offre la funzione orologio/calendario.

Caricamento batteria

La batteria di backup incorporata non è carica quando l'unità viene spedita. Caricare la batteria prima dell'uso.

Tempo di caricamento per carico completo: 72 ore (a temperatura ambiente di 25°C)

La batteria sarà caricata automaticamente quando la CPU sarà alimentata con corrente continua.

Il numero di giorni in cui la batteria di backup può essere attiva (tempo di backup) dipende dal tempo di carica. Se la batteria è completamente carica (72 ore a temperatura ambiente di 25°C), la batteria funzionerà per circa 50 giorni.

Il tempo di backup varia a seconda della temperatura ambiente quando la batteria è carica.

Temperatura ambiente quando la bat- teria è carica	Tempo di backup
70°C	≈14 giorni
25°C	≈50 giorni
-20°C	≈25 giorni

Durata prevista della batteria di backup incorporata

La durata della batteria di backup incorporata varia a seconda della temperatura ambiente mentre la CPU è attiva.Quando la CPU è off, la temperatura ha poca influenza sulla durata della batteria.

Temperatura ambiente	Durata della batteria di backup incorporata
55°C	≈430 giorni (≈1 anno)
45°C	≈1200 giorni (≈3 anni)
40°C	≈2100 giorni (≈6 anni)
35°C	≈3300 giorni (≈9 anni)
≤34°C	≈10 anni

La batteria di backup incorporata non può essere sostituita.

Precisione dell'orologio/calendario

Temperatura ambiente	Errore
0°C	<104s/mese
25°C	<51s/mese
55°C	<155s/mese

3.5.1 Funzione di backup

Aree ritentive supplementari salvate nella batteria di backup (FP0R-T32) o nella FRAM (FP0R-F32) incorporata possono essere specificate per le seguenti aree di memoria:

- Timer/Counter (T/C)
- Relè interni (R)
- Registri dati (DT)
- Programma sequenziale

Le impostazioni dei programmi e dei registri di sistema saranno mantenute in una memoria interna ROM indipendente dalla batteria di backup incorporata.

Aree ritentive

Se nessuna impostazione è stata fatta nei registri di sistema da 6 a 14, i range degli indirizzi di default saranno salvati quando il PLC viene spento. Per salvare aree ritentive supplementari, seguire la procedura sottostante.

Procedimento

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Doppio click su "Dati ritentivi"

AVVISO

Se la batteria è vuota, i valori di dati nell'area ritentiva diventano indefiniti in assenza di corrente. Vengono rimessi su 0 quando la corrente è on.

Consigliamo di aggiungere un programma per controllare se i dati sono impostati su 0 quando l'alimentazione viene nuovamente inserita.

3.5.2 Funzione orologio/calendario

Dato che i valori iniziali dell'orologio/calendario sono indefiniti, scrivere i valori usando un tool di programmazione.

Area di memoria per funzione orologio/calendario

Con la funzione orologio/calendario, i dati memorizzati in speciali registri dati da DT90053 a DT90057 possono essere letti e usati nel programma PLC. Per accedere a registri dati speciali ed a relè interni speciali, usare le variabili di sistema indipendenti dal tipo di PLC.

Registro dati spe- ciali	Control FPWIN Pro variabile di sistema	Byte supe- riore	Byte inferiore	Lettura	Scrittura
DT90053	sys_w_RTC_HourMin	Ora 16#00- 16#23	Minuti 16#00– 16#59	•	-
DT90054	sys_w_RTC_MinSec	Minuti 16#00– 16#59	Secondi 16#00- 16#59	•	•
DT90055	sys_w_RTC_DayHour	Giorni 16#01- 16#31	Ora 16#00- 16#23	•	•
DT90056	sys_w_RTC_YearMonth	Anno 16#00- 16#99	Mese 16#01- 16#12	•	•
DT90057 sys_w_RTC_DayOfWeek		-	Giorni della settimana 16#00- 16#06	•	•
DT90058	sys_w_RTC_Set	Bit 15=TRUE attiva impos gio/calendar Bit 0=TRUE sta secondi a	E (16#8000): itazione orolo- io (16#0): impo- a 0	•	•

•: disponibilità

Impostazioni per funzione orologio/calendario

I valori dell'orologio/calendario vengono memorizzati con l'utilizzo della batteria di backup.

Non ci sono impostazioni standard per orologio/calendario. Ci sono due modi per impostare la funzione orologio/calendario:

Procedimento

Usando il tool di programmazione

- 1. Online \rightarrow Modalità online oppure
- 2. Monitoraggio \rightarrow Relè e Registri speciali \rightarrow Funzioni orologio/calendario
- 3. Inserire i valori data e tempo desiderati

Confermare ogni valore con [Invio].

Rai Funzioni orologi	io/calendario ×		
DT90053		(* Visualizzazione data/ora: ore e minuti 'sys_wClockCalendar	HourMin' *)
DT90054		(* Visualizzazione ed impostazione data/ora: minuti e secondi	'sys_wClockCalendarMinSec' *)
DT90055		(* Visualizzazione ed impostazione data/ora: giorno e ora	'sys_wClockCalendarDayHour' *)
DT90056	-	(* Visualizzazione ed impostazione data/ora: anno e mese	'sys_wClockCalendarYearMonth' *)
DT90057		(* Visualizzazione ed impostazione data/ora: giorno della settimana	'sys_wClockCalendarDayOfWeek'*)
DT90057		(* Visualizzazione ed impostazione data/ora: giorno della settimana	'sys_iClockCalendarDayOfWeek' *)
DT90058		(* Data/ora: impostazione valori (Bit 15) o regolazione in 30s (Bit 0)	'sys_wClockCalendarSet' *)

Usando un programma

- I valori data/tempo sono scritti in registri dati speciali da DT90054 a DT90057.
- 2. Un valore di 16#8000 viene scritto in DT90058.

Nota

- Per accedere a registri dati speciali ed a relè interni speciali, usare le variabili di sistema indipendenti dal tipo di PLC. Si possono inserire variabili di sistema direttamente nel corpo del programma utilizzando la finestra di dialogo "Variabili", senza inserire una dichiarazione nell'intestazione del POU. Fare riferimento all'help online di Control FPWIN Pro per ottenere informazioni dettagliate sull'uso delle variabili di sistema.
- Per impostare l'orologio/calendario, si può anche usare l'istruzione SET_RTC_DT o SET_RTC_INT.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

Esempio

Impostare l'ora su 12:00:00 e sul quinto giorno quando X0 è TRUE. In questo esempio, i valori di DT90054, DT90055, e DT90058 sono scritti usando variabili di sistema.

Programma campione per avvio automatico ad un tempo stabilito

In questo esempio, la funzione orologio/calendario è utilizzata per emettere il segnale Y0 per un secondo alle 8:30 ogni giorno. In questo caso l'ora/minuto memorizzati nel registro dati speciale DT90053 è utilizzato per emettere il segnale ad un determinato tempo. Il valore di DT90053 è scritto usando la variabile di sistema.

GVL

	Classe	Identificatore	Indirizzo FP	Indirizzo IEC	Tipo	Iniziale
0	VAR_GLOBAL	Y0_bOutputPulse	YO	%QX0.0	BOOL	FALSE

Intestazione POU

	Classe	Identificatore	Tipo	Iniziale
0	VAR	Pulse	TP	
1	VAR_EXTERNAL	Y0_bOutputPulse	BOOL	FALSE

Corpo LD

Programma campione per compensazione di 30 secondi

Questo è un programma per eseguire la compensazione per 30 secondi quando R0 va a TRUE. Si può utilizzare questo programma se occorre la compensazione di 30 secondi.

Intestazione POU

	Classe	Identificatore	Tipo	Iniziale
0	VAR	bStartCompensation	BOOL	FALSE
1	VAR	bRoundUp	BOOL	FALSE
2	VAR	dtbcdCurrent	DTBCD	
3	VAR	wSec	WORD	0

1	Read the current time from the RTC				
1	bStartCompensation NOVE				
	sys_wClockCalendarMinSecdtbcdCurrent.MinSec				
	sys_wClockCalendarDayHour-dtbcdCurrent.DayHour				
2	Decide whether to round down (seconds<30) or to round up (seconds>=30)				
	bStartCompensation AND GE BRoundUp BRoundUp				
	H EN ENO EN ENO AND C + + + + + + + + + + + + + + + + + +				
3	To round up 1 minute, (16#100) is added to the current time				
5	· · · bRoundUp· · · · · · F157 ADD DTBCD TIMEBCD				
	dtbcdCurrent — s1_DTBCD d_DTBCD — dtbcdCurrent				
-	Set the seconds to zero				
4	hStarCompanyation AND				
	dtbcdCurrent:MinSec				
5	Write the current time into the RTC and set the RTC using 'sys_wClockCalendarSet' >				
	bStartCompensation				
	Children MinSec				
	MOVE NEW MERCHANNER NEW MOVE				
	EN ENU – sws. wClockCalendarDavHaur				
	NAMES SERVICE SERVICE SERVICES				
	EN ENO En wOlachCalendarVaarManth				
	to the two				

Corpo LD

Capitolo 4

Espansioni

4.1 Sistema di espansione

Si può espandere FP0R aggiungendo le unità di espansione I/O dell'FP0/FP0R (vedere pag. 18), le unità intelligenti di FP0 (vedere pag. 19) e le unità di link della serie FP (vedere pag. 20).

Le unità di espansione vengono connesse al lato destro della CPU. Usare i connettori e gli agganci per le unità di espansione sul lato di ogni unità. Vedere "Collegamento delle unità di espansione FP0/FP0R" pag. 65.

4.2 Parti e funzioni delle unità di espansione

① Connettore alimentazione (24V DC)

Utilizzare il cavo di alimentazione fornito. Codice: AFP0581

- Connettore ingressi
- ③ LED indicatori stato ingresso
- (4) Connettore uscite
- $\ensuremath{\mathfrak{5}}$ LED indicatori stato uscita
- 6 Aggancio per unità di espansione

Usato per fissare l'unità di espansione.

Connettore per le unità di espansione dell' FP0/FP0R

Collega un'unità di espansione FPO/FPOR al circuito interno. Il connettore è posizionato sotto l'adesivo.

(8) Leva di fissaggio barra DIN

Utilizzato per una facile installazione su barra DIN. La leva è usata anche per l'installazione su piastra di montaggio slim. Vedere "Piastra di montaggio slim" pag. 61.

4.3 Specifiche ingressi unità di espansione

Тіро	Descrizione
Metodo di isolamento	Optoaccoppiatore
Tensione nominale in ingresso	24V DC
Corrente nominale in ingresso $\approx 4,7$ mA (a 24V DC) ($\approx 4,3$ mA per FP0) ¹)	
Impedenza in ingresso	≈5,1kΩ (≈5,6kΩ per FP0) ¹⁾
Tensione d'esercizio	21,6-26,4V DC
Ingressi per comune	E8X/E16P/E16T/E32RS: 8 E32T/E16X: 16 E8R: 4 (Al terminale comune degli ingressi possono essere con- nessi sia il polo positivo che il polo negativo dell'alimenta- zione.)
Min. tensione ON/min. corrente ON	19,2V DC/3mA
Max. tensione OFF/max. corrente OFF	2,4V DC/1mA

Тіро		Descrizione
Tempo di	$\begin{array}{l} FALSE \rightarrow \\ TRUE \end{array}$	
risposta	TRUE → FALSE	SZINS
Indicatore modalità operativa		LED

¹⁾ Tutte le unità di espansione sono state sostituite dalle più nuove unità FPOR con specifiche migliorate.

Limitazione sul numero di ingressi che sono simultaneamente TRUE

Mantenere il numero di ingressi per comune che sono contemporaneamente TRUE entro il seguente range come determinato dalla temperatura ambiente.

- x Temperatura ambiente [°C]
- y Ingressi per comune che sono contemporaneamente TRUE
- ① A 24V DC
- ② A 26,4V DC

4.4 Specifiche uscite unità di espansione

Specifiche uscita a relè (E8RS/E8RM/E8YRS/E16RS/E16RM/E32RS)

Тіро		Descrizione
Tipo di uscita		1a
Capacità nominale di commu- tazione (carico resistivo)		2A 250V AC, 2A 30V DC (≤4,5A/comune)
Punti uscita per comune		E8R: 4 E16R/E8YR/E32RS: 8
Tempo di rispo-	FALSE → TRUE	≈10ms
sta	TRUE → FALSE	≈8ms
Vita meccanica		≥20 000 000 operazioni (frequenza: 180 opera- zioni/min)
Vita elettrica		≥100 000 operazioni (frequenza con capacità nominale di commutazione: 20 operazioni/min)
Assorbimento sovratensione		-
Indicatore modal	ità operativa	LED

Diagramma circuito interno

① Circuito interno

Specifiche uscita a transistor (NPN: E8YT/E16YT/E16T/E32T, PNP: E8YP/E16YP/E16P/E32P)

Tine	Descrizione		
Tipo	NPN	PNP	
Metodo di isolamento	Optoaccoppiatore		
Tipo di uscita	Collettore aperto		
Tensione di carico nominale	5V DC-24V DC	24V DC	
Range tensione di commutazione	4,75-26,4V DC	21,6-26,4V DC	
Max. corrente di carico	0,3A/punti (max. 1A/comune) (0,1A per FP0) ¹⁾		
Max. corrente di spunto	0,3A		
Bunti ussita por comuno	E16T/E8Y: 8		
	E32/E16Y: 16		
Corrente di dispersione allo stato OFF	≤100μA		

Тіро		Descrizione		
		NPN	PNP	
Caduta di tensione allo stato ON	≤1,5V			
-	FALSE → TRUE	≤1ms		
Tempo di fisposta	$\begin{array}{l} TRUE \rightarrow \\ FALSE \end{array}$	≤1ms		
Alimentazione esterna per cir-	Tensione	21,6-26,4V DC		
cuito interno	Corrente	3mA/punti		
Assorbimento sovratensione		Diodo Zener		
Indicatore modalità operativa		LED		

¹⁾ Tutte le unità di espansione sono state sostituite dalle più nuove unità FPOR con specifiche migliorate.

Limitazione sul numero di uscite che sono simultaneamente TRUE

Mantenere il numero di usite per comune che sono contemporaneamente TRUE entro il seguente range come determinato dalla temperatura ambiente.

- x Temperatura ambiente [°C]
- y Numero di punti uscita per comune che sono contemporaneamente TRUE
- ① A 24V DC
- ② A 26,4V DC

Diagramma circuito interno

4.5 Configurazione terminali

E8RS, E8RM

E16R, E8YRS, E32RS

E8X, E16T, E8YT

I terminali COM dei circuiti d'ingresso sono connessi internamente.

A Ingresso (nessun ingresso per E8YT)

B Uscita (nessuna uscita per E8X)

I terminali + e - dei circuiti di uscita sono connessi internamente.

- A Ingresso (nessun ingresso per E16YT)
- B Uscita (nessuna uscita per E16X)

E16P, E8YP

I terminali COM dei circuiti d'ingresso sono connessi internamente.

A Ingresso (nessun ingresso per E8YT)

B Uscita

E32P, E16YP

I terminali + e - dei circuiti di uscita sono connessi internamente.

- A Ingresso (nessun ingresso per E16YP)
- **B** Uscita

Capitolo 5

Allocazione I/O

5.1 Introduzione

L'allocazione degli I/O viene eseguita in modo automatico quando viene aggiunta un'unità di espansione. Gli indirizzi associati alle unità di espansione dipendono dalla posizione in cui vengono installate. L'allocazione I/O delle CPU dell'FPOR è fissa.

Tipo di unità	Numero di unità		Indirizzi I/O
FPOR CPU	1	-	X0-XF Y0-YF
Unità di espansione I/O FP0/FP0R	2	1	X20-X3F Y20-Y3F
	3	2	X40-X5F Y40-Y5F
		3	X60-X7F Y60-Y7F

Nota

- Su FPOR e su FPO, vengono usati gli stessi indirizzi per gli ingressi e le uscite per es. X20, Y20.
- I numeri di I/O utilizzabili dipendono dal tipo di unità. Vedere "Unità di espansione FP0/FP0R" pag. 56.

5.2 CPU

Tipo di CPU		Punti I/O	Indirizzi I/O	
640	Ingresso	6	X0-X5	
C10	Uscita	4	Y0-Y3	
614	Ingresso	8	X0-X7	
C14	Uscita	6	Y0-Y5	
616	Ingresso	8	X0-X7	
C16	Uscita	8	Y0-Y7	
	Ingresso	16	X0-XF	
C32/132/F32	Uscita	16	Y0-YF	

L'allocazione I/O delle CPU dell'FPOR è fissa.

5.3 Unità di espansione FP0/FP0R

L'allocazione I/O viene eseguita automaticamente quando viene aggiunta un'unità di espansione. Gli indirizzi associati alle unità di espansione dipendono dalla posizione in cui vengono installate. Le unità di espansione della serie FP0/FP0R devono essere connesse sul lato destro della CPU. I numeri di I/O sono allocati in ordine crescente partendo dall'unità più vicina alla CPU.

Tipo di ur	Tipo di unità		Canale	Numero di unità (luogo di installa- zione)		
		I/U			2	3
Unità di espansior FP0/FP0R	ne I/O					
FP0R-E8X	Ingresso	8	-	X20-X27	X40-X47	X60-X67
FPOR-E8R	Ingresso	4	-	X20-X23	X40-X43	X60-X63
	Uscita	4	-	Y20-Y23	Y40-Y43	Y60-Y63
FPOR-E8YR, E8YT, E8YP	Uscita	8	-	Y20-Y27	Y40-Y47	Y60-Y67
FPOR-E16X	Ingresso	16	-	X20-X2F	X40-X4F	X60-X6F
FPOR-E16R,	Ingresso	8	-	X20-X27	X40-X47	X60-X67
E16T, E16P	Uscita	8	-	Y20-Y27	Y40-Y47	Y60-Y67
FPOR-E16YT, E16YP	Uscita	16	-	Y20-Y2F	Y40-Y4F	Y60-Y6F
FP0R-E32T, E32P, E32RS	Ingresso	16	_	X20-X2F	X40-X4F	X60-X6F
	Uscita	16	_	Y20-Y2F	Y40-Y4F	Y60-Y6F

Tipo di unità		Punti I/O	Canale	Numero di unità (luogo di installa- zione)		
					2	3
Unità I/O analo- gica FP0	Ingresso	16	0	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)
	Ingresso	16	1	WX3 (X30-X3F)	WX5 (X50-X5F)	WX7 (X70-X7F)
TPU-AZI	Uscita	16	-	WY2 (Y20-Y2F)	WY4 (Y40-Y4F)	WY6 (Y60-Y6F)
Unità di conver- sione A/D FP0 FP0-A80 e Unità per termo- coppia FP0 FP0-TC4, FP0-TC8	Ingresso	16	0, 2, 4, 6	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)
	Ingresso	16	1, 3, 5, 7	WX3 (X30–X3F)	WX5 (X50-X5F)	WX7 (X70-X7F)
Unità di conver- sione D/A FP0 FP0-A04V, FP0-A04I	Ingresso	16	-	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)
	Uscita	16	0, 2	WY2 (Y20-Y2F)	WY4 (Y40-Y4F)	WY6 (Y60-Y6F)
	Uscita	16	1, 3	WY3 (Y30-Y3F)	WY5 (Y50-Y5F)	WY7 (Y70-Y7F)
	Ingresso	16	0, 2, 4	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)
Unità FP0 RTD FP0-RTD6	Ingresso	16	1, 3, 5	WX3 (X30-X3F)	WX5 (X50-X5F)	WX7 (X70-X7F)
	Uscita	16	_	WY2 (Y20-Y2F)	WY4 (Y40-Y4F)	WY6 (Y60-Y6F)
Unità di I/O link	Ingresso	32	-	X20-X3F	X40-X5F	X60-X7F
FP0 FP0-IOL	Uscita	32	_	Y20-Y3F	Y40-Y5F	Y60-Y7F

Nota

Nelle unità analogiche FPO-A80, FPO-TC4/TC8, FPO-A04V/I e FPO-RTD6 i dati dei singoli canali vengono convertiti e caricati con un programma utente che, tramite un bit di scelta del canale, posiziona i dati su aree del PLC a 16 bit. Consultare al riguardo anche la descrizione dell'hardware delle unità analogiche.

Capitolo 6

Installazione e cablaggio

6.1 Installazione

Seguire attentamente le istruzioni di montaggio per evitare guasti o malfunzionamenti.

6.1.1 Ambiente e spazio di installazione

Ambiente operativo

Dopo aver installato l'unità, assicurarsi di usarla solo nelle seguenti condizioni ambientali:

- Temperatura ambiente: 0-+55°C
- Umidità ambiente: 10%–95% UR (a 25°C, non condensante)
- Livello di inquinamento: 2
- Non utilizzare l'unità negli ambienti seguenti:
 - in presenza di luce solare diretta
 - con improvvisi cambi di temperatura che generano condensa
 - in presenza di gas infiammabili o corrosivi
 - con eccessiva polvere, particelle metalliche o sali
 - in presenza di benzina, diluenti, alcool o altri solventi organici o soluzioni alcaline forti come ammoniaca o soda caustica
 - in presenza di vibrazioni dirette, urti o cadute dirette di acqua
 - nelle vicinanze di linee di trasmissione di potenza, cavi dell'alta tensione, cavi di potenza, alimentatori, radiotrasmittenti o qualsiasi altro dispositivo che potrebbe generare sovratensione. Mantenere almeno 100mm tra questi dispositivi e l'unità.

Elettricità statica

Prima di toccare l'unità o l'impianto, toccare sempre un metallo con messa a terra per scaricare l'elettricità statica che può essersi generata (soprattutto in luoghi asciutti). La scarica di elettricità statica può danneggiare parti e l'impianto.

Contromisure in caso di scarico termico

• Installare la CPU sempre in modo tale che la porta TOOL sia sul fondo e rivolta verso l'esterno per prevenire la generazione di calore.

• **NON** installare la CPU come mostrato qui sotto.

• Non installare l'unità sopra dispositivi che generano calore come radiatori, trasformatori o resistori di grandi dimensioni.

Spazio per il montaggio

• Lasciare almeno 50mm di spazio tra i conduttori dell'unità e altri dispositivi per permettere la radiazione del calore e la sostituzione dell'unità.

• Mantenere minimo 100mm tra i dispositivi per evitare effetti negativi dovuti a rumori e calore quando si installa un dispositivo o un pannello davanti all'unità.

• Lasciare almeno 100 mm di spazio sul fronte del PLC per consentire la connessione del cavo di programmazione ed il cablaggio degli I/O.

6.1.2 Uso delle barre DIN

La CPU può essere facilmente installata su barra DIN.

Procedimento

- 1. Inserire l'aggancio superiore dell'unità sulla barra DIN
- 2. Senza spostare l'aggancio superiore, premere sull'aggancio inferiore per posizionare l'unità

Anche la rimozione è molto semplice:

Procedimento

- 3. Inserire il cacciavite nella leva di attacco della barra DIN
- 4. Spingere la leva verso il basso
- 5. Sollevare l'unità e rimuoverla dalla barra DIN

6.1.3 Piastre di montaggio opzionali

Utilizzare viti a testa piatta M4 per installare la piastra di montaggio sul pannello. I diagrammi sottostanti mostrano le dimensioni delle piastre di montaggio.

6.1.3.1 Piastra di montaggio slim

In alternativa al montaggio su barra DIN si può usare la piastra di montaggio AFP0803.

Installazione e rimozione

La procedura per l'installazione e la rimozione dell'unità è simile a quella per la barra DIN:

Combinazione di piastre di montaggio

Quando si combinano diverse piastre di montaggio, serrare le viti dopo aver unito tutte le piastre che vanno collegate. Serrare poi tutte e quattro le viti agli angoli.

Il seguente diagramma mostra la combinazione delle piastre di montaggio AFP0803 quando si utilizza il numero massimo possibile di unità di espansione e le dimensioni dei fori di montaggio:

6.1.3.2 Piastra di montaggio flat

La piastra di montaggio flat (AFP0804) può essere usata soltanto con CPU stand-alone. Non deve essere usata se alla CPU è collegata un'unità di espansione.

Installazione

Procedimento

- 1. Sollevare gli agganci sopra/sotto all'unità di espansione
- 2. Premere l'unità sulla piastra di montaggio ed allineare gli agganci per l'unità di espansione con la piastra
- 3. Rimettere gli agganci per l'unità di espansione nella posizione iniziale

Rimozione

Procedimento

- 1. Sollevare gli agganci sopra/sotto all'unità di espansione
- 2. Rimuovere l'unità dalla piastra di montaggio

Installazione su barra DIN

Un'unità con piastra di montaggio flat può essere installata anche di lato su barra DIN.

6.2 Collegamento delle unità di espansione FP0/FP0R

Le unità di espansione vengono connesse al lato destro della CPU. Usare i connettori e gli agganci per le unità di espansione sul lato di ogni unità.

Procedimento

1. Rimuovere il sigillo sul lato destro dell'unità per scoprire il connettore di espansione

2. Sollevare gli agganci sopra/sotto all'unità di espansione

3. Allineare pin e fori in tutti e 4 gli angoli

- 4. Inserire pin nei fori e premere in modo tale che non ci sia spazio fra le unità
- 5. Rimettere gli agganci per l'unità di espansione nella posizione iniziale

Si possono aggiungere altre due unità nello stesso modo.

6.3 Istruzioni di sicurezza per il cablaggio

In alcune applicazioni, si possono verificare dei malfunzionamenti per le seguenti cause:

- differenze nei tempi di alimentazione tra il PLC ed i circuiti di alimentazione degli I/O o i dispositivi motorizzati
- si può verificare un ritardo nel tempo di risposta in presenza di una momentanea caduta di tensione
- anormalità nel PLC, circuito di alimentazione esterna o altri dispositivi

Per evitare un malfunzionamento che potrebbe causare un arresto del sistema, scegliere delle contromisure adeguate come sotto indicato:

Circuito interlock

Quando un motore può funzionare sia in senso orario che antiorario, predisporre un programma nel PLC di interlock che impedisca l'invio contemporaneo di segnali di funzionamento orario e antiorario all'ingresso del motore.

Circuito stop di emergenza

Predisporre esternamente un circuito per lo stop di emergenza che disattivi l'alimentazione dei dispositivi controllati al fine di evitare un arresto di sistema o un incidente irreparabile se si verifica un malfunzionamento.

Sequenza di avvio

Il PLC dovrebbe essere acceso solo dopo aver alimentato tutti i dispositivi di campo. Per assicurare questa sequenza, si raccomandano le seguenti contromisure:

- Inserire il PLC con il selettore sulla modalità PROG e poi impostarlo sulla modalità RUN.
- Programmare il PLC in modo tale che non prenda in considerazione gli I/O fino a quando i dispositivi di campo non sono stati inseriti.

Nota

Quando si blocca il funzionamento del PLC, disattivare anche le unità I/O dopo che il PLC si è fermato.

Messa a terra

Quando si installa il PLC vicino a dispositivi che generano alta tensione come p.es. inverter, non collegarli a terra tutti insieme. Usare sempre una messa a terra separata per ciascun dispositivo.

Interruzioni di corrente momentanee

L'FPOR continua a funzionare normalmente per un determinato periodo di tempo in caso di interruzione di corrente momentanea. Questo viene definito tempo di assenza di corrente momentanea. Ad ogni modo se l'interruzione di corrente eccede questo periodo di tempo, il funzionamento dipende dalla combinazione delle unità, dalla tensione di alimentazione ecc. In alcuni casi l'interruzione della corrente ha lo stesso effetto di un reset dell'alimentazione.

Per i valori del tempo di assenza di corrente momentanea, vedere "Caratteristiche generali" pag. 219.

Protezione dell'alimentazione

Dovrebbe essere usata un'alimentazione isolata con circuito interno di protezione (Alimentazione FP-PS24). L'alimentazione per la CPU non è isolata, quindi se viene applicata direttamente una tensione non corretta, il circuito interno può essere danneggiato o distrutto.

Se si utilizza un'unità di alimentazione senza circuito interno di protezione, occorre sempre che l'alimentazione sia fornita all'unità attraverso un elemento di protezione come un fusibile.

Protezione delle uscite

Se la corrente di carico massima viene superata perché il motore è bloccato o perché in un dispositivo elettromagnetico si verifica un cortocircuito di una bobina, si dovrebbe inserire un elemento protettivo, p.es. un fusibile.

6.4 Cavi di alimentazione

Caratteristiche tecniche

Tensione nominale:	24V DC
Tensione d'esercizio:	21,6-26,4V DC

Nota

- Per ridurre al minimo gli effetti negativi dei disturbi, intrecciare i fili marrone e blu del cavo di alimentazione.
- Per proteggere il sistema da tensioni errate nella linea dell'alimentazione, utilizzare un'alimentazione isolata con un circuito interno di protezione.
- Il regolatore sull'unità non è isolato.
- Se si utilizza un'unità di alimentazione senza circuito interno di protezione, occorre sempre che l'alimentazione sia fornita all'unità attraverso un elemento di protezione come un fusibile.

Isolamento di sistemi di alimentazione

Isolare i sistemi di cablaggio verso la CPU, le unità I/O e l'azionamento a motore.

Sequenza alimentazione

L'alimentazione della CPU deve andare su OFF prima che venga disinserita l'alimentazione degli I/O. Se l'alimentazione degli ingressi va ad OFF prima dell'alimentazione della CPU, il PLC potrebbe rilevare il cambio di stato sugli ingressi ed eseguire delle operazioni errate e potenzialmente pericolose.

6.4.1 Messa a terra

Collegate a terra il controllore se dovete aumentare la resistenza ai disturbi.

Nota

- Per la messa a terra, utilizzare un cablaggio con una sezione minima di $2mm^2$. La connessione a terra dovrebbe avere una resistenza inferiore a 100Ω .
- Il punto della messa a terra dovrebbe essere il più vicino possibile al PLC. Il cavo per la messa a terra dovrebbe essere il più corto possibile.
- Se due dispositivi condividono un singolo punto di messa a terra, si può generare un effetto negativo. Usare sempre una messa a terra separata per ciascun dispositivo.

Rischio corto circuiti

A seconda dell'ambiente nel quale viene usato l'impianto, la messa a terra può causare problemi.

Esempio 1

Dato che la linea di alimentazione dell'unità di espansione FP0/FP0R (24V DC e del terminale 0V è collegata alla terra attraverso un varistore, il varistore può subire un corto circuito se c'è un potenziale irregolare tra la linea di alimentazione e la terra. (La linea di alimentazione dell'FP0R è connessa alla terra attraverso un condensatore di alta tensione. Quindi non c'è rischio di corto circuiti).

Linea di alimentazione dell' FPOR con varistore 39V incorporato

Esempio 2

Non mettere a terra il terminale della terra dell'FPOR se si collega a terra un terminale positivo (+) dell'alimentazione.

In alcuni computer, il terminale SG della porta RS232C è collegato alla schermatura del connettore. Anche lo schermo della porta TOOL dell'FPOR è collegata al terminale della terra (PE). Quindi, GND e i terminali della terra dell'FPOR possono essere connessi se è collegato un computer. Se l'FPOR è collegato ad un computer il cui terminale positivo (+) è messo a terra, il terminale negativo (-) dell'FPOR è connesso al terminale della terra. Un corto circuito può danneggiare l'FPOR e parti nelle vicinanze.

6.5 Cablaggio I/O

Nota

- Fra i cavi degli I/O e i cavi di potenza e di alta tensione deve esserci una distanza di almeno 100mm.
- La sezione (diametro) dei cavi degli I/O dipende dall'assorbimento di corrente agli ingressi e alle uscite.
- Configurare il cablaggio in modo tale che i cavi per gli I/O siano separati l'uno dall'altro e che distino dal cavo di alimentazione il più possibile. Non inserirli nella stessa canalina né avvolgerli assieme.

6.5.1 Cablaggio ingressi

Per la connessione di unità d'ingresso vedere i diagrammi e le raccomandazioni sottostanti.

Uscita a relè

Uscita con collettore aperto

(4) Terminale ingresso

Uscita tensione (uscita universale)

- B FPOR
- (i) Circuito interno
- ② Uscita
- ③ Alimentazione per ingresso
- (4) Terminale ingresso

Uscita a due fili

6.5.1.1 Precauzioni per il collegamento d'ingresso

Precauzione quando si utilizza un interruttore magnetico dotato di LED

Quando un LED è collegato in serie ad un contatto di ingresso come ad es. in un interruttore magnetico con LED, la tensione applicata al terminale di ingresso del PLC al momento dell'inserimento deve essere maggiore di 21,6V DC. In particolare, fare attenzione quando si collegano più interruttori in serie.

- A Interruttore magnetico con LED
- **B** FPOR
- ① LED
- 2 Contatto
- ③ ≥21,6V
- (4) Terminale ingresso

Precauzioni quando si utilizza un sensore a due fili

Se l'ingresso del PLC non si disattiva a causa della corrente di dispersione del sensore a due fili (sensore fotoelettrico o di prossimità), si raccomanda l'utilizzo di una resistenza terminale, come sotto indicato.

- A Sensor a due fili
- **B** FPOR
- ① Circuito interno
- (2) Resistenza terminale
- (3) Terminale ingresso

La formula è basata sull'impedenza in ingresso di $9,1k\Omega$. L'impedenza in ingresso varia a seconda del numero di terminali di ingresso.

La tensione OFF in ingresso è 2,4V. Selezionare un valore per la resistenza terminale R in modo che la tensione tra il terminale COM ed il terminale di ingresso sia inferiore a 2,4V.

Quindi:

$$R \le \frac{21.84}{9.11 - 2.4}$$
 (kΩ)

La potenza assorbita W dal resistore è:

$$W = \frac{(V)^2}{R}$$

V = Tensione di alimentazione

Scegliere un valore da 3 a 5 volte il valore di W.

Precauzione quando si utilizza un finecorsa con LED

Se l'ingresso del PLC non si disattiva a causa della corrente di dispersione del finecorsa con LED, si raccomanda l'utilizzo di una resistenza terminale, come sotto indicato.

(†) Circuito interno r Resistore interno del finecorsa (k Ω)

(2) Alimentazione per ingresso R Resistenza terminale ($k\Omega$)

La tensione OFF in ingresso è 2,4V. Quindi quando l'alimentazione è 24V, selezionare la resistenza R in modo che la corrente sia maggiore del risultato di questa formula:

$$I = \frac{24 - 2.4}{r}$$

La resistenza R della resistenza terminale è:

R ≤
$$\frac{21.84}{9.11 - 2.4}$$
 (kΩ)

La potenza assorbita W dal resistore è:

$$W = \frac{(V)^2}{R}$$

V = Tensione di alimentazione

Scegliere un valore da 3 a 5 volte il valore di W.

6.5.2 Cablaggio uscite

Nel circuito di uscita non c'è nessun fusibile. Si raccomanda l'installazione di fusibili esterni in ogni circuito per ridurre il rischio che il circuito di uscita si fonda in caso di corto circuito.

Non collegare un carico che ecceda il valore massimo commutabile del terminale di uscita.

6.5.2.1 Circuito di protezione per carichi induttivi

Con un carico induttivo, dovrebbe essere installato un circuito di protezione in parallelo con il carico.

Quando si commutano carichi induttivi DC con uscite a relè, assicurarsi di collegare un diodo attraverso le estremità del carico.

Utilizzo di un carico induttivo AC (uscita a relè)

Utilizzo di un carico induttivo DC

6.5.2.2 Circuito di protezione per carichi capacitivi

Quando si collegano carichi con ampie correnti istantanee, collegare un circuito di protezione come sotto indicato per ridurre l'effetto al minimo.

6.6 Cablaggio connettore MIL

Il connettore sotto indicato viene fornito con le CPU e le unità di espansione I/O a transistor. Utilizzare i cavi sotto indicati. Si raccomanda di utilizzare l'apposito utensile per il collegamento dei cavi.

Questo connettore può essere ordinato come accessorio.

Informazioni per l'ordine dei pezzi di ricambio

Codice	Nome del prodotto	Тіро	Confezione
AFP0807	Set connettori	Tipo a 10 pin	2 pezzi
AXW61001	Coperchio	Tipo a 10 pin	2 pezzi
AXW7221	Contatti a crimpare	Per AWG22/24	5 pezzi

Cavo

Dimensione	Area [mm ²]	Spessore isolamento [mm]	Corrente nominale
AWG22	0,3	<i>α</i> 1 Ε 1 1mm	24
AWG24	0,2	∅ 1,5-1,1mm	AC

Cavi opzionali

Descrizione	Codice
Cavo I/O con connettore MIL a 10 pin, (2 pz.: 1 \times 10 fili blu, 1 \times 10 fili bianchi), 1m	AFP0521D
Cavo I/O con connettore MIL a 10 pin, (2 pz.: 1 \times 10 fili blu, 1 \times 10 fili bianchi), 3m	AFP0523D
Cavo I/O con connettore MIL a 10 pin, (2 pz.: 2 \times 10 fili blu), 1m	AFP0521BLUED
Cavo I/O con connettore MIL a 10 pin, (2 pz.: 2 \times 10 fili blu), 3m	AFP0523BLUED
Cavo I/O con connettore MIL a 10 pin, (2 pz.: 2 \times 10 fili colorati), 1m	AFP0521COLD
Cavo I/O con connettore MIL a 10 pin, (2 pz.: 2 \times 10 fili colorati), 3m	AFP0523COLD
Cavo I/O con connettore MIL a 10 pin, fili blu, 1m	AYT58403BLUED
Cavo I/O con connettore MIL a 10 pin, fili blu, 3m	AYT58406BLUED
Cavo I/O con connettore MIL a 40 pin, fili colorati a norma DIN 47100, 3m	AYT58406COLD

Pinza pressa-cavo AXY5200FP

Metodo di collegamento

L'estremità del cavo può essere crimpata direttamente senza rimuovere l'isolamento.

Procedimento

- 1. Inserire il cavo senza rimuovere il suo isolamento fino a quando non si blocca
- 2. Avvitare leggermente

3. Inserire il cavo nel blocco connettori

4. Quando tutti i cavi sono stati inseriti, mettere il coperchio

Nota

In caso di errore nel cablaggio o nell'inserimento del cavo, utilizzare l'apposito utensile per rimuovere il contatto.

① Premere sul foro relativo al filo mantenendo il filo in tensione fino allo sganciamento.

6.7 Cablaggio blocco terminali

Si utilizzano terminali a vite. I cavi adatti sono indicati qui sotto.

Nota

- Quando si rimuove l'isolamento del cavo, fare attenzione a non danneggiare il filo conduttore.
- Non intrecciare i cavi per collegarli.
- Non saldare tra loro i cavi. Le saldature potrebbero rompersi a causa delle vibrazioni.
- Dopo il cablaggio assicurarsi che il filo non venga messo in tensione.
- Se lo zoccolo del blocco terminali si chiude con una rotazione antioraria, la connessione è sbagliata. Scollegare il cavo, controllare il foro del terminale e ricollegare il cavo.

Blocco terminali

Тіро	Descrizione
Numero pin	9
Produttore	Phoenix Contact Co.
Modello	MC1,5/9-ST-3,5
Codice	1840434

Cavo

Dimensione	Area [mm ²]	
AWG22	0,3	
AWG24-16	0,2-1,25	

Terminali con manicotto d'isolamento compatibile

Per questi terminali tenere in considerazione le seguenti specifiche:

Area [mm ²]	Dimensione
0,25	AWG24
0,50	AWG20
0,75	AWG18
1,00	AWG18
0,5 x 2	AWG20 (per 2 pezzi)

La coppia di serraggio deve essere max. 0,22–0,25Nm. Utilizzare un cacciavite con punta di dimensione 0,4 x 2,5.

Metodo di collegamento

Procedimento

1. Rimuovere una parte dell'isolamento del cavo

- 2. Inserire il cavo nel blocco terminali fino a quando non tocca il fondo dello zoccolo
- 3. Ruotare il cacciavite in senso orario per fissare il cavo

6.8 Cablaggio porta COM

Per la porta COM si utilizza la connessione a vite. I cavi adatti sono indicati qui sotto.

	Simbolo	RS232C	RS485
1	G	Massa di segnale	Terminale E
(2)	R	Ricezione dati (Ingresso)	Linea di trasmissione (-)
3	S	Invio dati (Uscita)	Linea di trasmissione (+)

Nota

- Quando si rimuove l'isolamento del cavo, fare attenzione a non rovinare il filo conduttore.
- Non intrecciare i cavi per collegarli.
- Non saldare tra loro i cavi. Le saldature potrebbero rompersi a causa delle vibrazioni.
- Dopo il cablaggio assicurarsi che il filo non venga messo in tensione.
- Se lo zoccolo del blocco terminali si chiude con una rotazione antioraria, la connessione è sbagliata. Scollegare il cavo, controllare il foro del terminale e ricollegare il cavo.

Blocco terminali

Si utilizza il connettore di comunicazione prodotto da Phoenix Contact.

Тіро	Descrizione
Numero pin	3
Produttore	Phoenix Contact Co.
Modello	MKDS1/3-3.5
Codice	1751400

Cavo

Dimensione	Area [mm ²]
AWG28-16	0,08-1,25

Utilizzare soltanto doppini schermati e intrecciati.

Si raccomanda la messa a terra della parte schermata.

Quando si utilizzano questi terminali, far riferimento a "Cablaggio blocco terminali" pag. 82.

Metodo di collegamento

Procedimento

- 1. Rimuovere una parte dell'isolamento del cavo
- 2. Inserire il cavo nella porta COM fino a quando non tocca il fondo dello zoccolo

3. Ruotare il cacciavite in senso orario per fissare il cavo

Diagramma connessione RS485

(1) Fare un ponte fra il terminale E ed il terminale - sulla prima e sull'ultima stazione della linea di trasmissione per inserire la terminazione sulla linea di trasmissione.

Nota

Il cablaggio dovrebbe estendersi da una stazione alla successiva. Non far uscire mai due cavi da una singola stazione verso due altre stazioni.

6.8.1 Cavi di trasmissione

	Cond	uttore	Isola	tore	Diametra
Tipo	Dimensione [mm ²]	Resistenza (a 20°C) [Ω/km]	Materiale	Spessore [mm]	cavo [mm]
Doppino schermato intrecciato (3) (3) (2) (2)	≥0,5 (AWG20)	≤33,4	Polietilene	≤0,5	≈7,8
VCTF	≥0,5 (AWG20)	≤37,8	Policloro- bifenili	≤0,6	≈6,2

Utilizzare i seguenti cavi di trasmissione.

① Copertura

(2) Isolatore

(3) Conduttore

(4) Schermatura

Nota

- Utilizzare soltanto doppini schermati e intrecciati.
- Utilizzare soltanto un tipo di cavo di trasmissione. Non mescolare più di un tipo.
- Mettere a terra un'estremità della schermatura del cavo.
- Se due cavi sono collegati ai terminali +/- della porta RS485, utilizzare i cavi della stessa area (0,5mm²).

Capitolo 7

Comunicazione

7.1 Modalità di comunicazione

L'FPOR offre quattro diverse modalità di comunicazione:

- MEWTOCOL-COM Master/Slave [Computer Link]
- Comunicazione controllato da programma [General Purpose]
- PLC Link (MEWNET-W0)
- Modbus RTU Master/Slave

Porte di comunicazione

L'FPOR è dotato delle seguenti porte:

- porta TOOL (interfaccia RS232C)
- porta USB (interfaccia USB 2.0 Fullspeed)
- porta COM (interfaccia RS232C oppure RS485)

7.1.1 Terminologia in Control FPWIN Pro ed FPWIN GR

Sebbene siano simili, Control FPWIN Pro ed FPWIN GR usano una terminologia lievemente differente per descrivere modalità di comunicazione. La seguente tabella riporta i termini equivalenti per FPWIN GR.

Control FPWIN Pro	FPWIN GR
MEWTOCOL-COM Master/Slave [Computer Link]	Computer link
Comunicazione controllato da programma [General Purpose]	Comunicazione generale
PLC Link (MEWNET-W0)	PC Link
Modbus RTU Master/Slave	MODBUS RTU

7.1.2 MEWTOCOL-COM Master/Slave

Per questa modalità di comunicazione si usa il protocollo MEWTOCOL-COM del produttore per scambiare di dati fra una stazione master e uno o più slave. Si distingue fra comunicazione 1:1 e comunicazione 1:N. Una rete 1:N è chiamata anche C-NET.

Collegamento MEWTOCOL-COM fra un computer e l'FPOR

① Comando ② Risposta

Esiste una funzione master ed una funzione slave. La parte che invia i comandi è chiamata master. Lo slave riceve i comandi, effettua l'elaborazione e spedisce indietro le risposte. Lo slave risponde automaticamente ai comandi ricevuti dal master per cui non occorrono programmi per lo slave.

Riferimento

Per informazioni dettagliate sulla modalità di comunicazione MEWTOCOL-COM vedere "MEWTOCOL-COM" pag. 104.

7.1.3 Comunicazione controllata da programma

Nella comunicazione controllata da programma, l'utente genera un programma che governa il trasferimento di dati fra un PLC e una o più variabili esterne collegate all'interfaccia, p. es. un dispositivo di elaborazione di immagini o un lettore di codice a barre. Quindi si possono programmare protocolli standard o definiti dall'utente.

Un programma definito dall'utente di questo tipo comprende in genere l'invio e la ricezione di dati. I dati pronti per l'invio e i dati ricevuti sono memorizzati nelle aree di registrazione dati (DT) definite rispettivamente come buffer di invio e di ricezione.

Riferimento

Per informazioni dettagliate sulla modalità di comunicazione controllata da programma vedere "Comunicazione controllata da programma" pag. 117.

7.1.4 PLC Link

PLC Link è un metodo semplice per collegare PLC usando un cavo a due fili intrecciati ed il protocollo MEWNET. I dati vengono condivisi con tutti i PLC mediante relè interni dedicati chiamati relè di link (L) e registri di dati chiamati registri di link (LD). Gli stati dei relè di link e dei registri di link di un PLC sono inoltrati automaticamente agli altri PLC della stessa rete. Gli relè di link ed i registri di link dei PLC contengono aree per inviare dati ed aree per riceverli. I numeri delle stazioni e le aree di link sono allocati usando i registri di sistema.

Esempio

Il relè di link L0 per la stazione #1 passa a TRUE. Il passaggio di stato è riportato ai programmi delle altre stazioni e l'uscita Y0 delle altre stazioni è messa su TRUE. La costante 100 è scritta nel registro di link LD0 della stazione #1. Il contenuto degli LD0 delle altre stazioni è anch'esso cambiato nella costante 100.

Collegamento PLC Link fra quattro unità FPOR

Numero di stazione del PLC LD Registro di link

Riferimento

Per informazioni dettagliate sulla modalità di comunicazione PLC Link vedere "PLC Link" pag. 136.

7.1.5 Modbus RTU Master/Slave

Per questa modalità di comunicazione si usa il protocollo Modbus RTU per regolare lo scambio di dati fra un master e uno o più slave. Si distingue fra comunicazione 1:1 e comunicazione 1:N.

Comunicazione Modbus RTU fra l'FPOR ed un dispositivo esterno

-		-	
(1)	Comando	(2)	Risposta

Esiste una funzione Modbus RTU master ed una funzione Modbus RTU slave. La parte che invia i comandi è chiamata master. Lo slave riceve i comandi, effettua l'elaborazione e spedisce indietro le risposte. Lo slave risponde automaticamente ai comandi ricevuti dal master per cui non occorrono programmi per lo slave.

Il protocollo Modbus supporta sia la modalità ASCII sia la modalità RTU binaria. I PLC della serie FP supportano però solo la modalità RTU binaria.

Riferimento

Per informazioni dettagliate sulla modalità di comunicazione Modbus RTU vedere pag. 155.

7.2 Porte: Nomi e funzioni delle porte

Porta	Connettore	Modalità di comunicazione
Porta TOOL	Connettore a norma mini- DIN a 5-pin	 MEWTOCOL-COM Slave Comunicazione controllato da programma [General Purpose] (solo nella modalità RUN)¹⁾
Porta USB	Tipo USB miniB	MEWTOCOL-COM Slave
Porta COM	Tipo RS232C a 3 fili o tipo RS485 a 2 fili (con serrafi- lo)	 MEWTOCOL-COM Master/Slave [Computer Link] Comunicazione controllato da programma [General Purpose] Modbus RTU Master/Slave PLC Link

¹⁾ Se nella comunicazione controllata da programma si commuta alla modalità PROG, la porta TOOL passa automaticamente alla modalità MEWTOCOL-COM. Così nella modalità PROG è sempre possibile la comunicazione con tool di programmazione come p.es. Control FPWIN Pro.

7.2.1 Porta TOOL

La porta TOOL può essere usata per collegare un tool di programmazione.

La CPU è dotata di un connettore commerciale a norma mini-DIN a 5-pin che funge da porta TOOL.

	Pin n.°	Segnale	Abbreviazione	Direzione del segnale
4 2	1	Massa di se- gnale	SG	-
	2	Invio dati	SD	$\begin{array}{l} CPU \to Dispositivo \\ esterno \end{array}$
	3	Ricezione dati	RD	CPU ← Dispositivo esterno
5 3	4	(Non in uso)	-	-
-	5	+5V	+5V	$CPU \rightarrow Dispositivo$ esterno

Le impostazioni di fabbrica sono riportate qui sotto. Possono essere modificate nei registri di sistema.

Parametro di comunicazione	Impostazioni di fabbrica
Baud rate	9600bit/s
Lunghezza dati	8
Parità	Dispari
Bit di stop	1bit

Impostare il numero della stazione per la porta TOOL nell'area di impostazione della porta TOOL del registro di sistema.

7.2.2 Porta COM

Porta di comunicazione per dispositivi con porta RS232C o RS485.

Tipi di CPU con porta COM per RS232C: C10CR, C14CR, C16C, C32C, T32C, F32C

Tipi di CPU con porta COM per RS485: C10MR, C14MR, C16M, C32M, T32M, F32M

	Simbolo	RS232C	RS485
1	G	Massa di segnale	Terminale E
(2)	R	Ricezione dati (Ingresso)	Linea di trasmissione (-)
3	S	Invio dati (Uscita)	Linea di trasmissione (+)

7.2.3 Porta USB

La porta USB può essere usata per collegare un tool di programmazione.

Si può usare un cavo USB di Panasonic CABMINIUSB5D o un cavo commerciale USB2.0 AB.

Per utilizzare la porta USB, installare il driver USB.

Caratteristiche tecniche

Тіро	Descrizione
Connettore	Tipo Mini-B a 5-pin
Standard (baud rate)	USB2.0 Fullspeed
Modalità di comunicazione	MEWTOCOL-COM Slave

PRECAUZIONI

Installare il tool di programmazione prima di collegare l'FP0R ad un PC.

Se si collega l'FPOR ad un PC con il cavo USB prima che il tool di programmazione sia installato o durante l'installazione, il driver USB non sarà installato correttamente.

Impostazione della porta USB

Le impostazioni della porta USB sono fisse e non possono essere cambiate.

Collegando i PLC con un personal computer tramite cavo USB potete comunicare con il nostro tool di programmazione.

Tale metodo di comunicazione si avvale dell'USB come porta seriale virtuale, ciò significa che l'FPOR collegato via USB è considerato dal PC come se fosse collegato con la porta COM. Il numero della porta allocata per la USB è fisso a meno che non venga cambiato dall'utente.

È necessario eseguire la procedura di installazione del driver USB solo al primo collegamento del cavo USB.

Se però si commuta fra una porta USB e una porta TOOL è necessario cambiare le impostazioni per la comunicazione.

Tipo di sistema necessario

- Sistema operativo del PC:
 - Windows[®]2000
 - Windows[®]XP
 - Windows[®]Vista
 - Windows[®]7
- Control FPWIN Pro versione 6.1 o seguente o FPWIN GR versione 2.80 o seguente
- Cavo USB (vedere pag. 22)

Nota

- Non si può usare un USB hub.
- Più unità FPOR collegate ad un PC con la USB non possono comunicare contemporaneamente con il PC. Il PC può comunicare solamente con l'FPOR collegato per primo.

7.2.3.1 Installazione del driver USB

Affinché la porta USB venga riconosciuta devono essere installati i due dri-

ver seguenti:

- driver USB
- driver convertitore USB-COM

La procedura di installazione dipende dal sistema operativo del PC.

Se il PC ha più di un connettore USB e si cambia la posizione del connettore, forse si dovranno installare nuovamente questi due driver.

Procedimento

- 1. Inserire l'alimentazione dell'FPOR
- 2. Collegare l'FPOR con un PC usando un cavo USB

Il PC riconosce il driver USB automaticamente.

3. Seguire le istruzioni del wizard

Conferma delle porte COM

L'FPOR collegato al PC tramite USB è considerato come se collegato via porta COM. A quale porta COM sia allocata l'USB dipende dall'ambiente del PC. Per questo potrebbe essere necessario confermare il numero della porta COM.

Per la comunicazione con il tool di programmazione occorre conoscere il numero della porta COM.

Procedimento

1. Richiamare la Gestione periferiche

Per **Windows®7**: Pannello di controllo \rightarrow Gestione periferiche. Per **Windows[®]XP**: Avvio \rightarrow Impostazioni \rightarrow Scheda hardware \rightarrow Gestione periferiche.

Per **Windows®2000**: Avvio \rightarrow Pannello di controllo \rightarrow Sistema \rightarrow Scheda Hardware \rightarrow Gestione periferiche \rightarrow Visualizza \rightarrow Visualizza per tipo.

- 2. Fare doppio click su "Porte (COM & LPT)"
- 3. Confermare il numero di porta COM

Il numero di porta COM allocato è "CP210x USB to UART Bridge Controller (COM n)". Nella figura qui sotto si tratta della porta numero 9.

Nota

Se in "Altre periferiche" o "Periferiche sconosciute" appare "?CP210x USB to UART Bridge Controller", l'installazione non è riuscita. Reinstallare il driver USB (vedere pag. 97).

7.2.3.2 Comunicazione con il tool di programmazione

In Control FPWIN Pro procedere come segue:

Procedimento

- 1. Online \rightarrow Parametri di comunicazione
- 2. Effettuare le seguenti impostazioni nella finestra di dialogo "Impostazio-

ne comunicazione":

Parametro	Impostazione
Rete	C-NET (RS232C, USB)
Porta COM	Numero di porta COM allocato per l'USB
Baud rate	115200bit/s (la velocità del collegamento USB è di 115200bit/s)
Lunghezza dati	8 bit
Bit di stop	1 bit
Parità	Dispari

Riferimento

Per la configurazione della porta COM si prega di consultare l'help online di Control FPWIN Pro.

7.2.3.3 Reinstallazione del driver USB

Se l'installazione del driver USB non è riuscita occorre ripeterla. Se in "Altre periferiche" o "Periferiche sconosciute" appare "?CP210x USB to UART Bridge Controller", l'installazione non è riuscita.

Reinstallare il driver anche nel caso in cui il collegamento USB non funzioni bene.

Reinstallazione del driver USB

Procedimento

- 1. Click con il tasto destro su "? CP210X USB to UART Bridge Controller"
- 2. Selezionare "Elimina"
- 3. Reinstallare il driver USB (vedere pag. 94)

7.3 Dati tecnici sulla comunicazione

Porta TOOL

Elemento	Descrizione
Porta	RS232C
Distanza di trasmis- sione	15m
Baud rate	2400, 4800, 9600, 19200, 38400, 57600, 115200bit/s
Metodo di comunica- zione	Semiduplex
Trasmissione sincro- na	Sincronizzazione start/stop
Formato di comuni- cazione	Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX
Ordine trasmissione dati	Trasmette carattere per carattere dal bit 0.
Modalità di comuni- cazione	 MEWTOCOL-COM Slave Inizializzazione modem Comunicazione controllato da programma [General Purpose] (solo nella modalità RUN)

Porta USB

Elemento	Descrizione	
Standard (baud rate)	USB2.0 Fullspeed	
Modalità di comunicazione	MEWTOCOL-COM Slave	

Porta COM (RS232C)

Elemento	Descrizione	
Porta	RS232C	
Distanza di trasmissione	15m	
Baud rate	2400, 4800, 9600, 19200, 38400, 57600, 115200bit/s	
Metodo di comunicazio- ne	Semiduplex	
Trasmissione sincrona	Sincronizzazione start/stop	
Formato di comunica- zione	Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX	
Ordine trasmissione dati	Trasmette carattere per carattere dal bit 0.	
Modalità di comunica- zione	 MEWTOCOL-COM Master/Slave [Computer Link] Inizializzazione modem Comunicazione controllato da programma [General Purpose] Modbus RTU Master/Slave PLC Link 	

Porta COM (RS485)

Elemento		Descrizione	
Porta		RS485	
Tipo di col	legamento	1:N	
Distanza d	i trasmissione	1200m ¹⁾²⁾	
Baud rate		19200, 115200bit/s ²⁾³⁾	
Metodo di	comunicazione	Linea a 2 fili, semiduplex	
Trasmissio	one sincrona	Sincronizzazione start/stop	
Linea di tr	asmissione	Doppino schermato intrecciato o VCTF	
	MEWTOCOL-COM	ASCII	
Formato dati	Comunicazione controllato da programma [General Purpose]	ASCII, C16CT	
	Modbus RTU	Binario	
Formato di comunicazione (impostazione in registri di sistema) ⁴⁾		Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX	
N.º di staz	ioni collegate ^{2) 5)}	≤99 (≤32 con adattatore C-NET)	

Elemento	Descrizione
Modalità di comunicazione	 MEWTOCOL-COM Master/Slave [Computer Link] Inizializzazione modem Comunicazione controllato da pro- gramma [General Purpose] Modbus RTU Master/Slave PLC Link

- Il numero di stazioni, la distanza di trasmissione e il baud rate possono variare a seconda del dispositivo RS485 collegato.
- ²⁾ I valori per la distanza di trasmissione, la baud rate ed il numero di stazioni dovrebbero essere compresi entro i valori riportati nel grafico che segue.

- **x** Distanza di trasmissione [m]
- y Numero di stazioni
- 1 Per una baud rate di 115200
bit/s
- ② Per una baud rate di 19200bit/s
- ³⁾ Impostare la baud rate nei registri di sistema e impostare nello stesso modo con gli interruttori DIP sul lato inferiore dell'unità. Quando un adattatore C-NET è collegato alla porta RS485 si può specificare solo una baud rate di 19200bit/s.
- ⁴⁾ Il codice iniziale e il codice finale possono essere usati solo nella comunicazione controllata da programma.
- ⁵⁾ I numeri della stazione dovrebbero essere impostati attraverso i registri di sistema.

Nota

Se la differenza di potenziale fra le alimentazioni degli apparecchi RS485 supera 4V, la comunicazione può essere disturbata perché la porta RS485 non è isolata. La grande differenza di potenziale danneggerebbe i dispositivi collegati.

Impostazioni standard

Porta	Baud rate	Lunghezza dati	Parità	Bit di stop
Porta TOOL	9600bit/s	8 bit	Dispari	1 bit
Porta COM (RS232C)	9600bit/s	8 bit	Dispari	1 bit
Porta COM (RS485)	115200bit/s	8 bit	Dispari	1 bit

7.4 Parametri di comunicazione

Le impostazioni per i parametri di comunicazione si effettuano nei registri di sistema del PLC. Scegliere le impostazioni per la modalità di comunicazione, il formato di comunicazione, la baud rate, il numero di stazione e il buffer di ricezione se necessario.

Nella modalità PROG:

Utilizzare l'ambiente di programmazione per impostare le porte di comunicazione nei registri di sistema.

Nella modalità RUN:

Usare l'istruzione SYS1 per cambiare i parametri di comunicazione. Per informazioni dettagliate si prega di consultare l'help online per Control FPWIN Pro.

La modalità di comunicazione può essere commutata mediante l'utilizzo della F159_MRTN (vedere pag. 103).

7.4.1 Impostazione dei registri di sistema nella modalità PROG

Procedimento

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Fare doppio click su "COM Port"

Per fare impostazioni per la porta TOOL, selezionare "Porta TOOL" in "Registri di sistema".

I seguenti parametri di comunicazione vengono impostati nei registri di sistema:

Modalità di comunicazione

Selezionare una modalità di comunicazione. L'impostazione di fabbrica per la modalità di comunicazione è "MEWTOCOL-COM Master/Slave [Computer Link]".

No	Nome elemento	Dati	Dime
412	Modalità di comunicazione porta COM 1	M Master/Slave [Computer Link] 🗸	
410	Nr. stazione porta COM 1	MEWTOCOL COM Master/Slave [Computer Link]	
415	Velocità porta COM 1		
413	Lunghezza dati trasmissione porta COM 1	Programma controllato [General Pu	rposej
413	Controllo parità porta COM 1	PLC Link (MEWNET-W0)	
413	Bit di stop trasmissione porta COM 1	Modbus RTU Master/Slave	

Numero della stazione

Il numero della stazione deve essere impostato per MEWTOCOL-COM Master/Slave, Modbus RTU e per PLC Link.

MEWTOCOL-COM Modbus RTU	Il numero di stazione può essere impostato in un campo da 1 a 99. Nella modalità di compatibilità FP0 il numero di stazione può essere impostato in un campo da 1 a 32.
PLC Link	Il numero di stazione può essere impostato in un campo da 1 a 16.

Il produttore ha impostato il numero di stazione di ogni porta di comunicazione su 1 nei registri di sistema. Nel caso di un collegamento 1:1 non occorre cambiare tale impostazione. Se però si usa un collegamento 1:N per collegare più PLC alla linea di trasmissione, il numero di stazione deve essere specificato per identificare i diversi PLC.

Per impostare il numero della stazione si usa

A. il comando SYS1

B. il registro di sistema nel tool di programmazione

L'impostazione SYS1 ha la precedenza sull'impostazione del registro di sistema.

Riferimento

Per particolari sul comando SYS1 si prega di consultare il Manuale di programmazione o l'help online di Control FPWIN Pro.

Baud rate

- La baud rate standard per la maggior parte delle porte è 9600bit/s. Scegliere un valore da 2400 a 115200bit/s.
- Baud rate basse di 300, 600 e 1200bit/s possono essere impostate con il comando SYS1. Questo avverrà però senza che cambi l'impostazione nel registro di sistema.
- Le impostazioni del PLC e del dispositivo esterno collegato devono coincidere.
- Le baud rate possibili quando si usa la porta RS485 sono di 19200bit/s o di 115200 bit/s. Impostare la baud rate nei registri di sistema e impostare nello stesso modo con gli interruttori DIP sul lato inferiore dell'unità. Verificare l'impostazione della baud rate prima dell'installazione. L'impostazione di fabbrica è 115200bit/s.

Interruttore delle baud rate RS485

1 Non utilizzato

- PLC Link: la baud rate è fissata su 115200bit/s.
- Modalità "FP0 compatibile"

Porta TOOL	9600 oppure 19200bit/s
Porta COM	300, 600, 1200, 2400, 4800, 9600 oppure 19200bit/s

Formato di comunicazione

Impostazioni standard:

Lunghezza dati:	8 bit
Parità:	Dispari
Bit di stop:	1 bit
Codice iniziale	Nessun STX
Codice finale:	CR, vedere SendCharactersAndClearString per soppressione del codice finale
Baud rate:	115200bit/s

Le impostazioni del PLC e del dispositivo esterno collegato devono coincidere.

MEWTOCOL-COM Modbus RTU	Impostare sempre il codice finale "CR" ed il codice iniziale "No STX".
PLC Link	Il formato di comunicazione non può essere cambiato.

Buffer di ricezione

Per la comunicazione controllata da programma si deve specificare un buffer di ricezione nei registri di sistema. Impostare un valore per l'indirizzo iniziale del buffer di ricezione e per la capacità del buffer di ricezione. Vedere "Impostazione di parametri di comunicazione" pag. 137.

7.4.2 Cambiare la modalità di comunicazione durante la modalità RUN

La modalità di comunicazione delle porte CPU può essere modificata nella modalità RUN. Per commutare fra la modalità controllata da programma e la modalità MEWTOCOL-COM eseguire F159_MTRN e impostare la variabile n_Number (il numero di byte da inviare) su 16#8000.

Nell'help online di Control FPWIN Pro c'è un esempio di programmazione per il comando F159_MTRN.

Nota

- Quando viene data alimentazione al dispositivo, vengono utilizzate le modalità di comunicazione impostate nei registri di sistema.
- Non si può cambiare la modalità di comunicazione Modbus RTU con il comando F159_MTRN.

7.5 MEWTOCOL-COM

Per questa modalità di comunicazione si usa il protocollo MEWTOCOL-COM del produttore per scambiare di dati fra una stazione master e uno o più slave. Si distingue fra comunicazione 1:1 e comunicazione 1:N. Una rete 1:N è chiamata anche C-NET.

Collegamento MEWTOCOL-COM fra un computer e l'FPOR

① Comando ② Risposta

Esiste una funzione master ed una funzione slave. La parte che invia i comandi è chiamata master. Lo slave riceve i comandi, effettua l'elaborazione e spedisce indietro le risposte. Lo slave risponde automaticamente ai comandi ricevuti dal master per cui non occorrono programmi per lo slave.

Funzione master MEWTOCOL-COM

Il master può essere un PLC o qualsiasi dispositivo esterno che supporta la funzione master. Per usare la funzionalità master integrata nel PLC, selezionare MEWTOCOL-COM Master/Slave nei registri di sistema e implementare un programma nel PLC. A tal fine sono disponibili i comandi F145 WRITE DATA e F146 READ DATA.

La modalità MEWTOCOL-COM Master/Slave è preferibile alla modalità controllata da programma perché le operazioni di programmazione sono più semplici.

La comunicazione master-slave è possibile con tutti gli apparecchi che supportano MEWTOCOL-COM come ad esempio PLC, Imagechecker, controllori di temperatura o contatori di energia.

- Nota
- La funzione master è disponibile solamente tramite la porta COM.
- Non eseguire i comandi F145_WRITE_DATA e F146_READ_DATA se il controllore è impiegato come slave.

Funzione slave MEWTOCOL-COM

Lo slave può essere un PLC o qualsiasi dispositivo esterno che supporta il protocollo MEWTOCOL-COM. Lo slave riceve un comando e automaticamente lo elabora e lo rispedisce come risposta. Per usare la funzionalità slave integrata nel PLC, selezionare MEWTOCOL-COM Master/Slave nei registri di sistema. Per collegamenti 1:N in una C-NET si deve specificare il numero di stazione nei registri di sistema dello slave. Negli slave non occorrono programmi.

Il programma del master deve effettuare l'invio e la ricezione di comandi secondo il protocollo MEWTOCOL-COM. MEWTOCOL-COM contiene tutti i comandi occorrenti per controllare e monitorare il PLC.

Nota

Panasonic offre strumenti software con funzionalità master tramite MEWTOCOL-COM:

- Control FP Connect collega la Vostra applicazione Visual Basic ai PLC Panasonic
- PCWAY visualizza dati del PLC in Excel

7.5.1 Svolgimento della comunicazione per MEWTOCOL-COM Slave

Le istruzioni emesse dal computer per il PLC si chiamano comandi. I messaggi rispediti al computer dal PLC si chiamano risposte. Quando il PLC riceve un comando, elabora il comando indipendentemente dal programma del PLC e invia una risposta al computer. La comunicazione si svolge come accade in una conversazione ed è basata sul formato di comunicazione MEWTOCOL-COM. I dati sono inviati in formato ASCII. Il computer ha il diritto di precedenza nella trasmissione. Il diritto di trasmissione passa alternatamente dal computer al PLC e viceversa ogni volta che un messaggio viene inviato.

7.5.2 Formato di comando e risposta

Comando

Tutti gli elementi appartenenti al comando devono essere contenuti nel segmento testo. Il numero di stazione deve precedere il comando.

1) Codice iniziale

All'inizio del messaggio i comandi devono avere sempre un carattere "%" (codice ASCII: 16#25) o "<" (codice ASCII: 16#3C).

Oltre al consueto carattere di inizio "%", l'FPOR supporta anche un codice iniziale di espansione ("<") per inviare singoli blocchi di dati fino a 2048 caratteri. Con il codice iniziale "%" in un blocco di dati si può inviare un massimo di 118 caratteri.

② Numero della stazione

Il numero di stazione dello slave al quale si vuole inviare il comando.

Sono possibili indirizzi compresi fra 01 e 99 (decimali).

Nella comunicazione 1:1 deve essere specificato il numero di stazione "01" (codice ASCII: 16#3031).

3 Testo

Il contenuto dipende dal comando. Il contenuto deve essere scritto a caratteri maiuscoli e seguendo le regole di sintassi valide per quel comando.

Il modo in cui segmenti di testo vengono formulati nel messaggio varia a seconda del tipo di comando.

(4) Codice di controllo

BCC esadecimale (Block Check Code) per il riconoscimento di errori tramite parità orizzontale. Con il BCC si dovrebbero controllare tutti i dati di testo a partire dal carattere di inizio fino all'ultimo carattere di testo.

Il BCC comincia dal carattere di inizio, controlla uno dopo l'altro tutti i caratteri con il collegamento OR esclusivo e sostituisce il risultato finale con caratteri di testo. Il BCC è normalmente parte del programma di calcolo e viene generato automaticamente.

Si può saltare il controllo di parità inserendo "* *" (codice ASCII: 16#2A2A) invece del BCC.

5 Codice finale

I messaggi devono finire sempre con il carattere " $_{R}^{C}$ " (codice ASCII: 16#0D).

(6) Indirizzo di destinazione

Indirizzo dell'area di destinazione da leggere o nella quale si deve scrivere (p.es. relè interno speciale R1)

⑦ Area dati

Numero dei contatti da leggere o da scrivere (S = 1 contatto)

(8) Nome del comando

p.es. RC, leggere area di contatto

- (9) Codice del comando
 - # (16#23) indica che si tratta di un comando

Nota

Se devono essere scritti molti caratteri, li si può suddividere e inviarli in più comandi. Se il testo da inviare in risposta contiene molti caratteri, si possono suddividere anch'essi in più risposte.

Risposta

Lo slave che ha ricevuto il comando nell'esempio sopra riportato, invia il risultato dell'elaborazione al computer.

① Codice iniziale

All'inizio del messaggio deve esserci sempre "%" (codice ASCII: 16#25) o "<" (codice ASCII: 16#3C). La risposta deve iniziare con lo stesso codice iniziale del comando.

② Numero della stazione

Il numero di stazione del PLC che ha elaborato il comando è memorizzato qui.

3 Testo

Il contenuto dipende dal tipo di comando. Il valore inviato dovrebbe essere interpretato di conseguenza. Se l'elaborazione non è stata completata con successo, qui viene salvato un codice di errore affinché si possa controllare la causa dell'errore.

(4) Codice di controllo

BCC esadecimale (Block Check Code) per il riconoscimento di errori tramite parità orizzontale. Il BCC comincia dal carattere di inizio, controlla uno dopo l'altro tutti i caratteri con il collegamento OR esclusivo e sostituisce il risultato finale con caratteri di testo.
(5) Codice finale

La fine del messaggio contiene sempre un carattere $"^{\rm C}_{\rm \tiny R}"$ (codice ASCII: 16#0D).

6 Dati

Qui vengono memorizzati i dati letti nel caso di un comando di lettura.

(7) Nome del comando/codice di errore

Risultato di elaborazione normale: il nome del comando viene memorizzato qui.

Condizione di errore: il codice di errore viene memorizzato qui.

8 Codice di risposta

Risultato di elaborazione normale: "\$" (codice ASCII: 16#24) Condizione di errore: ! (codice ASCII: 16#21) Se la risposta contiene "!" invece che "\$", verificare il significato del codice di controllo.

Nota

- Se il PLC non invia una risposta, il comando non è arrivato allo slave oppure lo slave non è in funzione. Controllare se tutti i parametri di comunicazione (p.es. baud rate, lunghezza dei dati e parità) per master e slave coincidono.
- In un comando e nella rispettiva risposta il numero di stazione e il nome del comando sono sempre identici (vedere sotto). Questo rende univoca la relazione fra un comando e la rispettiva risposta.

7.5.3 Comandi

Nome del comando	Codice	Descrizione
Read contact area	RC (RCS) (RCP) (RCC)	Leggere lo stato TRUE/FALSE di contatti. - Leggere un bit singolo. - Leggere bit multipli. - Leggere una word di bit.
Write contact area	WC (WCS) (WCP) (WCC)	Cambiare lo stato TRUE/FALSE di contatti. - Scrivere un bit singolo. - Scrivere bit multipli. - Scrivere una word di bit.
Read data area	RD	Leggere una o più word nell'area dati.

Nome del comando	Codice	Descrizione
Write data area	WD	Scrivere una o più word nell'area dati.
Read timer/counter set value area	RS	Leggere il valore impostato per temporizzato- re/contatore.
Write timer/counter set value area	WS	Scrivere il valore impostato per temporizzato- re/contatore.
Read timer/counter elapsed value area	RK	Leggere il valore corrente per temporizzato- re/contatore.
Write timer/counter elapsed value area	WК	Scrivere il valore corrente per temporizzato- re/contatore.
Register or Reset contacts monitored	MC	Impostare e resettare bit per monitoraggio.
Register or Reset contacts monitored	MD	Impostare e resettare word per monitoraggio.
Monitoring start	MG	Avviare il monitoraggio.
Preset contact area (co- mando di copia)	SC	Impostare word (contatti) nell'area contatti con un pattern da 16 bit.
Preset data area (coman- do di copia)	SD	Scrivere la stessa word in ogni registro dell'a- rea di dati indicata.
Read system register	RR	Leggere registro di sistema.
Write system register	WR	Cambiare impostazioni di registro di sistema.
Read the status of PLC	RT	Leggere lo stato del PLC ed eventualmente il codice di errore.
Remote control	RM	Commutare la modalità del PLC (modalità RUN/PROG).
Abort	AB	Interrompere la comunicazione.

7.5.4 Impostazione di parametri di comunicazione

Effettuare le seguenti impostazioni per la porta di comunicazione:

- modalità di comunicazione
- numero della stazione
- baud rate
- formato di comunicazione

Per particolari sull'impostazione dei parametri di comunicazione vedere "Impostazione dei registri di sistema nella modalità PROG" pag. 101.

Nota

- Impostare sempre il codice finale "CR" ed il codice iniziale "No STX".
- Il numero di stazione può essere impostato in un campo da 1 a 99.
- Con un adattatore C-NET si possono specificare fino a 32 stazioni.
- La funzione master è disponibile solamente tramite la porta COM.

7.5.4.1 Modalità FP0 compatibile

Il tipo di PLC selezionato in Control FPWIN Pro deve essere "FP0".

Nella modalità di compatibilità FPO si possono usare tutte le porte. Le impostazioni per la porta USB non possono essere cambiate.

Effettuare le seguenti impostazioni per la porta di comunicazione:

Porta TOOL

- numero della stazione
- collegamento modem (disattivare/attivare)
- formato di comunicazione (lunghezza dati)
- baud rate

Porta COM

- modalità di comunicazione
- numero della stazione
- baud rate
- formato di comunicazione
- collegamento modem (disattivare/attivare)

Per particolari sull'impostazione dei parametri di comunicazione vedere pag. 101.

Nota

Impostare sempre il codice finale "CR" ed il codice iniziale "No STX".

7.5.5 Comunicazione Slave 1:1

Impostazioni del registro di sistema

Per collegamenti 1:1 con MEWTOCOL-COM vanno scelte le seguenti impostazioni dei registri di sistema.

N.°	Nome	Impostazione
410	Porta COM 1 - numero della stazione	1
412	Porta COM 1 - modalità di comunicazione	MEWTOCOL-COM Master/Slave
413	Porta COM 1 - formato di comunicazione	Lunghezza dati: 8 bit Parità: Dispari Bit di stop: 1 bit Codice finale: CR Codice iniziale: Nessun STX
415	Porta COM 1 - baud rate	2400-115200bit/s

Nota

Le impostazioni del formato di comunicazione e della baud rate del PLC devono coincidere con quelle del dispositivo collegato.

Programmazione

Per MEWTOCOL-COM si deve creare un programma che permetta l'invio e la ricezione di comandi da parte del computer. Per lo slave non occorre un programma. Nei registri di sistema devono essere impostati solo il numero di stazione ed i parametri di comunicazione. Il programma del master deve effettuare l'invio e la ricezione di comandi secondo il protocollo MEWTO-COL-COM. MEWTOCOL-COM contiene tutti i comandi occorrenti per controllare e monitorare il PLC.

Se nel computer viene eseguito un software come PCWAY, i dati del PLC possono essere letti e scritti senza dover tener conto del protocollo MEWTOCOL-COM.

7.5.5.1 Comunicazione 1:1 con un computer

Per collegamenti 1:1 con MEWTOCOL-COM fra FP0R e un computer occorre un cavo RS232C. La comunicazione avviene attraverso comandi dal computer e risposte dal PLC.

Collegamento MEWTOCOL-COM 1:1 fra un computer e l'FPOR

(i) Comando (i) Risposta

Si raccomanda di collegare il computer alla porta TOOL dell'FPOR. È disponibile un cavo (n.º ord. AFC8513D) con un connettore a norma mini-DIN a 5-pin e un connettore Sub-D a 9-pin. Per il collegamento alla porta COM è disponibile un cavo di comunicazione con un connettore a 9-pin sub-D ad una estremità e fili scoperti all'altra estremità (AIGNCAB232D5).

Uso della porta TOOL FG 0 -0 FG CD 1 0 -0 1 SG RXD 2 04 • 2 SD TXD 3 O->> 3 RD DTR 4 0-O 4 GND 5 Oo 5 DSR 6 0-RTS 7 0-CTS 8 🖂 **RI 9** O Sinistra: computer, destra: FPOR Uso della porta COM (RS232C) CD 1 O RXD 2 🖂 o s TXD 3 O-▶ R DTR 4 0o G GND 5 O-DSR 6 -RTS 7 0 CTS 8 🗸

Sinistra: computer, destra: FP0R

7.5.5.2 Comunicazione 1:1 con pannelli operatore della serie GT

RI 9 O

Per collegamenti 1:1 con MEWTOCOL-COM fra FP0R e un pannello operatore della serie GT occorre un cavo RS232C. La comunicazione avviene attraverso comandi dal pannello operatore e risposte dal PLC.

Per la comunicazione non occorre un programma. Per comandare il PLC attraverso il pannello operatore è sufficiente effettuare le impostazioni per la comunicazione valide per entrambi gli apparecchi.

Si raccomanda di collegare il computer alla porta TOOL dell'FPOR. È disponibile un cavo (n.º ord. AFC8513D) con un connettore a norma mini-DIN a 5-pin e un connettore Sub-D a 9-pin.

Collegamento MEWTOCOL-COM fra un pannello operatore della serie GT e *l'FPOR*

1) Comando 2) Risposta

Riferimento

Per ulteriori informazioni consultare la documentazione sui pannelli operatore della serie GT.

7.5.6 Comunicazione Slave 1:N

Per un collegamento 1:N con MEWTOCOL-COM fra un computer e diversi PLC, il computer e il primo PLC devono essere collegati con un adattatore commerciale RS232C-RS485. Gli altri PLC sono collegati con cavi a due fili intrecciati.

Il computer ed i PLC comunicano tramite comandi e risposte: il computer invia un comando specificando il numero di stazione e il PLC con quel numero di stazione invia una risposta al computer.

Comunicazione 1:N fra un computer e diversi PLC

- ① Il comando inviato contiene il numero di stazione del PLC al quale il comando è rivolto.
- 2 La risposta comprende il numero di stazione del PLC che invia la risposta.
- 3 Adattatore commerciale (richiesto anche per PLC con porta RS232C)
- # Numero di stazione del PLC

Impostazioni del registro di sistema

Per collegamenti 1:N con MEWTOCOL-COM vanno scelte le seguenti impostazioni dei registri di sistema per COM1.

N.°	Nome	Impostazione
410	Porta COM 1 - numero della stazione	Da 1 a 99 (con adattatore C-NET massimo 32 utenze)
412	Porta COM 1 - modalità di co- municazione	MEWTOCOL-COM Master/Slave
413	Porta COM 1 - formato di comu- nicazione	Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR Codice iniziale: Nessun STX
415	Porta COM 1 - baud rate	2400-115200bit/s

Nota

- Le impostazioni del formato di comunicazione e della baud rate del PLC devono coincidere con quelle del dispositivo collegato.
- Baud rate basse di 300, 600 e 1200bit/s possono essere impostate con il comando SYS1. Questo avverrà però senza che cambi l'impostazione nel registro di sistema.
- Le baud rate possibili quando si usa la porta RS485 sono di 19200bit/s o di 115200 bit/s. Impostare la baud rate nei registri di sistema e impostare nello stesso modo con gli interruttori DIP sul lato inferiore dell'unità.

Programmazione

Per lo slave non occorre un programma. Nei registri di sistema devono essere impostati solo il numero di stazione ed i parametri di comunicazione. Il programma del master deve effettuare l'invio e la ricezione di comandi secondo il protocollo MEWTOCOL-COM. MEWTOCOL-COM contiene tutti i comandi occorrenti per controllare e monitorare il PLC.

Se nel computer viene eseguito un software come PCWAY, i dati del PLC possono essere letti e scritti senza dover tener conto del protocollo MEWTOCOL-COM.

7.5.7 Programma campione per la Comunicazione Master

Usare i comandi F145_WRITE ed F146_READ per la funzione master MEWTOCOL-COM. Nei registri di sistema si deve impostare la porta COM indicata nel programma su "MEWTOCOL-COM Master/Slave". La funzione master è disponibile solamente tramite la porta COM.

GVL

1	Class	Identifier	FP Address	IEC Address	Туре	
0	VAR_GLOBAL	Slave2_g_diCounter	DDT100	%MD5.100	DINT	

Intestazione POU

Classe	Identificatore	Tipo	Iniziale
VAR_EXTERNAL	Slave2_g_diCounter	DINT	0
VAR	diCounter	DINT	0
VAR	diCounterFromSlave2	DINT	-1
VAR	bWriteToSlave2	BOOL	TRUE
VAR	bReadFromSlave2	BOOL	FALSE
	Classe VAR_EXTERNAL VAR VAR VAR VAR VAR	Classe Identificatore VAR_EXTERNAL Slave2_g_diCounter VAR diCounter VAR diCounterFromSlave2 VAR bWriteToSlave2 VAR bReadFromSlave2	Classe Identificatore Tipo VAR_EXTERNAL Slave2_g_diCounter DINT VAR diCounter DINT VAR diCounterFromSlave2 DINT VAR bWriteToSlave2 BOOL VAR bReadFromSlave2 BOOL

Per poter disporre di dati consistenti, i dati comuni del progetto master e del progetto slave dovrebbero essere tenuti nella GVL di una libreria comune.

Riferimento

Per informazioni dettagliate si prega di consultare l'help online per Control FPWIN Pro.

7.6 Comunicazione controllata da programma

Nella comunicazione controllata da programma, l'utente genera un programma che governa il trasferimento di dati fra un PLC e una o più variabili esterne collegate all'interfaccia, p. es. un dispositivo di elaborazione di immagini o un lettore di codice a barre. Quindi si possono programmare protocolli standard o definiti dall'utente.

Un programma definito dall'utente di questo tipo comprende in genere l'invio e la ricezione di dati. I dati pronti per l'invio e i dati ricevuti sono memorizzati nelle aree di registrazione dati (DT) definite rispettivamente come buffer di invio e di ricezione.

Invio di dati

ACGM0475V3IT.docx

L'invio comprende la generazione di dati per il buffer di invio ed il loro invio usando le istruzioni SendCharacters, SendCharactersAndClearString, o F159_MTRN. SendCharacters e SendCharactersAndClearString usano implicitamente F159_MTRN. (Vedere anche "Invio di dati" pag. 121) L'invio può essere controllato con il flag "trasmissione conclusa". (Vedere anche "Significato dei flag nella comunicazione controllata da programma" pag. 129.)

- 3 Invio di dati usando un'istruzione di invio
- 4 Dispositivo con porta RS232C

I caratteri iniziali e finali specificati nei registri di sistema vengono aggiunti automaticamente ai dati inviati. Si possono trasmettere al massimo 2048 byte.

Ricezione di dati

I dati vengono ricevuti automaticamente nel buffer di ricezione (vedere pag. 124). Il buffer di ricezione deve essere definito nei registri di sistema: Una volta verificata la conclusione della ricezione, si possono copiare i dati in un'area della CPU. La ricezione comprende l'elaborazione dei dati nel buffer di ricezione e la preparazione del sistema alla ricezione di ulteriori dati. (Vedere anche "Ricezione di dati" pag. 123.)

La ricezione può essere controllata con il flag "ricezione conclusa" oppure valutando direttamente il buffer di ricezione. (Vedere anche "Significato dei flag nella comunicazione controllata da programma" pag. 129.)

I dati memorizzati non contengono codici finali. Possono essere ricevuti al massimo 4094 byte.

Nota

Nella modalità di compatibilità FPO F159_MTRN è automaticamente convertito in F144_TRNS.

7.6.1 Impostazione di parametri di comunicazione

Effettuare le seguenti impostazioni per la porta di comunicazione:

- modalità di comunicazione (Comunicazione controllato da programma [General Purpose])
- baud rate
- formato di comunicazione
- buffer di ricezione

Per particolari sull'impostazione dei parametri di comunicazione vedere "Impostazione dei registri di sistema nella modalità PROG" pag. 101.

Nota

La modalità controllata da programma è disponibile via porta COM e porta TOOL.

Definire un buffer di ricezione

Per la comunicazione controllata da programma occorre specificare un buffer di ricezione nell'area memoria DT. L'area massima comprende 2048 word.

Specificare quanto segue:

- 1. Indirizzo iniziale
- 2. La capacità del buffer di ricezione (numero di word)

Struttura del buffer di ricezione

I numeri in grassetto indicano l'ordine di ricezione.

- ① Indirizzo iniziale
- ② Area di memorizzazione del numero di byte ricevuti
- ③ Area di memorizzazione per i dati ricevuti
- (4) Capacità

I dati ricevuti sono memorizzati nel buffer di ricezione. I codici iniziali e finali non vengono memorizzati nel buffer di ricezione. L'area di memorizzazione dei dati ricevuti inizia con la seconda word del buffer di ricezione (offset 1). Offset 0 contiene il numero di byte ricevuti. Il valore iniziale di offset 0 è 0.

Il buffer di ricezione è definito nei registri di sistema (vedere pag. 101):

413	Condizioni di avvenuta trasmissione/ricezione per l'invio tramite porta COM 1	CR		CR	
416	Ind. iniziale buffer di ricezione porta COM 1	200		0 32762	
417	Capacità buffer di ricezione porta COM 1	9	parola	0 2048	
412	Connessione modem porta COM 1	Disabilit		Disabilitato	

Nota

Control FPWIN Pro: Per poter accedere ai dati nel buffer di ricezione occorre definire una variabile globale avente lo stesso indirizzo iniziale e la stessa grandezza.

I tipi 16k e 32k hanno campi di valori diversi per l'indirizzo iniziale del buffer di ricezione.

7.6.1.1 Programmazione nella modalità di compatibilità FP0

Il tipo di PLC selezionato in Control FPWIN Pro deve essere "FP0". Nella modalità di compatibilità FP0 si può usare solo la porta COM. Effettuare le seguenti impostazioni per la porta di comunicazione:

Porta COM

- modalità di comunicazione
- numero della stazione
- baud rate
- formato di comunicazione
- indirizzo iniziale del buffer di ricezione
- capacità del buffer di ricezione

Tenere presente che i campi di valori dell'FP0 valgono se l'FP0R è usato nella modalità di compatibilità FP0.

Per particolari sull'impostazione dei parametri di comunicazione, pag. 101.

Nota

Impostare sempre il codice finale "CR" ed il codice iniziale "No STX".

7.6.2 Invio di dati

L'invio comprende la generazione di dati per il buffer di invio ed il loro invio usando le istruzioni SendCharacters, SendCharactersAndClearString, o F159_MTRN. SendCharacters e SendCharactersAndClearString usano implicitamente F159_MTRN. I caratteri iniziali e finali specificati nei registri di sistema vengono aggiunti automaticamente ai dati inviati. Si possono trasmettere al massimo 2048 byte.

Procedura per inviare dati a dispositivi esterni:

• **Passo 1:** Impostazione di parametri di comunicazione (vedere pag. 119)

Impostazioni occorrenti: modalità di comunicazione (controllato da programma), baud rate, formato di comunicazione

• **Passo 2:** Scrivere nel buffer di invio (vedere pag. 122)

Non necessario se si usano SendCharacters o SendCharactersAndClear-String.

• Passo 3: Eseguire il comando di invio

Usare una delle seguenti istruzioni:

Istruzione	Commento
SendCharacters	Facile da usare, adatto al 90% delle applica- zioni, può richiedere più memoria dati
SendCharactersAndClearString	Come SendCharacters ma senza buffer di invio e richiede meno memoria
F159_MTRN	Istruzione originale FP con tutti i parametri, istruzione di trasferimento addizionale occor- rente per scrivere dati nel buffer di invio.

• Passo 4 (optional): Valutare il flag "trasmissione conclusa"

Usare uno dei seguenti metodi:

Metodo	Commento
IsTransmissionDone	Fornisce il valore del flag "trasmissione conclusa". Passa a TRUE quando è stato inviato il numero di byte specificato.

sys_bIsComPort1TransmissionDoneQueste variabili di sistema passano asys_bIsComPort2TransmissionDoneTRUE quando è stato inviato il numero disys_bIsToolPortTransmissionDonebyte specificato.

Nota

- Quando il numero di byte specificato è stato inviato, il flag "trasmissione conclusa" passa a TRUE. La valutazione del flag "trasmissione conclusa" può essere utile nei casi in cui non è prevista una risposta, per esempio nel caso di messaggi broadcast.
- I dati possono essere inviati solo se il pin CS (Clear to Send) è ON. Se si collega una porta a tre cavi si devono cortocircuitare i pin RS e CS.
- I PLC con una sola porta di comunicazione compilano F159_MTRN in F144_TRNS (la variabile d_Port viene ignorata).

Riferimento

Per particolari sul funzionamento del flag "ricezione conclusa" e del flag "trasmissione conclusa" oltre che sulla comunicazione flag di errore, pag. 129.

Scrittura nel buffer di invio

Le istruzioni SendCharacters e SendCharactersAndClearString generano automaticamente i dati nel buffer di invio.

Struttura del buffer di invio

① Area di memorizzazione per il numero di byte da inviare

2 Area di memorizzazione per i dati da inviare

I numeri in grassetto indicano l'ordine di trasmissione. L'area di memorizzazione dei dati da inviare inizia con la seconda word del buffer di invio (offset 1). L'offset 0 contiene il numero di byte da inviare. Si possono trasmettere al massimo 2048 byte.

Se F159_MTRN viene usato per la trasmissione, i dati devono essere copiati nel buffer di invio usando un'istruzione per la trasmissione, p. es. F10_BKMV.

7.6.3 Ricezione di dati

Possono essere ricevuti dati da un dispositivo esterno quando il flag "ricezione conclusa" è FALSE. (Il flag "ricezione conclusa" passa a FALSE quando si commuta alla modalità RUN.) I dati vengono ricevuti automaticamente nel buffer di ricezione (vedere pag. 124). Il buffer di ricezione deve essere definito nei registri di sistema: Una volta verificata la conclusione della ricezione, si possono copiare i dati in un'area della CPU.

Quando il codice finale viene ricevuto, il flag "ricezione conclusa" passa a TRUE. La ricezione di ulteriori dati è impossibile. Possono essere ricevuti al massimo 4094 byte. I dati memorizzati non contengono codici finali.

Procedura per ricevere dati da dispositivi esterni:

• **Passo 1:** Impostare parametri di comunicazione (vedere pag. 119) e buffer di ricezione (vedere pag. 124)

Impostazioni occorrenti: modalità di comunicazione (controllato da programma), baud rate, formato di comunicazione, buffer di ricezione

• Passo 2: Ricezione dati

I dati sono ricevuti automaticamente nel buffer di ricezione.

• **Passo 3:** Verificare la conclusione della ricezione

Usare uno dei seguenti metodi:

Metodo	Commento
IsReceptionDone	Fornisce il valore del flag "ricezione con- clusa". È TRUE se è stato ricevuto il codi- ce finale.
IsReceptionDoneByTimeOut	Si usa per accertare la fine della ricezione tramite time-out, p. es. in caso di dati binari senza codice finale.
sys_bIsComPort1ReceptionDone sys_bIsComPort2ReceptionDone sys_bIsToolPortReceptionDone	Tali variabili di sistema passano a TRUE se è stato ricevuto il codice finale.
Valutazione diretta del buffer di ricezione.	

• Passo 4: Elaborazione di dati nel buffer di ricezione

Usare una delle seguenti istruzioni:

Istruzione	Commento
ReceiveData	Copia automaticamente i dati ricevuti dalla CPC nella variabile specificata.
ReceiveCharacters	Copia automaticamente i caratteri ricevuti dalla CPU in una variabile di stringa.
F10_BKMV	Trasferisce dati dal buffer di ricezione ad un'area target. Non occorre con ReceiveData o ReceiveCharacters.

• Passo 5: Preparare la CPU alla ricezione dei dati successivi

Usare una delle seguenti istruzioni:

Istruzione	Commento
ClearReceiveBuffer	Il buffer di ricezione viene resettato automaticamente
F159_MTRN (n_Number=0)	quando si inviano i dati successivi Per resettare il buffer di ricezione senza inviare dati usare una di queste istru- zioni.

7.6.3.1 Impostare il buffer di ricezione per la CPU:

Per la comunicazione controllata da programma occorre specificare un buffer di ricezione nell'area memoria DT. L'area massima comprende 2048 word.

Specificare quanto segue:

- 1. Indirizzo iniziale
- 2. La capacità del buffer di ricezione (numero di word)

Struttura del buffer di ricezione

I numeri in grassetto indicano l'ordine di ricezione.

- ① Indirizzo iniziale
- ② Area di memorizzazione del numero di byte ricevuti
- ③ Area di memorizzazione per i dati ricevuti
- ④ Capacità

I dati ricevuti sono memorizzati nel buffer di ricezione. I codici iniziali e finali non vengono memorizzati nel buffer di ricezione. L'area di memorizzazione dei dati ricevuti inizia con la seconda word del buffer di ricezione (offset 1). Offset 0 contiene il numero di byte ricevuti. Il valore iniziale di offset 0 è 0.

Procedimento

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Fare doppio click su "COM Port"

The communication ports occupy different bit positions of the same system register, so individual settings for each communication port are possible. Per fare impostazioni per la porta TOOL, selezionare "Porta TOOL" in "Registri di sistema".

The number of the system register for the respective settings may vary according to the PLC type used.

Nota

Per poter accedere ai dati nel buffer di ricezione occorre definire una variabile globale avente lo stesso indirizzo iniziale e la stessa grandezza.

Esempio

Elaborazione di dati nel buffer di ricezione e preparazione della CPU alla ricezione di ulteriori dati.

Ricezione di una stringa di 8 byte contenente i caratteri "ABCDEFGH" attraverso la porta COM 1. I caratteri vengono salvanti nel codice ASCII HEX senza codici iniziali né codici finali.

- ③ La ricezione inizia
- (4) La ricezione continua
- (5) Esecuzione di F159_MTRN (n_Number=0)

Struttura del buffer di ricezione:

Offset

0	8				
1	16#42(B)	16#41(A)			
2	16#44(D)	16#43(C)			
3	16#46(F)	16#45(E)			
4	16#48(H)	16#47(G)			

Quando la ricezione inizia, il valore in offset $0 \ge 0$. Al termine della ricezione il valore in offset $0 \ge 8$. I dati negli offset da 1 a 4 sono ricevuti in ordine crescente partendo dal byte del valore più basso.

Impostazioni del registro di sistema

No	Nome elemento	Dati	Dimen
412	Modalità di comunicazione porta COM 1	Programma controllato	
410	Nr. stazione porta COM 1	1	
415	Velocità porta COM 1	9600	baud
413	Lunghezza dati trasmissione porta COM 1	8 bit	
413	Controllo parità porta COM 1	Dispari	
413	Bit di stop trasmissione porta COM 1	1 bit	
413	Codice iniziale trasmissione via porta COM 1	No-STX	
413	Condizioni di avvenuta trasmissione/ricezione per l'invio tramite porta COM 1	CR	
416	Ind. iniziale buffer di ricezione porta COM 1	200	
417	Capacità buffer di ricezione porta COM 1	5	parola
412	Connessione modem porta COM 1	Disabilitato	

Per poter accedere ai dati nel buffer di ricezione occorre definire una variabile globale avente lo stesso indirizzo iniziale e la stessa grandezza. In questo esempio, l'indirizzo iniziale è 200 (VAR_GLOBAL DT200_awReceiveBuffer) e la capacità del buffer di ricezione è 5 (ARRAY [0..4] OF WORD).

GVL

	Classe	Identificatore	Indiri	Indirizzo	Tipo	Iniziale
0	VAR_GLOBAL	DT200_awReceiveBuffer	DT200	%MW5.200	ARRAY [04] OF WORD	[5(0)]

Intestazione POU e corpo LD

Possono essere ricevuti dati da un dispositivo esterno quando il flag "ricezione conclusa" è FALSE. Il flag "ricezione conclusa" è valutato dalla variabile di sistema sys_bIsComPort1ReceptionDone. Quando la ricezione dei dati è completata (è stato ricevuto il codice finale), il flag "ricezione conclusa" passa a TRUE e, di conseguenza, la ricezione di dati non può più aver luogo. Per preparare il sistema a ricevere i dati seguenti senza inviare immediatamente altri dati, si resetta il buffer di ricezione eseguendo F159_MTRN con n_Number = 0.

- Lo stato del flag "ricezione conclusa" può cambiare durante lo svolgimento di uno scan. Per esempio, se il flag è usato più volte come condizione di ingresso, si possono avere stati differenti all'interno dello stesso scan. Per assicurare l'esecuzione corretta del programma, lo stato del relè interno speciale dovrebbe essere copiato in una variabile all'inizio del programma.
 - Il codice iniziale "STX" resetta il buffer di ricezione. Quando il buffer di ricezione viene resettato, il numero di byte ricevuti viene messo su 0 in offset 0 e il puntatore viene rimesso su offset 1. I dati successivi saranno salvati partendo da offset 1 e sovrascrivendo i dati esistenti.

Nota

7.6.4 Formato dei dati da inviare e ricevere

Quando si accede ai dati nei buffer di invio o di ricezione tenere presente quanto segue:

- Il formato dei dati nel buffer di invio dipende dal tipo di dati di trasmissione (p. es. STRING) e dalla funzione di conversione usata nel programma del PLC (p. es. F95_ASC). Quando si inviano dati dal buffer di invio non vengono eseguite conversioni.
- I codici iniziali e finali specificati nei registri di sistema vengono aggiunti automaticamente ai dati inviati. Il codice iniziale è aggiunto all'inizio, il codice finale alla fine della stringa. I codici iniziali e finali non devono essere inclusi nella stringa da trasmettere.
- Il formato dei dati nel buffer di ricezione dipende dal formato dei dati usato dal dispositivo esterno. Usare una funzione di conversione per convertire i dati nel formato richiesto, p. es. F27_AHEX.
- Caratteri iniziali e finali nei dati ricevuti vengono riconosciuti se i rispettivi codici iniziali e finali sono stati specificati nei registri di sistema. I codici iniziali e finali non vengono memorizzati nel buffer di ricezione. Il codice finale funge da condizione di ricezione conclusa, il flag "ricezione conclusa" passa cioè a TRUE quando viene ricevuto il codice finale. Il codice iniziale resetta il buffer di ricezione.
- Se per il codice iniziale è stato selezionato "Nessuno", ai dati inviati non viene aggiunto un codice iniziale ed esso non sarà riconosciuto nei dati ricevuti. Senza codice iniziale, il buffer di ricezione può essere resettato solamente eseguendo ClearReceiveBuffer o F159_MTRN.
- Se per il codice finale è stato selezionato "Nessuno", ai dati inviati non viene aggiunto un codice finale ed esso non sarà riconosciuto nei dati ricevuti. Senza codice finale, il flag "ricezione conclusa" non passa a TRUE. La conclusione della ricezione può essere determinata solamente con una funzione di time-out IsReceptionDoneByTimeOut o valutando i contenuti del buffer di ricezione (vedere pag. 124).

Impostazioni di codici finali differenti per l'invio e la ricezione

In alcuni casi non si vuole inviare un codice finale, ma occorre un codice finale nei dati ricevuti per impostare il flag "ricezione conclusa" su TRUE. In questi casi, selezionare il codice finale occorrente nei registri di sistema ed eseguire F159_MTRN specificando un numero negativo per n_Number.

Esempio

Invio di 4 byte di dati senza codice finale:

Intestazione POU

3	Classe	Identificatore	Tipo	Inizi	Commento
0	VAR	bSendData	BOOL	FALSE	
1	VAR_CONST	iMinusBytesToSend	INT	-6	Negative number: No terminator added
2	VAR	awSendData	ARRAY [03] OF WORD	[4(0)]	First word: Number of bytes sent.
3	VAR		N N	1.11.12	Words 1 to 3: 6 data bytes to send!

7.6.5 Significato dei flag nella comunicazione controllata da programma

La comunicazione controllata da programma è possibile solo nella modalità halfduplex, questo significa che la comunicazione è possibile in entrambe le direzioni ma non simultaneamente. L'invio può essere controllato con il flag "trasmissione conclusa". La ricezione può essere controllata con il flag "ricezione conclusa" oppure valutando direttamente il buffer di ricezione.

I flag sono relè interni speciali che passano a TRUE oppure a FALSE in determinate condizioni. La valutazione è possibile mediante funzioni speciali o variabili di sistema.

Flag "ricezione conclusa"

Quando il codice finale viene ricevuto, il flag "ricezione conclusa" passa a TRUE. La ricezione di ulteriori dati è impossibile. F159_MTRN fa passare il flag "ricezione conclusa" a FALSE.

Il flag "ricezione conclusa" può essere valutato con la funzione IsReceptionDone. Oppure usate la variabile di sistema

sys_bIsComPort1ReceptionDone oppure sys_bIsToolPortReceptionDone, a seconda della porta. La conclusione della ricezione può essere determinata anche con la funzione di time-out IsReceptionDoneByTimeOut o controllando i contenuti del buffer di ricezione.

Lo stato del flag "ricezione conclusa" può cambiare durante lo svolgimento di uno scan. Per esempio, se il flag è usato più volte come condizione di ingresso, si possono avere stati differenti all'interno dello stesso scan. Per assicurare l'esecuzione corretta del programma, lo stato del relè interno speciale dovrebbe essere copiato in una variabile all'inizio del programma.

Porta	TOOL	COM1
N.°	0	1
Relè interni spe- ciali	R903E	R9038
Funzione	IsReceptionDone	
Variabile di si- stema	sys_bIsToolPortReceptionDone	sys_bIsComPort1ReceptionDone
Stato bit	TRUE	

Flag "trasmissione conclusa"

Quando il numero di byte specificato è stato inviato, il flag "trasmissione conclusa" passa a TRUE. Possono essere inviati o ricevuti nuovi dati. Ogni istruzione di invio fa andare il flag "trasmissione conclusa" a FALSE e non possono essere ricevuti dati.

Il flag "trasmissione conclusa" può essere valutato con la funzione IsTransmissionDone. Oppure usate la variabile di sistema

sys_bIsComPort1TransmissionDone oppure

sys_bIsToolPortTransmissionDone, a seconda della porta.

Porta	TOOL	COM1
N.°	0	1
Relè in- terni spe- ciali	R903F	R9039
Funzione	IsTransmissionDone	
Variabile di sistema	sys_bIsToolPortTransmissionDone	sys_bIsComPort1TransmissionDone
Stato bit	TRUE	

Flag "Errore di comunicazione"

Se il flag "errore di comunicazione" passa a TRUE durante la ricezione, la ricezione continua. Eseguire F159_MTRN per far passare il flag di errore a FALSE e per riportare il puntatore ad offset 1.

Il flag "errore di comunicazione" può essere valutato con la funzione IsCommunicationError. Oppure usate la variabile di sistema sys_bIsComPort1CommunicationError oppure

sys_bIsToolPortCommunicationError, a seconda della porta.

Porta	TOOL	COM1		
N.°	0	1		
Relè interni speciali	R900E	R9037		
Funzione	IsCommunicationError			
Variabile di sistema	sys_bIsToolPortCommunication- Error	sys_bIsComPort1Communication- Error		
Stato bit	TRUE			

7.6.5.1 Codice iniziale: No-STX; codice finale: CR

Ricezione ed invio di dati:

Svolgimento della ricezione di dati:

- 1. I caratteri A, B e C ricevuti dal dispositivo esterno sono memorizzati nel buffer di ricezione.
- Quando il codice finale viene ricevuto, il flag "ricezione conclusa" passa a TRUE. La ricezione di ulteriori dati è impossibile. (Il carattere D non viene memorizzato.)
- 3. F159_MTRN viene eseguito per inviare dati di risposta al dispositivo esterno. Quando viene eseguito F159_MTRN:
 - il buffer di ricezione è resettato.
 - Il flag "ricezione conclusa" passa a FALSE.
 - Il flag "trasmissione conclusa" passa a FALSE.
 - Il flag "errore di comunicazione" passa a FALSE.
 - I caratteri 1, 2 e 3 vengono inviati al dispositivo esterno.
 - Il codice finale è automaticamente aggiunto ai dati inviati.
 - Durante l'esecuzione di F159_MTRN la ricezione di dati non è possibile. (Il flag "trasmissione conclusa" è FALSE).

- 4. Quando il numero di byte specificato è stato inviato, il flag "trasmissione conclusa" passa a TRUE.
- 5. I caratteri E, F e G ricevuti dal dispositivo esterno sono memorizzati nel buffer di ricezione.

Nota

Quando il buffer di ricezione viene resettato, il numero di byte ricevuti viene messo su 0 in offset 0 e il puntatore viene rimesso su offset 1. I dati successivi saranno salvati partendo da offset 1 e sovrascrivendo i dati esistenti.

7.6.5.2 Codice iniziale: STX; codice finale: ETX

Ricezione di dati

Svolgimento della ricezione di dati:

- 1. I caratteri A, B e C ricevuti dal dispositivo esterno sono memorizzati nel buffer di ricezione.
- 2. Il codice iniziale "STX" resetta il buffer di ricezione.
- 3. I caratteri D ed E ricevuti dal dispositivo esterno sono memorizzati nel buffer di ricezione.
- 4. Quando il codice finale viene ricevuto, il flag "ricezione conclusa" passa a TRUE. La ricezione di ulteriori dati è impossibile. (Il carattere F non

viene memorizzato.)

- 5. Quando viene eseguito F159_MTRN:
 - Il numero di byte ricevuti è messo su 0 in offset 0 del buffer di ricezione.
 - Il flag "ricezione conclusa" passa a FALSE.
- 6. Il carattere G viene memorizzato. (Il numero di byte ricevuti è messo su 1 in offset 0 del buffer di ricezione.)
- 7. Il codice iniziale "STX" resetta il buffer di ricezione.
- 8. Il carattere H viene memorizzato.
- 9. F159_MTRN è eseguito nello stesso momento in cui il codice finale è ricevuto dal dispositivo esterno. F159_MTRN fa passare il flag "ricezione conclusa" a FALSE. Per tale motivo questo flag non sarà riconosciuto.

Nota

Invio di dati

- Quando il buffer di ricezione viene resettato, il numero di byte ricevuti viene messo su 0 in offset 0 e il puntatore viene rimesso su offset 1. I dati successivi saranno salvati partendo da offset 1 e sovrascrivendo i dati esistenti.
- Se dal dispositivo esterno vengono ricevuti due codici iniziali, i dati che seguono il secondo codice iniziale sovrascrivono i dati nel buffer di ricezione.

(1)C ST TRUE 2 FALSE TRUE 3 FALSE а а а С а С С С С b b b d d d d d b 6 **(4)** е е е е е (5) <0> <3> <0> <2> <1> <0> <2> <1> <0> 1 Dati da inviare ④ Buffer di invio (2) Flag "trasmissione conclusa" (5) Numero di byte da inviare ③ Esecuzione F159_MTRN 6 Puntatore del buffer di trasmissione

Svolgimento dell'invio di dati:

F159_MTRN viene eseguito per inviare dati al dispositivo esterno. Quando viene eseguito F159_MTRN:

- 1. Il flag "trasmissione conclusa" passa a FALSE.
- 2. Il codice iniziale è inviato automaticamente.
- 3. Il numero di byte da inviare è impostato in offset 0 del buffer di invio.
- 4. I caratteri a e b sono inviati al dispositivo esterno.
 - Il codice finale è automaticamente aggiunto ai dati inviati.
 - Durante l'esecuzione di F159_MTRN la ricezione di dati non è possibile. (Il flag "trasmissione conclusa" è FALSE).
- 5. Quando il numero di byte specificato è stato inviato, il flag "trasmissione conclusa" passa a TRUE.
- 6. Ora F159_MTRN può essere nuovamente eseguito. Quando viene eseguito F159_MTRN: I passi da 1 a 5 vengono ripetuti. Questa volta vengono inviati i caratteri c, d ed e.

7.6.6 Comunicazione 1:1

Impostazioni del registro di sistema

L'impostazione standard della porta COM è la modalità MEWTOCOL-COM. Per la comunicazione controllata da programma 1:1 vanno scelte le seguenti impostazioni dei registri di sistema.

Impostazioni per la porta COM 1 (o porta TOOL)

N.°	Nome	Impostazione	
412	Porta COM 1 - modalità di co- municazione	Comunicazione controllato da program- ma [General Purpose]	
413	Porta COM 1 - formato di co- municazione	Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX	
415	Porta COM 1 - baud rate	2400-115200bit/s	
416Porta COM 1 - indirizzo iniziale(420)del buffer di ricezione		0–32764 (impostazioni di fabbrica: 0) (vedere la nota)	
417 (421)	Porta COM 1 - capacità del buffer di ricezione	0-2048 word (impostazioni di fabbrica: 2048 word)	

Nota

C14 o C16 il campo è 0-12312.

7.6.7 Comunicazione 1:N

L'FPOR ed i dispositivi esterni sono collegati con un cavo RS485. Per inviare

e ricevere dati si usano un protocollo idoneo al dispositivo esterno e l'istruzione F159_MTRN (o qualsiasi altra istruzione che usi implicitamente F159_MTRN).

③ Ricezione di dati nel buffer di ricezione

Impostazioni del registro di sistema

L'impostazione standard della porta COM è la modalità MEWTOCOL-COM. Per la comunicazione controllata da programma 1:N vanno scelte le seguenti impostazioni dei registri di sistema.

Impostazioni per la porta COM 1 (o porta TOOL):

N.°	Nome	Impostazione	
412	Porta COM 1 - modalità di co- municazione	Comunicazione controllato da program- ma [General Purpose]	
413	Porta COM 1 - formato di co- municazione ¹⁾	Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX	
415	Porta COM 1 - baud rate 1)	2400-115200bit/s	
416 (420)	Porta COM 1 - indirizzo iniziale del buffer di ricezione	e 0-32762 (impostazioni di fabbrica: 0)	
417 (421)	Porta COM 1 - capacità del buffer di ricezione	0-2048 word (impostazioni di fabbrica: 2048 word)	

¹⁾ Le impostazioni del PLC e del dispositivo esterno collegato devono coincidere.

7.6.8 Programmare in modalità FP0 compatibile

Il tipo di PLC selezionato in Control FPWIN Pro deve essere "FP0".

Nella modalità di compatibilità FPO, si usa il comando F144_TRNS invece di F159_MTRN.

Riferimento

Per i particolari sul comando F144_TRNS si prega di consultare l'help online di Control FPWIN Pro.

7.7 PLC Link

PLC Link è un metodo semplice per collegare PLC usando un cavo a due fili intrecciati ed il protocollo MEWNET. I dati vengono condivisi con tutti i PLC mediante relè interni dedicati chiamati relè di link (L) e registri di dati chiamati registri di link (LD). Gli stati dei relè di link e dei registri di link di un PLC sono inoltrati automaticamente agli altri PLC della stessa rete. Gli relè di link ed i registri di link dei PLC contengono aree per inviare dati ed aree per riceverli. I numeri delle stazioni e le aree di link sono allocati usando i registri di sistema.

Condivisione di dati in un PLC link usando aree di invio e di ricezione dedicate

	Area di invio		Area di ricezione	#	Numero di stazione del PLC
--	---------------	--	-------------------	---	----------------------------

Esempio

Il relè di link L0 per la stazione #1 passa a TRUE. Il passaggio di stato è riportato ai programmi delle altre stazioni e l'uscita Y0 delle altre stazioni è messa su TRUE. La costante 100 è scritta nel registro di link LD0 della stazione #1. Il contenuto degli LD0 delle altre stazioni è anch'esso cambiato nella costante 100.

Collegamento PLC Link fra quattro unità FPOR

Numero di stazione del PLC LD Registro di link

PLC di Panasonic disponibili per PLC Link

- FPOR (tipo RS485)
- FP7 (con cassetto di comunicazione RS485)
- FP₂ (con cassetto di comunicazione RS485)
- FP-X (con cassetto di comunicazione RS485)
- FP2-MCU (con cassetto di comunicazione RS485)

7.7.1 Impostazione di parametri di comunicazione

Effettuare le seguenti impostazioni per la porta di comunicazione:

- modalità di comunicazione (PLC Link)
- numero della stazione
- area di link

Per particolari sull'impostazione dei parametri di comunicazione vedere "Impostazione dei registri di sistema nella modalità PROG" pag. 101. Per particolari sull'impostazione dell'area di link vedere "Allocazione area di link" pag. 139.

Nota

- PLC Link è disponibile solamente tramite la porta COM.
- Per collegamenti RS232C il numero massimo di stazioni è 2.
- Per PLC Link, il formato di comunicazione e le impostazioni sulla baud rate sono invariabili:

Lunghezza dati:	8 bit
Parità:	Dispari
Bit di stop:	1 bit
Codice iniziale	Nessun STX
Codice finale:	CR, vedere SendCharactersAndClearString per soppressione del codice finale
Baud rate:	115200bit/s

Impostazione del numero di stazione per un PLC link

Il numero di stazione può essere impostato entro un campo da 1 a 16. Per i particolari sull'impostazione di numeri di stazione, vedere pag. 101.

In un PLC Link si possono collegare al massimo 16 stazioni

Numero di stazione del PLC

Nota

- Fare attenzione che lo stesso numero di stazione non sia usato per più PLC collegati con la funzione PLC Link.
- I numeri delle stazioni dovrebbero partire da 1 ed essere attribuiti sequenzialmente e in ordine crescente senza soluzione di continuità. Se sono collegate meno di 16 stazioni, si può ridurre il tempo di trasmissione indicando il numero di stazione più alto. Vedere "Impostazione del numero di stazione più alto per un PLC Link" pag. 147.

7.7.2 Allocazione area di link

Per poter usare la funzione PLC link occorre che le aree di link siano allocate. La definizione delle allocazioni sia per gli relè di link che per i registri di link viene fatta nei registri di sistema della CPU.

Le aree di link contengono relè di link e registri di link e sono suddivise in aree per PLC link 0 e per PLC link 1. Per ciascuna area di PLC link è disponibile un massimo di 1024 relè di link (bit) e di 128 registri di link (word).

Unità: word

1	Per PLC lin	< 0: 1024	bit (1ª metà)
---	-------------	-----------	---------------

- ② Per PLC link 1: 1024 bit (2ª metà)
- ① Per PLC link 0: 128 word (1^a metà)
- (2) Per PLC link 1: 128 word (2° metà)

Registri di sistema

N.°		Nome	Impostazione standard	Impostazione
	46	Impostazione allocazione PLC Link 0 e 1	Normale	Normale: 1 ^ª metà Inverso: 2 ^ª metà
	40	Relè di Link - Area trasmissio- ne/ricezione - Nr. di word condivise da tutti i PLC	0	0-64 word
PLC link 0	41	Registri di Link - Area trasmissio- ne/ricezione - Nr. di word condivise da tutti i PLC collegati	0	0-128 word
	42	Relè di Link - Area trasmissione - Ini- ziare la trasmissione da questa word	0	0-63
	43	Relè di Link - Area trasmissione - Nr. word da inviare	0	0-64 word
	44	Registri di Link - Area trasmissione - Iniziare la trasmissione da questa word	0	0-127
	45	Registri di Link - Area trasmissione - Nr. di word da inviare	0	0-128 word
	47 ¹⁾	Nr. stazione più alto nella rete	16	1-16

N.°		Nome	Impostazione standard	Impostazione
	50	Relè di Link - Area trasmissio- ne/ricezione - Nr. di word condivise da tutti i PLC	0	0-64 word
	51	Registri di Link - Area trasmissio- ne/ricezione - Nr. di word condivise da tutti i PLC collegati	0	0-128 word
PLC	52	Relè di Link - Area trasmissione - Ini- ziare la trasmissione da questa word	64	64-127
link 1	53	Relè di Link - Area trasmissione - Nr. word da inviare	0	0-64 word
	54	Registri di Link - Area trasmissione - Iniziare la trasmissione da questa word	128	128-255
	55	Registri di Link - Area trasmissione - Nr. di word da inviare	0	0-128 word
	57 ¹⁾	Nr. stazione più alto nella rete	0	0-16

¹⁾ Impostare lo stesso valore per tutti i PLC collegati.

Nota

Usare il comando SYS2 per impostare l'area di link nella modalità RUN. Per informazioni dettagliate si prega di consultare l'help online per Control FPWIN Pro.

Uso di PLC link 1

Si può usare il PLC link 0 o il PLC link 1. Impostare il registro di sistema 46 su "Inverso" per usare PLC link 1. Vedere "Allocazione PLC Link 0 e 1" pag. 147.

7.7.2.1 Esempio per PLC link 0

Le aree di link del PLC sono suddivise in aree di invio ed aree di ricezione. Gli relè di link ed i registri di link sono trasmessi dall'area di invio all'area di ricezione degli altri PLC. Le aree degli relè e dei registri di link sul lato di ricezione e sul lato di invio devono coincidere.

Allocazione relè di link

Impostazioni del registro di sistema

N.°	Nome		Impostazioni delle stazioni			
		#1	#2	#3	#4	
40 ¹⁾	Relè di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC	64	64	64	64	
42	Relè di Link - Area trasmissione - Iniziare la trasmis- sione da questa word	0	20	40	0	
43	Relè di Link - Area trasmissione - Nr. word da inviare	20	20	24	0	

 Il valore di questo registro di sistema deve essere identico per tutte le stazioni.

Allocazione di registro di link

Impostazioni del registro di sistema

N.°	Nome		Impostazioni delle stazioni			
			#2	#3	#4	
41 ¹⁾	Registri di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC collegati	128	128	128	128	
44	Registri di Link - Area trasmissione - Iniziare la tra- smissione da questa word	0	40	80	0	
45	Registri di Link - Area trasmissione - Nr. di word da inviare	40	40	48	0	

 Il valore di questo registro di sistema deve essere identico per tutte le stazioni.

Quando le aree di link sono impostate come indicato sopra, i dati nell'area di invio della stazione 1 vengono trasmessi alle aree di ricezione delle stazioni 2, 3 e 4. L'area di ricezione della stazione 1 può ricevere dati dalle aree di invio delle stazioni 2 e 3. L'area di link della stazione 4 è stata definita esclusivamente come area di ricezione e può solo ricevere dati dalle stazioni 1, 2 e 3 ma non può inviare dati ad altre stazioni.

7.7.2.2 Esempio per PLC link 1

Impostare il registro di sistema 46 su "Inverso" per usare PLC link 1. Vedere "Allocazione PLC Link 0 e 1" pag. 147.

Allocazione relè di link

Impostazioni del registro di sistema

N.°	Nome		Impostazioni delle stazioni			
		#1	#2	#3	#4	
50 ¹⁾	Relè di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC	64	64	64	64	
52	Relè di Link - Area trasmissione - Iniziare la trasmis- sione da questa word	64	84	104	64	
53	Relè di Link - Area trasmissione - Nr. word da inviare	20	20	24	0	

¹⁾ Il valore di questo registro di sistema deve essere identico per tutte le stazioni.

Allocazione di registro di link

Impostazioni del registro di sistema

N.°	Nome	Impostazioni delle stazioni			
		#1	#2	#3	#4
51 ¹⁾	Registri di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC collegati	128	128	128	128
54	Registri di Link - Area trasmissione - Iniziare la tra- smissione da questa word	128	168	208	128
55	Registri di Link - Area trasmissione - Nr. di word da inviare	40	40	48	0

¹⁾ Il valore di questo registro di sistema deve essere identico per tutte le stazioni.

Quando le aree di link sono impostate come indicato sopra, i dati nell'area di invio della stazione 1 vengono trasmessi alle aree di ricezione delle stazioni 2, 3 e 4. L'area di ricezione della stazione 1 può ricevere dati dalle aree di invio delle stazioni 2 e 3. L'area di link della stazione 4 è stata definita esclusivamente come area di ricezione e può solo ricevere dati dalle stazioni 1, 2 e 3 ma non può inviare dati ad altre stazioni.

7.7.2.3 Uso parziale di aree di link

Nelle aree di link disponibili per PLC Link si possono usare relè di link per un totale di 1024 punti (64 word) e registri di link con un totale di 128 word. Questo non significa però che occorra riservare l'intera area. Parti dell'area che non sono state riservate possono essere usate come relè interni e registri interni.

Allocazione relè di link

Impostazioni del registro di sistema

N.°	Nome	#1
40	Relè di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC	50
42	Relè di Link - Area trasmissione - Iniziare la trasmissione da questa word	20
43	Relè di Link - Area trasmissione - Nr. word da inviare	20

Con le impostazioni sopra selezionate per la stazione numero 1, le 14 word (224 punti) da WL50 a WL63 possono essere usate come relè interni.
Allocazione di registro di link

Impostazioni del registro di sistema

N.°	Nome	#1
41	Registri di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC collegati	100
44	Registri di Link - Area trasmissione - Iniziare la trasmissione da que- sta word	40
45	Registri di Link - Area trasmissione - Nr. di word da inviare	40

Con le impostazioni sopra selezionate per la stazione numero 1, le 28 word da LD100 a LD127 possono essere usate come registri interni.

7.7.2.4 Istruzioni importanti per l'allocazione di aree di link

Un errore nell'allocazione delle aree di link provocherà un errore e l'interruzione della comunicazione.

Evitare che aree di invio si sovrappongano anche solo parzialmente

L'invio di dati dall'area di invio all'area di ricezione di un altro PLC può avvenire solo se le aree di invio e di ricezione coincidono. Nell'esempio sotto riportato la comunicazione non può aver luogo perché c'è un'area di sovrapposizione parziale fra le unità n.º 2 e n.º 3 e questo provocherà un errore.

Impostazioni del registro di sistema

N.°	N.° Nome		Impostazioni delle stazioni		
		#1	#2	#3	
40	Relè di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC	64	64	64	
42	Relè di Link - Area trasmissione - Iniziare la trasmissio- ne da questa word	0	20	30	
43	Relè di Link - Area trasmissione - Nr. word da inviare	20	20	34	

Allocazioni non valide

Le allocazioni seguenti non sono possibili, né per relè di link né per registri di link:

• <u>L'area di</u> invio è divisa

• Le aree di invio e di ricezione sono divise in più segmenti

Area di invio 🗌 Area di ricezione

7.7.3 Impostazione del numero di stazione più alto per un PLC link

I numeri delle stazioni dovrebbero partire da 1 ed essere attribuiti sequenzialmente e in ordine crescente senza soluzione di continuità. Se i numeri di stazione sono stati attribuiti con lacune o se uno dei PLC connessi non è alimentato, il periodo di risposta per il PLC link (ovvero il tempo di trasmissione) sarà più lungo (vedere pag. 150).

Se sono collegate meno di 16 stazioni, si può ridurre il tempo di trasmissione indicando il numero di stazione più alto. (Il valore preimpostato è 16.) Impostare lo stesso valore per tutti i PLC collegati.

Il numero di stazione più alto si imposta usando il registro di sistema n.º 47 per PLC link 0 o il registro di sistema n.º 57 per PLC link 1.

Esempi di impostazione

Numero complessivo di stazioni			4				n
Numero della stazione	1	2	1	2	3	4	n
Numero di stazione massimo 1)	2	2	4	4	4	4	Ν

¹⁾ Stessa impostazione per ciascuna stazione

7.7.4 Allocazione PLC link 0 e 1

Quando viene utilizzato un PLC FP2SH con 2 schede MCU si possono definire fino a 2 reti PLC Link che insistono sull'FP2SH. L'impostazione standard del registro di sistema 46 (Impostazione allocazione PLC Link 0 e 1) è "Normale". Questo significa che l'unità più vicina alla CPU usa PLC link 0 e l'unità più lontana usa PLC link 1. Per invertire questa regola selezionare "Invertire". Nell'esempio sottostante, selezionando "Invertire" per i PLC FP0R che si trovano sulla rete PLC link 1 (B) in questo modo si ha il vantaggio di non dover compiere conversioni di indirizzo fra questi PLC e il modulo MCU. Invece si potranno usare gli stessi numeri per tutti i PLC del link.

① Con l'impostazione standard ("Normale") viene usata la prima metà degli relè di link e dei registri di link (WL0-WL63, LD0-LD127).

- ② Con l'impostazione standard ("Normale") viene usata la seconda metà degli relè di link e dei registri di link (WL64-WL127, LD 128-LD225).
- A PLC link 0
- **B** PLC link 1 Per i PLC FPOR che si trovano sulla rete PLC link 1 scegliere nel registro di sistema 46 l'impostazione "Invertire".

7.7.5 Monitoraggio

Quando si usa un rete PLC link si può monitorare lo stato operativo della comunicazione usando gli relè sottostanti. In Control FPWIN Pro scegliere **Monitoraggio** \rightarrow **Relè e registri speciali** \rightarrow **Stato PLC Link** per visualizzare lo stato di ciascun relè.

Per monitorare altre condizioni del PLC link, come il tempo di trasmissione e il numero di errori avvenuti, selezionare **Monitoraggio** \rightarrow **Stato PLC Link** in Control FPWIN Pro.

La programmazione remota di altri PLC collegati non è possibile.

Per accedere a registri dati speciali ed a relè interni speciali, usare le variabili di sistema indipendenti dal tipo di PLC.

Relè "Stato di trasmissione"

Nota

Per PLC link 0: da R9060 a R906F (corrisponde alle stazioni da 1 a 16)

Per PLC link 1: da R9080 a R908F (corrisponde alle stazioni da 1 a 16)

Prima di usare i dati di una delle stazioni della rete, controllare se il relè "Stato di trasmissione" di tale stazione sia TRUE.

Relè n.°	Stazione n.°	Variabile di sistema	Condizioni per TRUE/FALSE
R9060	1	sys_bIsPlcLink0Station1Active	
R9061	2	sys_bIsPlcLink0Station2Active	
R9062	3	sys_bIsPlcLink0Station3Active	
R9063	4	sys_bIsPlcLink0Station4Active	TRUE:
R9064	5	sys_bIsPlcLink0Station5Active	 se la stazione funziona
R9065	6	sys_bIsPlcLink0Station6Active	nella modalità PLC link sen-
R9066	7	sys_bIsPlcLink0Station7Active	20 011011
R9067	8	sys_bIsPlcLink0Station8Active	FALSE:
R9068	9	sys_bIsPlcLink0Station9Active	• se la trasmissione è stata
R9069	10	sys_bIsPlcLink0Station10Active	 se si è verificato un errore
R906A	11	sys_bIsPlcLink0Statio11Active	0
R906B	12	sys_bIsPlcLink0Station12Active	• se non in modalità PLC link
R906C	13	sys_bIsPlcLink0Station13Active	
R906D	14	sys_bIsPlcLink0Station14Active	

Relè n.°	Stazione n.°	Variabile di sistema	Condizioni per TRUE/FALSE
R906E	15	sys_bIsPlcLink0Station15Active	
R906F	16	sys_bIsPlcLink0Station16Active	

Relè "Modalità di funzionamento"

Per PLC link 0: da R9070 a R907F (corrispondono alle stazioni da 1 a 16) Per PLC link 1: da R9090 a R909F (corrispondono alle stazioni da 1 a 16) La modalità di funzionamento (RUN/PROG) può essere controllata per ogni PLC.

Relè n.°	Stazione n.°	Variabile di sistema	Condizioni per TRUE/FALSE
R9070	1	sys_bIsPlcLink0Station1InRunMode	
R9071	2	sys_bIsPlcLink0Station2InRunMode	
R9072	3	sys_bIsPlcLink0Station3InRunMode	
R9073	4	sys_bIsPlcLink0Station4InRunMode	
R9074	5	sys_bIsPlcLink0Station5InRunMode	
R9075	6	sys_bIsPlcLink0Station6InRunMode	
R9076	7	sys_bIsPlcLink0Station7InRunMode	IRUE:
R9077	8	sys_bIsPlcLink0Station8InRunMode	dalità RUN
R9078	9	sys_bIsPlcLink0Station9InRunMode	
R9079	10	sys_bIsPlcLink0Station10InRunMode	FALSE:
R907A	11	sys_bIsPlcLink0Station11InRunMode	• se l'unità e nella mo- dalità PROG
R907B	12	sys_bIsPlcLink0Station12InRunMode	
R907C	13	sys_bIsPlcLink0Station13InRunMode	
R907D	14	sys_bIsPlcLink0Station14InRunMode	
R907E	15	sys_bIsPlcLink0Station15InRunMode	
R907F	16	sys_bIsPlcLink0Station16InRunMode	

Relè "Errore di trasmissione" R9050

Questo indicatore passa a TRUE se durante la trasmissione viene rilevato un errore.

Relè n.°	Stazione n.°	Variabile di sistema	Condizioni per TRUE/FALSE
R9050	1-16	sys_bIsPlcLink0TransmissionError	 TRUE: se si è verificato un errore di trasmissione o se c'è un errore nelle impostazioni dei registri di sistema per l'area di PLC link FALSE: se non ci sono errori di trasmissione

7.7.6 Periodo di risposta

Il valore massimo per il tempo di trasmissione (T) in un ciclo può essere calcolato usando la seguente formula.

① Ts (tempo di trasmissione per stazione) = tempo di ciclo + Tpc

Tpc = Ttx × Pcm Ttx = 1/velocità di trasmissione × 1000 × 11ms \approx 0,096ms a 115200bit/s Pcm = 23 + (numero di word relè + numero di word registro) × 4

Tpc (tempo di trasmissione PLC link) Ttx (tempo di trasmissione per byte) Pcm (grandezza dati PLC link)

② Tlt (tempo di trasmissione aree di memoria) = Ttx × Ltm

Ttx = 1/velocità di trasmissione \times 1000 \times 11ms \approx 0,096ms a 115200bit/s Ltm = 13 + 2 \times n

Ttx (tempo di trasmissione per byte) Ltm (grandezza aree di memoria) n = numero di stazioni collegate

③ Tso (tempo di ciclo stazione master)

Il tempo di ciclo della stazione master può essere determinato nel tool di programmazione.

④ Tlk (tempo di collegamento stazioni) = Tlc + Twt + Tls+ Tso

Se non sono collegate stazioni Tlk = 0.

Tlc = $10 \times Ttx$ Ttx = 1/velocità di trasmissione $\times 1000 \times 11ms \approx 0,096ms$ a 115200bit/sTwt = impostazione standard 400ms (può essere cambiata con il comando SYS1) Tls = $7 \times Ttx$ Ttx = 1/velocità di trasmissione $\times 1000 \times 11ms \approx 0,096ms$ a 115200bit/s *Tlc (tempo di trasmissione per comando di collegamento) Twt (intervallo di interrogazione per verifica collegamento) Ttx (tempo di trasmissione per byte) Tls (tempo di trasmissione per comando di interruzione in caso di errore) Tso (tempo di ciclo stazione master) Ttx (tempo di trasmissione per byte)*

Tso (tempo di ciclo stazione master)

Esempio di calcolo 1

Condizioni: ad un link con il numero massimo di 16 stazioni sono state collegate tutte le stazioni. Numero di stazione massimo = 16. Aree di relè di link e di registri di link sono state suddivise uniformemente. Tempo di ciclo per ogni PLC: 1ms.

Ttx = 0,096

Pcm (per stazione) = $23 + (4 + 8) \times 4 = 71$ Tpc = Ttx × Pcm = $0,096 \times 71 \approx 6,82ms$ Ts (per stazione) = 1 + 6,82 = 7,82msTlt = $0,096 \times (13 + 2 \times 16) = 4,32ms$ Da questo risulta un tempo massimo di ciclo di trasmissione (T) di: T max. = $7,82 \times 16 + 4,32 + 1 = 130,44ms$

Esempio di calcolo 2

Condizioni: ad un link con il numero massimo di 16 stazioni sono state collegate tutte le stazioni. Numero di stazione massimo = 16. Aree di relè di link e di registri di link sono state suddivise uniformemente. Tempo di ciclo per ogni PLC: 5ms.

Ttx = 0,096

Pcm (per stazione) = $23 + (4 + 8) \times 4 = 71$ Tpc = Ttx × Pcm = $0,096 \times 71 \approx 6,82ms$ Ts (per stazione) = 5 + 6,82 = 11,82msTlt = $0,096 \times (13 + 2 \times 16) = 4,32ms$

Da questo risulta un tempo massimo di ciclo di trasmissione (T) di: T max. = $11,82 \times 16 + 4,32 + 5 = 198,44$ ms

Esempio di calcolo 3

Condizioni: ad un link con il numero massimo di 16 stazioni sono state col-

ACGM0475V3IT.docx

legate tutte le stazioni meno una. Numero di stazione massimo = 16. Aree di relè di link e di registri di link sono state suddivise uniformemente. Tempo di ciclo per ogni PLC: 5ms.

Ttx = 0,096

Ts (per stazione) = 5 + 6,82 = 11,82ms Tlt = $0,096 \times (13 + 2 \times 15) = 4,31$ ms Tlk = $0,96 + 400 + 0,67 + 5 \approx 407$ ms

Nota: L'intervallo di interrogazione standard per la verifica del collegamento è di 400ms.

Da questo risulta un tempo massimo di ciclo di trasmissione (T) di: T max. = $11,82 \times 15 + 4,13 + 5 + 407 = 593,43$ ms

Esempio di calcolo 4

Condizioni: ad un link con il numero massimo di 8 stazioni sono state collegate tutte le stazioni. Numero di stazione massimo = 8. Aree di relè di link e di registri di link sono state suddivise uniformemente. Tempo di ciclo per ogni PLC: 5ms.

Ttx = 0,096

Pcm (per stazione) = $23 + (8 + 16) \times 4 = 119$ Tpc = Ttx × Pcm = $0,096 \times 119 \approx 11,43$ ms Ts (per stazione) = 5 + 11,43ms = 16,43ms Tlt = $0,096 \times (13 + 2 \times 8) = 2,79$ ms

Da questo risulta un tempo massimo di ciclo di trasmissione (T) di: T max. = $16,43 \times 8 + 2,79 + 5 = 139,23$ ms

Esempio di calcolo 5

Condizioni: ad un link con il numero massimo di 2 stazioni sono state collegate tutte le stazioni. Numero di stazione massimo = 2. Aree di relè di link e di registri di link sono state suddivise uniformemente. Tempo di ciclo per ogni PLC: 5ms.

Ttx = 0,096

Pcm (per stazione) = $23 + (32 + 64) \times 4 = 407$ Tpc = Ttx × Pcm = $0,096 \times 407 \approx 39,072$ ms Ts (per stazione) = 5 + 39,072 = 44,072ms Tlt = $0,096 \times (13 + 2 \times 2) \approx 1,632$ ms

Da questo risulta un tempo massimo di ciclo di trasmissione (T) di: T max. = $44,072 \times 2 + 1,632 + 5 = 94,776$ ms

Esempio di calcolo 6

Condizioni: ad un link con il numero massimo di 2 stazioni sono state collegate tutte le stazioni. Numero di stazione massimo = 2. 32 aree di relè e 2 aree di registri di link sono stati allocati uniformemente. Tempo di ciclo per ogni PLC: 1ms.

Ttx = 0,096

Pcm (per stazione) = $23 + (1 + 1) \times 4 = 31$ Tpc = Ttx × Pcm = $0,096 \times 31 \approx 2,976$ ms Ts (per stazione) = 1 + 2,976 = 3,976ms Tlt = $0,096 \times (13 + 2 \times 2) \approx 1,632$ ms

Da questo risulta un tempo massimo di ciclo di trasmissione (T) di: T max. = $3,976 \times 2 + 1,632 + 1 = 10,584$ ms

Nota

- L'espressione "stazioni collegate" usata negli esempi di calcolo si riferisce a stazioni che sono collegate fra la stazione n.º 1 e il numero di stazione più alto e per le quali è stata inserita l'alimentazione.
- Nell'esempio 3 una stazione non è stata collegata. Per questo motivo, qui il tempo di trasmissione è più lungo che nell'esempio 2.
- Il comando SYS1 può essere usato per ridurre al minimo il tempo di trasmissione anche se una o più stazioni non sono state collegate al link.

7.7.6.1 Riduzione del tempo di trasmissione

Se una delle stazioni impostate non è collegata alla rete, il tempo di collegamento delle stazioni (Tlk) e quindi anche il tempo di trasmissione si allungano.

T max. = Ts1 + Ts2 + • • • • • • + Tsn + Tlt + Tso + <u>Tlk</u>

Tlk= tempo di collegamento stazioni Tlc = tempo di trasmissione per comando di collegamento Twt = intervallo di interrogazione per verifica collegamento Tls = tempo di trasmissione per comando di interruzione in caso di errore Tso = tempo di ciclo stazione master

Con il comando SYS1 si può accorciare l'intervallo di interrogazione sul collegamento di stazioni (Twt) nell'equazione sopra riportata. Quindi si può usare SYS1 per ridurre al minimo l'aumento del tempo di trasmissione.

Esempio

Riduzione dell'intervallo di interrogazione per la verifica del collegamento al PLC Link dal valore standard di 400ms a 100ms con SYS1.

Nota

- Modificare l'impostazione solo se un tempo di trasmissione troppo lungo crea dei problemi.
- Il comando SYS1 dovrebbe essere eseguito all'inizio del programma sul fronte di salita di R9014. Per tutti i PLC collegati dovrebbe essere fissato lo stesso intervallo di interrogazione.
- L'intervallo di interrogazione dovrebbe essere almeno il doppio del tempo di ciclo più lungo dei PLC collegati al link.
- Se per l'intervallo di interrogazione è stato impostato un valore piccolo può accadere che PLC non possano essere collegati anche se la loro alimentazione è inserita. Il valore più basso che può essere impostato è 10ms.

7.7.6.2 Tempo di rilevamento di errori di trasmissione

Se l'alimentazione di un PLC viene a mancare o è disinserita, trascorrono 6,4 secondi (valore standard) prima che l'indicatore "Stato di trasmissione" di questo PLC venga messo su OFF nelle altre stazioni. Questo periodo di tempo può essere accorciato con il comando SYS1.

Esempio

Con SYS1 accorciare il tempo di risposta per l'indicatore "Stato di trasmissione" da 6,4s a 100ms.

Corpo LD

Nota

- Questa impostazione dovrebbe essere cambiata solo se un lungo tempo di risposta per l'indicatore "Stato di trasmissione" dovesse creare problemi.
- Il comando SYS1 dovrebbe essere eseguito all'inizio del programma sul fronte di salita di R9014. Per tutti i PLC collegati dovrebbe essere fissato lo stesso intervallo di interrogazione.
- Il tempo dovrebbe essere almeno il doppio del tempo di trasmissione più lungo quando sono collegati tutti i PLC.
- Se è stato impostato un valore piccolo, l'indicatore "Stato di trasmissione" potrebbe non funzionare regolarmente. Il valore più basso che può essere impostato è 100ms.

7.8 Comunicazione Modbus RTU

Il protocollo Modbus RTU consente la comunicazione fra l'FPOR ed altri dispositivi (compresi i PLC FP-e di Panasonic, pannelli operatore touch screen della serie GT e termoregolatori KT oltre che dispositivi Modbus di altri produttori). La stazione master invia istruzioni (comandi) alle stazioni slave e le stazioni slave rispondono (inviano messaggi di risposta) in base alle istruzioni ricevute. La stazione master ha accesso in lettura e in scrittura ad un massimo di 99 stazioni slave.

Comunicazione Modbus RTU fra l'FPOR ed un dispositivo esterno

(1) Comando (2) Risposta

Nota

Il protocollo Modbus supporta sia la modalità ASCII sia la modalità RTU binaria. I PLC della serie FP supportano però solo la modalità RTU binaria.

Funzione master Modbus RTU

L'accesso in scrittura e lettura a diversi slave è possibile usando le istruzioni F145_WRITE e F146_READ. Sono possibili sia l'accesso ad ogni singolo slave sia l'accesso a tutti gli slave.

Funzione slave Modbus RTU

Dopo aver ricevuto un comando dalla stazione master, le stazioni slave inviano un messaggio di risposta basato sulle istruzioni ricevute. Le istruzioni F145_WRITE e F146_READ non vanno eseguite in stazioni slave.

Formato del comando Modbus RTU

Iniziale	Indirizzo	Funzione	Dati	Bit di con- trollo CRC	Terminatore
Tempo di tra- smissione per 3,5 caratteri	8 bit	8 bit	n × 8 bit	16 bit	Tempo di trasmis- sione per 3,5 carat- teri

Indirizzo (stazione n.º)	8 bit, 0–99 (decimale) ¹⁾ 0 = indirizzo messaggio circolare
Funzione	8 bit
Dati	Variano a seconda dei comandi.
CRC	16 bit
Terminatore	Tempo di trasmissione per 3,5 caratteri (varia a seconda del baud rate). Vedere anche "Tempo di attesa per determinare il termine della ricezione".
¹⁾ Control FPWIN bus RTU.	Pro non supporta il campo di indirizzi 0-247 del protocollo Mod-

Risposta in condizioni normali

La risposta ad un comando di scrittura in bit contiene il comando stesso. La

risposta ad un comando di scrittura in word contiene parte del comando (i primi 6 byte).

Risposta in condizioni anomale

Se un comando contiene un parametro non valido (fatta eccezione per errori di trasmissione):

Indirizzo	Funzione + 80H	Codice di errore	CRC
	1: funzione non valida		
Codice di errore	2: indirizzo dati non val	ido (indirizzo non in word)
	3: valore di dati non val	ido (non è un multiplo di	16)

Tempo di attesa per determinare il termine della ricezione

La ricezione di un messaggio è completata se sono stati ricevuti tutti i dati e se è trascorso il periodo di tempo indicato qui sotto.

Baud rate	Tempo di attesa per determinare il termine della ricezione
2400	≈13,3ms
4800	≈6,7ms
9600	≈3,3ms
19200	≈1,7ms
38400	≈0,8ms
57600	≈0,6ms
115200	≈0,3ms

Comandi supportati

Comandi eseguibili dalla stazione ma- ster	Codice (decimale)	Nome (denomina- zione Modbus)	Nome per FP0R	N.° riferimen- to Modbus
F146_READ	01	Read Coil Sta- tus	Leggere uscita Y o relè interno R	0X
F146_READ	02	Read Input Status	Leggere ingresso X	1X
F146_READ	03	Read Holding Registers	Leggere più registri dati DT	4X
F146_READ	04	Read Input Registers	Leggere più registri WL ed LD	3X
F145_WRITE	05	Force Single Coil	Cambiare lo stato di un'uscita Y o di un relè interno R	0X
F145_WRITE	06	Preset Single Register	Scrivere dati in un re- gistro DT	4X
Non utilizzabile	08	Diagnosi	Ciclo di controllo	-

Comunicazione

Comandi eseguibili dalla stazione ma- ster	Codice (decimale)	Nome (denomina- zione Modbus)	Nome per FP0R	N.° riferimen- to Modbus
F145_WRITE	15	Force Multiple Coils	Cambiare lo stato di WY e WR	0X
F145_WRITE	16	Preset Multiple Registers	Scrivere più registri dati DT	4X
Non utilizzabile	22	Mask Write 4X Register	Scrivere maschera DT	4X
Non utilizzabile	23	Read/Write 4X Registers	Scrivere/Leggere regi- stro DT	4X

Numeri di riferimento Modbus e indirizzi FP0R

N.° riferimento Modbu	Indirizzo						
Nome		Indirizzo deci- male ¹⁾	Indirizzo esadeci- male ²⁾	PLC			
Debine		000001- 001760	0000-06DF	Y0-Y109F			
BODINA		002049- 006144	0800-17FF	R0-R255F			
Ingresso		100001- 001760	0000-06DF	X0-X109F			
Registro program-	C10, C14, C16	400001- 412315	0000-301B	DT0- DT12314			
mabile	C32, T32, F32	40001-432765	0000-7FFC	DT0- DT32764			
		300001- 300128	0000-007F	WL0- WL127			
Registro Ingressi		302001- 302256	07D0-08CF	LD0-LD255			
1) Iniziando con O		²⁾ Inizianda con 1					

¹⁾ Iniziando con 0

²⁾ Iniziando con 1

Riferimento

Per i particolari sulle impostazioni Modbus e sulla comunicazione con i comandi F145_WRITE e F146_READ si prega di consultare l'help online di Control FPWIN Pro.

7.8.1 Impostazione di parametri di comunicazione

Effettuare le seguenti impostazioni per la porta di comunicazione:

- modalità di comunicazione (Modbus RTU) •
- numero della stazione •
- baud rate •
- formato di comunicazione .

Per particolari sull'impostazione dei parametri di comunicazione vedere

"Impostazione dei registri di sistema nella modalità PROG" pag. 101.

Nota

- Il numero di stazione può essere impostato in un campo da 1 a 99.
- Con un adattatore C-NET si possono specificare fino a 32 stazioni.

7.8.2 Programma campione per la Comunicazione Master

•

Usare i comandi F145_WRITE e F146_READ per la funzione master Modbus. Nel registro di sistema 412 selezionare "Modbus RTU Master/Slave" per la porta COM.

Intestazione POU

Classe	Identificatore	Tipo	Iniziale
VAR_EXTERNAL	Slave2_g_diCounter	DINT	0
VAR	diCounter	DINT	0
VAR	diCounterFromSlave2	DINT	-1
VAR	bWriteToSlave2	BOOL	TRUE
VAR	bReadFromSlave2	BOOL	FALSE
	Classe VAR_EXTERNAL VAR VAR VAR VAR VAR	Classe Identificatore VAR_EXTERNAL Slave2_g_diCounter VAR diCounter VAR diCounterFromSlave2 VAR bWriteToSlave2 VAR bReadFromSlave2	Classe Identificatore Tipo VAR_EXTERNAL Slave2_g_diCounter DINT VAR diCounter DINT VAR diCounterFromSlave2 DINT VAR bWriteToSlave2 BOOL VAR bReadFromSlave2 BOOL

Per poter disporre di dati consistenti, i dati comuni del progetto master e del progetto slave dovrebbero essere tenuti nella GVL di una libreria comune.

Corpo LD

If the counter read from the slave is equal to the counter written then the counter is incremented by 1 👘 🦼
diCounter EQ diCounterFromSlave2 diCounter diCounter
The counter is written to the slave counter which is defined in the library Slave2 containing all exchange data of the slave
bWriteToSlave2 sys_blsComPort1F145F146NotActive Rep044 COd again. EN ENO 1 Port SlaveData diCounter MasterData
The slave counter which is defined in the library Slave2 containing all exchange data of the slave is read for verification
bReadFromSlave2 ^{sys_blsComPartIF146F146NotActive} F146_READ_DATA bReadFromSlave2 bWriteToSlave

ACGM0475V3IT.docx

Riferimento

Per i particolari sulle impostazioni Modbus e sulla comunicazione con i comandi F145_WRITE e F146_READ si prega di consultare l'help online di Control FPWIN Pro.

Capitolo 8

Contatore veloce e uscita ad impulsi

8.1 Caratteristiche generali

L'FPOR è dotato di una logica veloce integrata che supporta tre funzioni: conteggio veloce, uscita ad impulsi e uscita PWM (modulazione di larghezza di impulso).

Funzione contatore veloce

Il contatore veloce conta gli impulsi in ingresso provenienti p.es. da sensori o encoder. Appena viene raggiunto il valore target, questa funzione fa andare l'uscita richiesta su TRUE oppure FALSE.

Funzione di uscita ad impulsi

Insieme ad un motor driver commerciale, si può usare la funzione di uscita ad impulsi per il posizionamento. Con istruzioni speciali sono possibili funzioni di controllo trapezoidale, il ritorno alla posizione iniziale (Home return) e il funzionamento JOG.

Funzione di uscita PWM

Un'istruzione speciale consente di emettere impulsi con un duty prestabilito.

Controllo della corrente di riscaldamento con la funzione di uscita PWM

- ① Aumentando la larghezza degli impulsi aumenta la temperatura
- Diminuendo la larghezza degli impulsi diminuisce la temperatura

Nota

Istruzione di interpolazione lineare F175_PulseOutput_Linear o PulseOutput_Linear_FB: il valore target (tratto da percorrere) deve essere compreso fra -8 388 608 e +8 388 607 (numero binario di 24 bit).

8.2 Caratteristiche tecniche e limitazioni

Questa parte contiene le caratteristiche tecniche del contatore veloce, dell'uscita ad impulsi e della funzione di uscita PWM oltre che eventuali limitazioni di servizio.

8.2.1 Funzione contatore veloce

Per le diverse modalità di funzionamento degli ingressi del contatore sono disponibili determinati canali del contatore veloce, ingressi ed aree di memoria.

Numeri degli ingressi

Modalità di ingresso ¹⁾	N.° di fasi	Canale n.° ²⁾	Ingresso	Ingresso di reset ⁴⁾
		0	X0	X2
		1	X1	X2
Conteggio avanti	1	2	X3	X5
Conteggio indietro		3	X4	X5
		4	X6	-
		5	X7	-
• A due fasi (modalità encoder)		0	X0, X1	X2
Conteggio avanti/indietro (modalità CW/CCW)	2	2	X3, X4	X5
 Controllo conteggio avanti/indietro (modalità impulsi/segno) 	2	4	X6, X7	-

 Per ulteriori particolari sulle diverse modalità di conteggio in ingresso, vedere pag. 169.

- ²⁾ Canale 4 e canale 5 non sono disponibili nel tipo C10.
- ³⁾ X4 e X7 possono essere usati anche come ingressi home della funzione di uscita ad impulsi. Impostare la funzione prescelta nei registri di sistema.
- ⁴⁾ L'ingresso di reset X2 può essere impostato o sul canale 0 o sul canale 1. L'ingresso di reset X5 può essere impostato o sul canale 2 o sul canale 3.

Prestazioni

N.° di fasi	Larghezza minima impulsi in ingresso ¹⁾	N.º di canali	Velocità di conteggio mas- sima ²⁾
1	10µs	5	50kHz
		1	15kHz
2	25µs	2	15kHz (×2 canali)
		3	10kHz (×3 canali)

¹⁾ Per informazioni sulla larghezza minima impulsi in ingresso, vedere pag. 171.

²⁾ La velocità di conteggio massima può essere inferiore ai valori indicati nella tabella se viene cambiata la velocità di uscita ad impulsi, se vengono eseguiti simultaneamente un controllo CAM, un'istruzione uscita ON/OFF al raggiungimento del valore target o un altro programma di interrupt.

Flag di controllo ed aree di memoria

La condizione di funzionamento del contatore veloce, i valori del contatore e il codice di controllo sono memorizzati in relè interni speciali e registri dati speciali. Il codice di controllo contiene le impostazioni del contatore. Per accedere a registri dati speciali ed a relè interni speciali, usare le variabili di sistema indipendenti dal tipo di PLC. Si possono inserire variabili di sistema direttamente nel corpo del programma utilizzando la finestra di dialogo "Variabili", senza inserire una dichiarazione nell'intestazione del POU. Vedere "Istruzioni e variabili di sistema" pag. 172.

Istruzioni relative

- F165_HighSpeedCounter_Cam: Controllo CAM
- F166_HighSpeedCounter_Set o Hsc_TargetValueMatch_Set: Uscita ON al raggiungimento del valore target
- F167_HighSpeedCounter_Reset o Hsc_TargetValueMatch_Reset: Uscita OFF al raggiungimento del valore target
- F178_HighSpeedCounter_Measure: Misurazione periodo impulsi in ingresso

8.2.2 Funzione di uscita ad impulsi

Per ciascuna modalità di uscita ad impulsi e di posizionamento sono disponibili determinati canali del contatore veloce, ingressi ed uscite.

Nota

La funzione di uscita ad impulsi è disponibile solo con il tipo uscita transistor.

Indirizzi di ingressi ed uscite

Canale n.º			Uscita impulsi CW Uscita ad impulsi	Uscita impulsi CCW Uscita relativa al segno	Uscita reset de- viazione conteggio su servo driver ¹⁾	In- gresso home 3)	Ingresso per inizio controllo di posi- zione ⁴⁾	Ingresso di near home		
0			Y0	Y1	Y6 (Y8)	X4	X0			
1			Y2	Y3	Y7 (Y9)	X5	X1	A piace-		
2			Y4	Y5	– (YA)	X6	X2			
3			Y6	Y7	– (YB)	X7	X3			
Controllo	0	0	Asse X	Y0	Y1	Y6 (Y8)	X4		re ⁵⁾	
interpo- lazione lineare ²⁾	0	Asse Y	Y2	Y3	Y7 (Y9)	X5				
	1	Asse X	Y4	Y5	– (YA)	X6] -			
	T	Asse Y	Y6	Y7	– (YB)	X7				

¹⁾ I valori fra parentesi si riferiscono alle CPU tipo C32, T32 e F32.

Per la CPU tipo C16: l'uscita reset deviazione conteggio su servo driver non è disponibile per i canali 2 e 3 e quando le uscite Y6 e Y7 sono usate da canali di uscita ad impulsi 3.

- ²⁾ Nell'interpolazione lineare, l'operazione di Home Return dovrebbe essere effettuata separatamente per ciascun asse di interpolazione, ovvero per ciascun canale.
- ³⁾ X4 e X7 possono essere usati anche come ingressi contatore veloce. Impostare la funzione prescelta nei registri di sistema.
- ⁴⁾ L'ingresso per inizio controllo di posizione è usato con F171_PulseOutput_Jog_Positioning. Il numero di impulsi stabilito va in uscita dopo che l'ingresso per inizio controllo di posizione è passato a TRUE. Prima che il valore target venga raggiunto e che l'uscita ad impulsi si fermi viene effettuata una decelerazione. Il trigger di controllo del posizionamento può essere avviato mettendo un ingresso per inizio controllo di posizione su TRUE o mettendo il bit 6 del registro dati che memorizza il codice di controllo dell'uscita ad impulsi da FALSE a TRUE (p.es. MOVE (16#140, sys_wHscOrPulseControlCode);).
- ⁵⁾ Nella lista variabili globale si può indicare un ingresso qualsiasi. L'ingresso near home viene attivato/disattivato nel codice di controllo per l'uscita ad impulsi. Vedere pag. 192.

Prestazioni

N.° di canali	Frequenza max. di uscita 1)				
4	50kHz				
Controllo interpolazione lineare	50kHz				

¹⁾ La frequenza di uscita massima può essere inferiore ai valori indicati nella tabella se viene cambiata la velocità dell'uscita ad impulsi, se vengono eseguiti simultaneamente una funzione uscita ON/OFF al raggiungimento del valore target, un altro processo di conteggio o di uscita ad impulsi o un programma di interrupt viene eseguito simultaneamente.

Flag di controllo ed aree di memoria

Le impostazioni per il contatore e l'uscita ad impulsi oltre che valori correnti sono memorizzate in registri dati speciali. Lo stato dell'uscita ad impulsi è memorizzato in relè interni speciali. Per accedere a registri dati speciali ed a relè interni speciali, usare le variabili di sistema indipendenti dal tipo di PLC. Si possono inserire variabili di sistema direttamente nel corpo del programma utilizzando la finestra di dialogo "Variabili", senza inserire una dichiarazione nell'intestazione del POU. Vedere "Istruzioni e variabili di sistema" pag. 188.

Istruzioni relative

F166_PulseOutput_Set o Pulse_TargetValueMatch_Reset: Uscita ON al raggiungimento del valore target (uscita ad impulsi)

F167_PulseOutput_Reset o Pulse_TargetValueMatch_Set: Uscita OFF al raggiungimento del valore target (uscita ad impulsi)

F171_PulseOutput_Trapezoidal o PulseOutput_Trapezoidal_FB: Controllo trapezoidale

F171_PulseOutput_Jog_Positioning o PulseOutput_Jog_Positioning0_FB/PulseOutput_Jog_Positioning1_FB: Operazione JOG e posizionamento

F172_PulseOutput_Jog o PulseOutput_Jog_FB/PulseOutput_Jog_TargetValue_FB: Operazione JOG

F174_PulseOutput_DataTable: Controllo mediante tabella dati

F175_PulseOutput_Linear o PulseOutput_Linear_FB: Controllo interpolazione lineare

F177_PulseOutput_Home o PulseOutput_Home_FB: Home Return

8.2.3 Funzione di uscita PWM

La modulazione di larghezza di impulso utilizza due determinati canali e uscite di impulsi.

La funzione di uscita PWM è disponibile solo con il tipo uscita transistor.

Indirizzi uscita

Canale n.°	Uscita PWM
0	Y0
1	Y2
2	Y4
3	Y6

Prestazioni

Risoluzione	Frequenza uscita (duty)
1000	6Hz-4,8kHz (0,0-99,9%)

Flag di controllo

Lo stato dell'uscita PWM è memorizzato in relè interni speciali. Per accedere a registri dati speciali ed a relè interni speciali, usare le variabili di sistema indipendenti dal tipo di PLC. Si possono inserire variabili di sistema direttamente nel corpo del programma utilizzando la finestra di dialogo "Variabili", senza inserire una dichiarazione nell'intestazione del POU. Vedere "Funzione di uscita PWM" pag. 205.

Istruzioni relative

F173_PulseOutput_PWM: Uscita PWM

8.2.4 Velocità di conteggio massima e frequenza di uscita

La velocità di conteggio massima del contatore veloce è minore se vengono usati più canali o se contemporaneamente viene eseguita una funzione di uscita ad impulsi. La visione d'insieme seguente fornisce alcuni valori indicativi.

Nota

La velocità di conteggio massima può essere inferiore ai valori indicati nella tabella se viene cambiata la velocità di uscita ad impulsi, se vengono eseguiti simultaneamente un controllo CAM, un'istruzione uscita ON/OFF al raggiungimento del valore target o un altro programma di interrupt.

	Combinazione di canali contatore									Velocità di conteggio massima (frequenze) [kHz] ²⁾									
	velo	Ce		e ui						Nessuna uscita ad impulsi		Uscita a pulsi, 1	d im- canale	Uscita a pulsi, 2	d im- canali	Uscita ad im- pulsi, 3 canali		Uscita ad im- pulsi, 4 canali	
N.°''	1 fas	se					2 fasi												
	Cana	ale					Ca	nale		1 fase	2 fasi	1 fase	2 fasi	1 fase	2 fasi	1 fase	2 fasi	1 fase	2 fasi
	0	1	2	3	4	5	0	2	4										
1	•									50		50		50		50		30	
2	•	•								50		50		50		35		25	
3	•	•	•							50		50		50		30		20	
4	•	•	•	•						50		50		40		30		20	
5	•	•	•	•	•					50		40		35		29		20	
6	•	•	•	•	•	•				50		40		30		24		15	
7							•				15		14		10		10		10
8	•				•	•			15		10		9		8		8		
9							•	•	•		10		10		9		8		8
10			•				•			50	15	50	10	50	10	44	10	30	10
11			•	•			•			50	15	50	10	50	10	40	10	28	10
12			•	•	•		•			50	15	44	10	44	10	30	10	25	10
13			•	•	•	•	•			50	15	35	10	35	10	25	10	20	10
14					•		•	•		50	15	50	9	50	9	35	8	28	8
15					•	•	•	•		50	15	40	9	40	9	30	8	25	8
16	•								•	50	15	50	10	50	10	50	10	40	8
17	•	•							•	50	13	50	10	50	10	45	8	35	7
18	•	•	•						•	50	12	50	9	50	9	40	8	30	7
19	•	•	•	•					•	50	12	50	8	50	8	35	8	30	7
20	•							•	•	50	13	50	10	50	10	50	8	40	8
21	•	•						•	•	50	12	50	9	50	9	45	8	35	7

Velocità di conteggio massima

• Canale usato

¹⁾ Numeri di riferimento per la lettura della continuazione nella tabella seguente.

²⁾ In combinazione con la funzione di uscita ad impulsi: controllo trapezoidale, nessun cambiamento di velocità (50kHz)

Frequenza max. di uscita

Nota

La frequenza di uscita massima può essere inferiore ai valori indicati nella tabella se viene cambiata la velocità dell'uscita ad impulsi, se vengono eseguiti simultaneamente una funzione uscita ON/OFF al raggiungimento del valore target, un altro processo di conteggio o di uscita ad impulsi o un programma di interrupt.

In caso di uso indipendente dei canali: anche se sono usati tutti i canali la frequenza di uscita massima è per tutti 50kHz.

1 fase					
Canale 0	Canale 1	Canale 2	Canale 3	rrequenza max. di uscila [kmz]	
•				50	
•	•			50	
•	•	•		50	
•	•	•	•	50	

• Canale usato

In caso di uso di istruzione di interpolazione lineare: anche se per l'interpolazione sono usati tutti i canali la frequenza di uscita massima è per tutti 50kHz.

Controllo interpolazione lineare		Frequenza may di usoita [kHz]		
Canale 0 Canale 2		Frequenza max. di uscita [k=z]		
•		50		
٠	•	50		

Canale usato

8.3 Funzione contatore veloce

Il contatore veloce conta i segnali di ingresso e, quando il valore target è stato raggiunto, imposta l'uscita prescelta su TRUE o FALSE. La funzione contatore veloce può essere usata anche per il controllo Cam e per la misurazione periodo impulsi in ingresso.

Impostazione dei registri di sistema

La funzione contatore veloce si può usare solo dopo aver impostato gli ingressi del contatore prescelti nei registri di sistema. Procedimento

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Fare doppio click su "Contatore veloce, ingresso cattura a impulsi, ingresso di interrupt"
- 4. Selezionare gli ingressi prescelti per ciascun canale.

8.3.1 Modalità di conteggio in ingresso

Modalità di ingresso	Segnali in ingresso
Conteggio avanti	$ \begin{array}{c} $
Conteggio indietro	$ \begin{array}{c} $
A due fasi (modalità encoder)	Ingresso conteggio avanti TRUE FALSE TRUE TRUE TRUE FALSE TRUE T

Modalità di ingresso	Segnali in ingresso			
Conteggio avan- ti/indietro (modalità CW/CCW)	$ \begin{array}{c} \end{array} \qquad \qquad$			
	 Ingresso contatore veloce: X0+X1 (X3+X4 o X6+X7) Valore del contatore In aumento In diminuzione 			
Controllo conteggio avanti/indietro (mo- dalità impulsi/segno)	TRUE FALSE Image: Constraint of the second state of the second			
Conteggio avanti e reset	 TRUE FALSE TRUE FALSE TID TRUE FALSE TID TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE			

Larghezza minima impulsi in ingresso 8.3.2

Per il periodo T (1/frequenza) occorre una larghezza impulsi in ingresso minima di T/2 (ingresso a una fase) oppure T/4 (ingresso a due fasi).

Ingresso a due fasi

Allocazione I/O 8.3.3

Quali ingressi ed uscite vengano usati dipende dal rispettivo numero di canale. (Vedere "Caratteristiche tecniche e limitazioni" pag. 162.)

Le uscite che devono passare a TRUE o a FALSE possono essere stabilite con le istruzioni F166 HighSpeedCounter Set o Hsc TargetValueMatch Set e F167_HighSpeedCounter_Reset o Hsc_TargetValueMatch_Reset. Uscite possibili: da Y0 a Y7.

Uso del canale 0 con ingresso conteggio avanti e ingresso di reset

- 1 Ingresso di conteggio X0
- (2) Ingresso di reset X2
- ③ Uscita TRUE/FALSE a Yn
- Uscita che passa a TRUE o FALSE quando è Yn stato raggiunto il valore target: Y0-Y7

Uso del canale 0 con ingresso a due fasi e ingresso di reset

8.3.4 Istruzioni e variabili di sistema

Control FPWIN Pro offre due possibilità di programmare con istruzioni del contatore veloce: le istruzioni FP originali e le istruzioni estese avanzate. Le istruzioni estese sono istruzioni universali supportate da tutti i tipi di PLC della serie FP. Oltre che funzioni indipendenti da PLC e DUT, esse offrono comode funzioni di informazione e di controllo nuove per valutare flag di stato o impostazioni e per la configurazione di contatori veloci e uscite ad impulsi; tutte le istruzioni estese sostengono numeri di canale variabili.

La maggio parte delle informazioni accessibili tramite funzioni di informazione e di controllo è salvata in relè interni speciali e registri dati speciali. A tali relè e registri si può accedere usando variabili di sistema indipendenti da PLC.

L'istruzione F165_HighSpeedCounter_Cam effettua il controllo Cam secondo i parametri nella DUT specificata.

Quando il valore target specificato viene raggiunto, usare le istruzioni sul raggiungimento del valore target per far passare a TRUE o a FALSE l'uscita prescelta. Per far passare l'uscita a TRUE, usare

F166_HighSpeedCounter_Set o Hsc_TargetValueMatch_Set. Per far passare l'uscita a FALSE, usare F167_HighSpeedCounter_Reset o Hsc_TargetValueMatch_Reset.

L'istruzione F178_HighSpeedCounter_Measure misura il numero di impulsi di ingresso in un determinato periodo di conteggio ed il periodo degli impulsi.

Variabili di	isistema	per	aree di	memoria	usate
--------------	----------	-----	---------	---------	-------

Descrizione		Variabile sistema	Indirizzo
		sys_bIsHscChannel0ControlActive	R9110
		sys_bIsHscChannel1ControlActive	R9111
Contatore veloce: flag di	2	sys_bIsHscChannel2ControlActive	R9112
controllo per canale	3	sys_bIsHscChannel3ControlActive	R9113
	4	sys_bIsHscChannel4ControlActive	R9114
		sys_bIsHscChannel5ControlActive	R9115
	0	sys_diHscChannel0ElapsedValue	DDT90300
	1	sys_diHscChannel1ElapsedValue	DDT90304
Contatore veloce: valore	2	sys_diHscChannel2ElapsedValue	DDT90308
corrente del canale	3	sys_diHscChannel3ElapsedValue	DDT90312
	4	sys_diHscChannel4ElapsedValue	DDT90316
		sys_diHscChannel5ElapsedValue	DDT90320
		sys_diHscChannel0ControlTargetValue	DDT90302
	1	sys_diHscChannel1ControlTargetValue	DDT90306
Contatore veloce: valore	2	sys_diHscChannel2ControlTargetValue	DDT90310
target del canale	3	sys_diHscChannel3ControlTargetValue	DDT90314
	4	sys_diHscChannel4ControlTargetValue	DDT90318
	5	sys_diHscChannel5ControlTargetValue	DDT90322
	0	sys_wHscChannel0ControlCode	DT90370
	1	sys_wHscChannel1ControlCode	DT90371
Contatore veloce: monitor	2	sys_wHscChannel2ControlCode	DT90372
canale	3	sys_wHscChannel3ControlCode	DT90373
	4	sys_wHscChannel4ControlCode	DT90374
	5	sys_wHscChannel5ControlCode	DT90375
Codice di controllo per con- tatore veloce o uscita ad impulsi		sys_wHscOrPulseControlCode	DT90052

8.3.4.1 Scrittura del codice di controllo del contatore veloce

Scrittura del codice di controllo

I codici di controllo sono usati per effettuare operazioni speciali del contatore veloce.

Programmare con istruzioni FP: Usare un'istruzione MOVE per scrivere o leggere il codice di controllo nel o dal registro dati speciale riservato per questo codice (DT90052 o DT9052, a seconda del tipo di PLC). È possibile accedere al registro dati speciale in cui sono memorizzati i codici di control-lo del contatore veloce e dell'uscita ad impulsi con la variabile di sistema

sys_wHscOrPulseControlCode.

Quando si programma con istruzioni estese: Per le impostazioni del codice di controllo usare le istruzioni di controllo del contatore veloce universali valide per tutti i tipi di PLC. Per monitorare le impostazioni del codice di controllo usare le istruzioni di controllo del contatore veloce.

Operazioni effettuate dal codice di controllo del contatore veloce:

- cancellazione delle istruzioni sul contatore veloce (bit 3)
- abilitazione/disabilitazione dell'ingresso di reset (reset hardware) del contatore veloce (bit 2)
- abilitazione/disabilitazione di operazioni di conteggio (bit 1)
- reimpostazione del valore corrente (reset software) del contatore veloce a 0 (bit 0)

Cancellazione delle istruzioni sul contatore veloce (bit 3)

L'esecuzione delle istruzioni di uscita ad impulsi si interrompe mettendo il bit 3 del registro dati nel quale è memorizzato il codice di controllo per il contatore veloce (sys_wHscOrPulseControlCode) su TRUE. Allora il flag di controllo del contatore veloce passa a FALSE. Per riabilitare l'esecuzione del comando del contatore veloce, rimettere il bit 3 su FALSE.

Abilitazione/disabilitazione dell'ingresso di reset (reset hardware) del contatore veloce (bit 2)

- X0 Ingresso contatore veloce
- ① Valore corrente
- Bit 2 del codice di controllo del contatore veloce (abilitare/disabilitare l'ingresso di reset)
- ③ Il valore corrente è resettato su 0
- ④ Il reset non è possibile

Quando il bit 2 del codice di controllo è impostato su TRUE, non è possibile effettuare un reset hardware usando l'ingresso di reset specificato nel registro di sistema. Il conteggio continua anche se l'ingresso di reset è passato

a TRUE. Il reset hardware resta disabilitato finché il bit 2 viene resettato su 0.

Abilitazione/disabilitazione di operazioni di conteggio (bit 1)

Quando il bit 1 del codice di controllo è impostato su TRUE, il conteggio è proibito e il valore corrente mantiene il suo valore. Il conteggio prosegue quando il bit 1 viene resettato su FALSE.

Reimpostazione del valore corrente (reset software) del contatore veloce a 0 (bit 0)

Quando il bit 0 del codice di controllo è impostato su TRUE, viene effettuato un reset del software e il valore corrente viene impostato su 0. Il valore corrente resta al valore 0 finché il bit 0 viene resettato su FALSE.

Impostazioni codice di controllo

I bit 0–15 del codice di controllo sono suddivisi in gruppi di quattro. L'impostazione dei bit in ciascun gruppo è rappresentata da un numero esadecimale (p.es. 0002 0000 0000 1001 = 16#2009).

15 12	11	8	7		4	3		0
0						0	3	④ ⑤
ĪV		ĨĪ		Ĩ	_]	Ĭ
Gruppo IV	1	Numero	di c	anale	(c	ana	ale	n: 16#n)
Gruppo III		0 (fisso)						
Gruppo II		0 (fisso)						
Gruppo I	2	Cancella	re l'	istruz	ior	ne p	ber	il contatore veloce (bit 3)
		0: contir	nua					1: annulla
	3	Ingresso	diı	reset	(bi	t 2) (v	vedere la nota)
		0: abilita	ato					1: disabilitato
	4	Contare	(bit	1)				
		0: perm	ette	re				1: proibire
	(5)	Resettar	e il	valor	e c	orre	ente	e su 0 (bit 0)
		0: no						1: sì

Esempio: 16#2009

Gruppo	Valore	Descrizione				
IV	2	Numero di canale: 2				
III	0	(fisso)				
II	0	(fisso)				
I		Il 9 esadecimale corrisponde al 1001 binario				
	9	Cancellare l'istruzione per il contatore veloce: annullare (bit 3)	1			
		Ingresso di reset: abilitato (bit 2)	0			
		Contare: permettere (bit 1)	0			
		Resettare il valore corrente su 0: sì (bit 0)	1			

Nota

Usare il reset hardware (bit 2) per disabilitare l'ingresso di reset stabilito nei registri di sistema.

Riferimento

Per esempi di programmazione si prega di consultare l'help online per Control FPWIN Pro.

8.3.4.2 Scrittura e lettura del valore corrente per il contatore veloce

Il valore corrente è memorizzato sotto forma di doppia word nei registri dati speciali.

Programmare con istruzioni FP: Accedere ai registri dati speciali usando la variabile di sistema sys_diHscChannelxElapsedValue (ove x=numero del canale).

Programmare con istruzioni FP: Per leggere e scrivere il valore corrente usare istruzioni di controllo e di informazione del contatore veloce e istruzioni di controllo e di informazione sull'uscita ad impulsi universali valide per tutti i tipi di PLC.

Variabili di sistema per aree di memoria usate:

Descrizione		Variabile di sistema	Indirizzo
	0	sys_diHscChannel0ElapsedValue	DDT90300
	1	sys_diHscChannel1ElapsedValue	DDT90304
Contatore veloce: valore corrente	2	sys_diHscChannel2ElapsedValue	DDT90308
del canale	3	sys_diHscChannel3ElapsedValue	DDT90312
	4	sys_diHscChannel4ElapsedValue	DDT90316
	5	sys_diHscChannel5ElapsedValue	DDT90320

Riferimento

Per esempi di programmazione si prega di consultare l'help online per Control FPWIN Pro.

8.3.4.3 Uscita ON al raggiungimento del valore target

Se il valore corrente del contatore veloce corrisponde al valore target, un processo di interrupt commuta immediatamente l'uscita specificata su TRUE.

Istruzione estesa: HSC_TargetValueMatch_Set

FP instruction: F166_HighSpeedCounter_Set

Caratteristiche della funzione uscita ON al raggiungimento del valore target

10000 Valore target

- ① Valore corrente del contatore veloce
- 2 Condizione di esecuzione
- ③ Flag di controllo del contatore veloce
- ④ Uscita del PLC

L'uscita del PLC passa a TRUE quando il valore corrente corrisponde al valore target. Inoltre il flag di controllo del contatore veloce passa a FALSE e l'istruzione viene disattivata.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione: Esempio per Hsc_TargetValueMatch_Set o Esempio per F166_HighSpeedCounter_Set

8.3.4.4 Uscita OFF al raggiungimento del valore target

Se il valore corrente del contatore veloce corrisponde al valore target, un processo di interrupt commuta immediatamente l'uscita specificata su FAL-SE.

Istruzione estesa: HSC_TargetValueMatch_Reset

FP instruction: F167_HighSpeedCounter_Reset

Caratteristiche della funzione uscita OFF al raggiungimento del valore target

- (1) Valore corrente del contatore veloce
- (2) Condizione di esecuzione
- ③ Flag di controllo del contatore veloce
- ④ Uscita del PLC

L'uscita del PLC passa a FALSE quando il valore corrente corrisponde al valore target. Inoltre il flag di controllo del contatore veloce passa a FALSE e l'istruzione viene disattivata.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione: Esempio per Hsc_TargetValueMatch_Reset o Esempio per F167_HighSpeedCounter_Reset

8.3.4.5 Misurazione periodo impulsi in ingresso

Questa istruzione misura il numero di impulsi in ingresso in un determinato periodo di conteggio ed il periodo degli impulsi.

Istruzione estesa: -

FP instruction: F178_HighSpeedCounter_Measure

Caratteristiche della misurazione periodo impulsi in ingresso

- Per la misurazione del periodo degli impulsi in ingresso si devono specificare il numero di canale, il periodo di conteggio (1ms-5s) e il numero di periodi di conteggio (1-5). Tali parametri vengono usati per calcolare il numero medio di impulsi in ingresso per periodo di conteggio.
- L'unità per la misurazione del periodo di impulsi ([μ s], [ms] o entrambi) viene stabilita dall'utente.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.3.5 Programmi a titolo di esempio

I seguenti esempi di programmazione mostrano come fare impostazioni dei codici di controllo e come usare le istruzioni contatore veloce.

I progetti Control FPWIN Pro in codice LD ed ST possono essere scaricati dal sito Panasonic (http://www.panasonic-electric-works.it/pewit/it/html/22164.php).

Gli esempi di programmazione per questo capitolo si trovano in pe_63403_0001_sample_high_speed.zip.

Tali esempi possono essere usati con diversi tipi di PLC. Impostare il tipo di PLC nel Navigatore progetto del Control FPWIN Pro.

Dopo aver cambiato il tipo di PLC appare un messaggio: "Adattare i registri di sistema e le opzioni di compilazione?" Selezionare [Mantenere le impostazioni corrente] in modo da assumere le impostazioni del registro di sistema fatte nell'esempio di programmazione.

8.3.5.1 Posizionamento con una velocità

ACGM0475V3IT.docx
Quando X5 passa a TRUE, Y0 passa a TRUE e il nastro trasportatore inizia a muoversi. Quando il valore corrente (sys_diHscChannel0ElapsedValue) raggiunge 5000, Y0 passa a FALSE ed il nastro trasportatore si ferma.

Diagramma di flusso

Impostazioni del registro di sistema

No	Nome elemento	Dati
400	Contatore veloce: Canale 0	Ingresso conteggio avanti (X0)

Riferimento

Per l'intestazione del POU e il corpo del POU, si prega di vedere gli esempi di programmazione nella Panasonic's download area.

8.3.5.2 Posizionamento con due o più velocità

(B) Inverter	Invortor	3	Funzionamento/Stop						
	Inverter	4	Veloce/Lento						
©	Encoder								
\bigcirc	Motore								
E	Nastro tr	asp	ortatore						

Quando X5 passa a TRUE, Y0 e Y1 passano a TRUE ed il nastro trasportatore inizia a muoversi. Quando il valore corrente

(sys_diHscChannel0ElapsedValue) raggiunge 4500, Y1 passa a FALSE ed il nastro trasportatore inizia a fermarsi. Quando il valore corrente raggiunge 5000, Y0 passa a FALSE ed il nastro trasportatore si ferma.

Riferimento

Per l'intestazione del POU e il corpo del POU, si prega di vedere gli esempi di programmazione nella Panasonic's download area.

8.4 Funzione di uscita ad impulsi

Insieme ad un motor driver commerciale che offra la possibilità di essere controllato a treno di impulsi, la funzione di uscita ad impulsi può essere impiegata per operazioni di posizionamento. Nota

La funzione di uscita ad impulsi è disponibile solo con il tipo uscita transistor.

Impostazione registri di sistema

Quando si usa la funzione di uscita ad impulsi il canale usato non può essere utilizzato da una funzione di conteggio veloce.

Procedimento

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Fare doppio click su "Contatore veloce, ingresso cattura a impulsi, ingresso di interrupt"
- 4. Impostare un contatore veloce assegnato ad un canale di uscita ad impulsi su "Non utilizzato".

No	Item Name	Data	Dime	Range
400	High-speed counter: Channel 0	Unused	-	Unused
400	High-speed counter: Channel 1	Unused	199	Unused
401	High-speed counter: Channel 2	Unused		Unused
401	High-speed counter: Channel 3	Unused		Unused
100 miles				Frank 1.1

8.4.1 Modalità di uscita ad impulsi e di posizionamento

Le modalità di uscita ad impulsi e di posizionamento sono specificate tramite le variabili usate con il comando di posizionamento.

CW/CCW

Il controllo viene svolto usando due treni di impulsi: un treno di impulsi positivo o in senso orario (CW) e un treno di impulsi negativo o in senso antiorario (CCW).

Impulsi/direzione

Il controllo viene svolto usando un'uscita a treno di impulsi per specificare la velocità ed un'altra uscita per specificare il senso di rotazione con segnali TRUE/FALSE. In questa modalità, la rotazione in avanti viene effettuata quando il segnale relativo al senso di rotazione è FALSE.

Il controllo viene svolto usando un'uscita a treno di impulsi per specificare la velocità ed un'altra uscita per specificare il senso di rotazione con segnali TRUE/FALSE. In questa modalità, la rotazione in avanti viene effettuata quando il segnale relativo al senso di rotazione è TRUE.

Modalità di controllo relativo

Viene emesso il numero di impulsi impostati nel valore target. I valori positivi danno luogo ad una rotazione positiva, i valori negativi ad una rotazione negativa.

Esempio

Se la posizione attuale è 5000 e il valore target è +1000, dall'uscita CW vengono emessi 1000 impulsi per raggiungere la nuova posizione a 6000.

Modalità di controllo assoluto

Viene emesso un numero di impulsi uguale alla differenza fra il valore target impostato e il valore corrente. Valori maggiori del valore attuale danno luogo ad una rotazione positiva, valori inferiori al valore corrente danno luogo ad una rotazione negativa.

Esempio

Se la posizione attuale è 5000 e il valore target è +1000, dall'uscita CCW vengono emessi 4000 impulsi da CCW per raggiungere la nuova posizione a 1000.

			Valore target			
Tipologia di uscita	ad impulsi	Uscita ad impulsi	Valore positi- vo/ > valore attua- le	Valore negativo/ < valore attuale		
		CW	TRUE	FALSE		
		CCW	FALSE	TRUE		
	Avanti	Impulso	TRUE	TRUE		
Tura a ulai (diua a ia a a	FALSE	Direzione	FALSE	TRUE		
Impuisi/direzione	Avanti TRUE	Impulso	TRUE	TRUE		
		Direzione	TRUE	FALSE		
Modalità di conteg	Igio		Conteggio avanti	Conteggio decre- mentale		

Le seguenti uscite sono TRUE o FALSE a seconda del tipo di uscita ad impulsi e della modalità di controllo della posizione:

Home Return

Dopo che sistema di azionamento è stato attivato, vi è una differenza tra posizione interna (valore corrente) e la posizione meccanica dell'asse; questa differenza non può essere determinata anticipatamente. Per avere corrispondenza tra il valore interno dell'asse e la posizione reale è necessario eseguire un'operazione di sincronizzazione. La sincronizzazione si effettua mediante un'istruzione di Home Return, durante il quale il valore della posizione viene registrato (azzerato) in una determinata posizione (Home).

Con l'istruzione di Home Return vengono emessi impulsi finché non viene attivato l'ingresso di home. L'allocazione I/O dipende dal canale. Vedere "Allocazione I/O" pag. 186.

Per decelerare il moto durante l'avvicinamento alla posizione di home, si deve stabilire un ingresso near home e mettere il bit 4 del registro dati speciali nel quale è memorizzato il codice di controllo per l'uscita degli impulsi (sys_wHscOrPulseControlCode) prima su TRUE e poi di nuovo su FAL-SE.

L'uscita reset deviazione conteggio su servo driver può essere messa su TRUE una volta completato lo Home Return.

Funzionamento JOG

Attraverso il canale specificato vengono emessi impulsi fintanto che la condizione di esecuzione per l'istruzione dell'operazione JOG è TRUE. Direzione e frequenza di uscita vengono specificate in un'istruzione.

8.4.2 Allocazione I/O

Gli indirizzi relativi alle uscite a treno di impulsi, all'uscita che determina la direzione e l'ingresso di home dipendono dal canale utilizzato.

Per l'ingresso near home, selezionare l'ingresso prescelto e impostare il bit 4 del registro dati speciali nel quale è memorizzato il codice di controllo per l'uscita ad impulsi (sys_wHscOrPulseControlCode) prima su TRUE e poi di nuovo su FALSE.

Riferimento

Gli ingressi e le uscite disponibili per i singoli canali sono riportati nelle caratteristiche tecniche. Vedere "Funzione di uscita ad impulsi" pag. 163.

Uscita impulsi del tipo "Orario/Antiorario"

Per l'emissione di impulsi "Orario/Antiorario" si usano due uscite.

Imposta il codice di controllo per l'istruzione del controllo trapezoidale su CW/CCW.

Con	canale	0	2
A	PLC		
B	Motor driver		
1	Ingresso home	X4	X6
2	Ingresso di near home (vedere la nota)	p.es. X0	p.es. X1
3	Uscita impulsi CW	Y0	Y4
4	Uscita impulsi CCW	Y1	Y5

Nota

ACGM0475V3IT.docx

Ogni ingresso non utilizzato per altre applicazioni può essere usato come ingresso near home.

Emissione di impulsi del tipo "Impulsi/direzione"

Un'uscita è usata per l'uscita impulsi, l'altra per l'indicazione della direzione.

Nel codice di controllo per l'istruzione del controllo trapezoidale impostare

"Impulsi/direzione".

Si possono collegare fino a due azionamenti.

Con	canale	0	2
A	PLC		
B	Motor driver		
1	Ingresso home	X2	X6
2	Ingresso di near home (vedere la nota)	p.es. X0	p.es. X1
3	Uscita ad impulsi	Y0	Y4
4	Uscita relativa al segno	Y1	Y5

Nota

Ogni ingresso non utilizzato per altre applicazioni può essere usato come ingresso near home.

8.4.3 Istruzioni e variabili di sistema

Control FPWIN Pro offre due possibilità di programmare con istruzioni per uscita impulsi: le istruzioni originali FP (p.e.

F171_PulseOutput_Trapezoidal) e le istruzioni estese avanzate. Le istruzioni estese sono istruzioni universali supportate da tutti i tipi di PLC della serie FP. Oltre che funzioni indipendenti da PLC e DUT, esse offrono comode funzioni di informazione e di controllo nuove per valutare flag di stato o impostazioni e per la configurazione di contatori veloci e uscite ad impulsi; tutte le istruzioni estese sostengono numeri di canale variabili.

La maggio parte delle informazioni accessibili tramite funzioni di informazione e di controllo è salvata in relè interni speciali e registri dati speciali. A tali relè e registri si può accedere usando variabili di sistema indipendenti da PLC.

Usare le seguenti istruzioni per effettuare diversi compiti di posizionamento:

	1	1
Tipo di comando	Istruzione	Descrizione
Uscita ON al rag- giungimento del valore target (uscita impulsi)	F166_PulseOutput_Set Istruzione estesa: Pulse_TargetValueMatch_Reset	Se il valore corrente corri- sponde al valore target del canale dell'uscita ad impul- si selezionato, l'uscita spe- cificata passa immediata- mente a TRUE.
Uscita OFF al raggiungimento del valore target (uscita impulsi)	F167_PulseOutput_Reset Istruzione estesa: Pulse_TargetValueMatch_Reset	Se il valore corrente corri- sponde al valore target del canale dell'uscita ad impul- si, l'uscita specificata passa immediatamente a FALSE.
Controllo trape- zoidale	F171_PulseOutput_Trapezoidal Istruzione estesa: PulseOutput_Trapezoidal_FB	Questa istruzione effettua automaticamente un con- trollo trapezoidale secondo i parametri della DUT spe- cificata.
Home Return	F177_PulseOutput_Home Istruzione estesa: PulseOutput_Home_FB	Questa istruzione effettua un Home Return secondo i parametri della DUT speci- ficata.
Operazione JOG	F172_PulseOutput_Jog Istruzioni estese: PulseOutput_Jog_FB PulseOutput_Jog_TargetValue_FB	Questa istruzione è usata per il funzionamento JOG.
Operazione JOG (con posiziona- mento)	F171_PulseOutput_Jog_Positioning Istruzioni estese: PulseOutput_Jog_Positioning0_FB PulseOutput_Jog_Positioning1_FB	Il numero di impulsi impo- stato viene inviato in uscita dopo che l'ingresso per inizio controllo di posizione viene portato a TRUE. Pri- ma che il valore target venga raggiunto e che l'uscita ad impulsi si fermi viene effettuata una dece- lerazione.
Controllo me- diante tabella dati	F174_PulseOutput_DataTable	Questa istruzione effettua un controllo senza rampe secondo i parametri nella DUT specificata con un numero arbitrario di veloci- tà e valori target differenti.
Controllo interpo- lazione lineare	F175_PulseOutput_Linear Istruzione estesa: PulseOutput_Linear_FB	Gli impulsi vengono emessi su due canali contempora- neamente sulla base dei parametri impostati nella DUT associata, in modo che il percorso per il rag- giungimento della posizio- ne target formi una linea retta.

Uso del flag di controllo dell'uscita impulsi

L'indicatore è TRUE se viene eseguita un'istruzione di uscita ad impulsi. Usare questo flag per impedire l'esecuzione simultanea di altre istruzioni di uscita ad impulsi nel canale specificato e per verificare il completamento dell'esecuzione.

Nota

Lo stato del flag di controllo del contatore veloce o del flag di controllo dell'uscita ad impulsi può mutare mentre viene effettuata uno scan. Per esempio, se il flag è usato più volte come condizione di ingresso, si possono avere stati differenti all'interno dello stesso scan. Per assicurare l'esecuzione corretta del programma, lo stato del relè interno speciale dovrebbe essere copiato in una variabile all'inizio del programma.

Numeri canale e uscita ad impulsi

Conolo n º	Acce di internalazione ¹⁾	Llocito od impulai	Tipologia di uscita ad impulsi		
Canale n.	Asse di interpolazione		CW/CCW	Impulsi/direzione	
0		YO	CW	Impulso	
0	X	Y1	CCW	Direzione	
1	У	Y2	CW	Impulso	
		Y3	CCW	Direzione	
2	x	Y4	CW	Impulso	
		Y5	CCW	Direzione	
3		Y6	CW	Impulso	
	У	Y7	CCW	Direzione	

¹⁾ Per F175_PulseOutput_Linear

Nota

Per l'interpolazione usare a coppie canale 0 e 1 oppure canale 2 e 3. Si può indicare solo 0 oppure 2 (per C14T: solo 0).

Variabili di sistema per aree di memoria usate

Descrizione		Variabile di sistema	Indirizzo
	0	sys_bIsPulseChannel0Active	R9120
Uscita impulsi: flag di con-		sys_bIsPulseChannel1Active	R9121
trollo del canale	2	sys_bIsPulseChannel2Active	R9122
	3	sys_bIsPulseChannel3Active	R9123
	0	sys_diPulseChannel0ElapsedValue	DDT90400
Uscita impulsi: valore cor-		sys_diPulseChannel1ElapsedValue	DDT90410
rente del canale	2	sys_diPulseChannel2ElapsedValue	DDT90420
	3	sys_diPulseChannel3ElapsedValue	DDT90430
Uscita impulsi: valore target		sys_diPulseChannel0TargetValue	DDT90402
Uscita impulsi: valore target del canale Velocità iniziale corretta del canale ¹⁾	1	sys_diPulseChannel1TargetValue	DDT90412
	2	sys_diPulseChannel2TargetValue	DDT90422
		sys_diPulseChannel3TargetValue	DDT90432
	0	sys_iPulseChannel0CorrectedInitialSpeed	DT90406
Velocità iniziale corretta del	1	sys_iPulseChannel1CorrectedInitialSpeed	DT90416
canale ¹⁾		sys_iPulseChannel2CorrectedInitialSpeed	DT90426
		sys_iPulseChannel3CorrectedInitialSpeed	DT90436
		sys_iPulseChannel0CorrectedFinalSpeed	DT90407
Velocità finale corretta del	1	sys_iPulseChannel1CorrectedFinalSpeed	DT90417
canale ¹⁾	2	sys_iPulseChannel2CorrectedFinalSpeed	DT90427
Velocità finale corretta del canale ¹⁾ Valore limite di accelerazio- ne del canale ¹⁾		sys_iPulseChannel3CorrectedFinalSpeed	DT90437
		sys_diPulseChannel0AccelerationForbiddenAreaStartingPosition	DDT90408
Valore limite di accelerazio-	1	$sys_diPulseChannel1AccelerationForbiddenAreaStartingPosition$	DDT90418
ne del canale ¹⁾	2	sys_diPulseChannel2AccelerationForbiddenAreaStartingPosition	DDT90428
	3	sys_diPulseChannel3AccelerationForbiddenAreaStartingPosition	DDT90438
	0	sys_wPulseChannel0ControlCode	DT90380
Uscita impulsi: monitor im-	1	sys_wPulseChannel1ControlCode	DT90381
lo del canale	2	sys_wPulseChannel2ControlCode	DT90382
	3	sys_wPulseChannel3ControlCode	DT90383
Codice di controllo per con- tatore veloce o uscita impul- si		sys_wHscOrPulseControlCode	DT90052

 $^{1)} \ \ {\tt Per F171_PulseOutput_Jog_Positioning, F171_PulseOutput_Trapezoidal, \ F172_PulseOutput_Jog}$

8.4.3.1 Scrittura del codice di controllo dell'uscita impulsi

Scrittura di codici di controllo

I codici di controllo sono usati per effettuare operazioni speciali del contatore veloce.

Programmare con istruzioni FP: Usare un'istruzione MOVE per scrivere o

leggere il codice di controllo nel o dal registro dati speciale riservato per questo codice (DT90052 o DT9052, a seconda del tipo di PLC). È possibile accedere al registro dati speciale in cui sono memorizzati i codici di controllo del contatore veloce e dell'uscita ad impulsi con la variabile di sistema sys_wHscOrPulseControlCode.

Quando si programma con istruzioni estese: Per le impostazioni del codice di controllo usare istruzioni di controllo universali valide per tutti i tipi di PLC. Per monitorare le impostazioni del codice di controllo usare le istruzioni sui dati.

Operazioni eseguite dal codice di controllo dell'uscita ad impulsi:

- Set/Reset dell'ingresso near home
- Prosecuzione/Arresto uscita ad impulsi (stop uscita ad impulsi)
- Abilitazione/disabilitazione delle operazioni di conteggio
- Reimpostazione del valore corrente (reset software) del contatore veloce
- Cancellazione del contatore veloce e delle istruzioni di controllo posizionamento (solo FPOR)

Set/Reset dell'ingresso near home

Per decelerare il moto durante l'avvicinamento alla posizione di home, si deve stabilire un ingresso near home e mettere il bit 4 del registro dati speciali nel quale è memorizzato il codice di controllo per l'uscita degli impulsi (sys_wHscOrPulseControlCode) prima su TRUE e poi di nuovo su FAL-SE.

Il bit near home viene salvato. Per poter impostare l'ingresso near home una seconda volta durante un Home, impostare questo bit su FALSE subito dopo averlo impostato su TRUE.

(5) L'ingresso home può essere attivato in qualsiasi momento.

Prosecuzione/Arresto uscita ad impulsi (stop uscita ad impulsi)

L'uscita ad impulsi si arresta impostando il bit 3 del registro contenente il codice di controllo dell'uscita ad impulsi (sys_wHscOrPulseControlCode) su TRUE. La possibilità di uno stop uscita impulsi dovrebbe essere prevista in ogni programma che utilizza istruzioni per l'uscita ad impulsi. Per prosegui-re l'uscita ad impulsi resettare il bit 3 su FALSE.

Abilitazione/Disabilitazione delle operazioni di conteggio

Quando il bit 1 del codice di controllo è impostato su TRUE, il conteggio è proibito e il valore corrente mantiene il suo valore. Il conteggio prosegue quando il bit 1 viene resettato su FALSE.

Reimpostazione del valore corrente (reset software) del contatore veloce su 0

Quando il bit 0 del codice di controllo è impostato su TRUE, viene eseguito un reset SW del valore corrente di conteggio che viene posto a 0. Il valore corrente resta al valore 0 finché il bit 0 non viene messo a FALSE.

Cancellazione del contatore veloce e delle istruzioni di controllo posizionamento

Per disattivare l'esecuzione di un'istruzione di uscita ad impulsi, impostare il bit 2 del registro dati contenente il codice di controllo dell'uscita impulsi (sys_wHscOrPulseControlCode) su TRUE. Il flag di controllo dell'uscita ad impulsi passerà allora a FALSE. Per riabilitare l'esecuzione dell'istruzione, riportare il bit 2 a FALSE.

Impostazioni codice di controllo

I bit 0–15 del codice di controllo sono suddivisi in gruppi di quattro. L'impostazione dei bit in ciascun gruppo è rappresentata da un numero esadecimale (p.es. 0002 0001 0000 1001 = 16#2109).

15 12	11	8	7	4	3		0	_
0			0	3 4	5	50	8	
ĪV		ĨIJ	Ĭ	[Ĭ		
Gruppo IV	1	Numero	di can	ale (c	anal	e n:	16#	#n)
Gruppo III		1 (fisso)						
		Richiesta	a inizio	cont	rollo	di po	sizi	zione
	(2)	0: disabi	litato					1: abilitato
Gruppo II		Richiesta	Richiesta stop decelerato					
Gruppo II	3	0: disabi	litato					1: abilitato
	4	Ingresso	di nea	ar hoi	me (ł	oit 4) (ve	vedere la nota)
		0: FALSE	E					1: TRUE
	5	Uscita ad	1 impu	lsi (b	it 3)			
		0: contir	nua					1: stop
		Cancella	funzio	ni co	ntrol	lo us	cita	a ad impulsi in esecuzione (bit 2)
Gruppo I	0	0: contir	nua					1: stop
Gruppo I		Contare	(bit 1)					
	\bigcirc	0: perme	ettere					1: proibire
	\bigcirc	Resettar	e il val	ore c	orrer	nte s	u 0	(bit 0)
	8	0: no						1: sì

Esempio: 16#2109

Gruppo	Valore	Descrizione
IV	2	Numero di canale: 2
III	1	(fisso)
II	0	Richiesta inizio controllo di posizione: disabilitata
		Richiesta stop decelerato: disabilitata
		Ingresso di near home: FALSE

Gruppo	Valore	Descrizione	
Ι		Il 9 esadecimale corrisponde al 1001 binario	
		Uscita ad impulsi: stop (bit 3)	1
	9	Cancella funzioni controllo uscita ad impulsi in esecuzione (bit 2)	0
		Contare: permettere (bit 1)	0
		Resettare il valore corrente su 0: sì (bit 0)	1

Nota	 L'esecuzione di un arresto uscita impulsi può avere per conse- guenza che il valore corrente all'uscita del PLC sia diverso dal va- lore corrente all'ingresso del motore. Per tale motivo, dopo che l'uscita ad impulsi si è arrestata, si deve eseguire un Home Re- turn. L'impostazione dell'ingresso di near home non è possibile se il conteggio è proibito o se viene effettuato un reset del software.
Riferimento	Per esempi di programmazione si prega di consultare l'help online per Control FPWIN Pro.

8.4.3.2 Scrittura e lettura del valore corrente dell'uscita ad impulsi

Il valore corrente è memorizzato sotto forma di doppia word nei registri dati speciali.

Programmare con istruzioni FP: Accedere ai registri dati speciali usando la variabile di sistema sys_diHscChannelxElapsedValue (ove x=numero del canale).

Programmare con istruzioni FP: Per leggere e scrivere il valore corrente usare istruzioni di controllo e di informazione del contatore veloce e istruzioni di controllo e di informazione sull'uscita ad impulsi universali valide per tutti i tipi di PLC.

Variabili di sistema per aree di memoria usate:

Descrizione			Variabile di sistema	Indirizzo
) !	sys_diPulseChannel0ElapsedValue	DDT90400
Uscita ad impulsi: valore corren- te del canale	alore corren- 1	1	sys_diPulseChannel1ElapsedValue	DDT90410
	2	2	sys_diPulseChannel2ElapsedValue	DDT90420
		3	sys_diPulseChannel3ElapsedValue	DDT90430

Riferimento

Per esempi di programmazione si prega di consultare l'help online per Control FPWIN Pro.

ACGM0475V3IT.docx

8.4.3.3 Uscita ON al raggiungimento del valore target

Se il valore corrente corrisponde al valore target del canale dell'uscita ad impulsi selezionato, l'uscita specificata passa immediatamente a TRUE.

Istruzione estesa: Pulse_TargetValueMatch_Set

FP instruction: F166_PulseOutput_Set

Caratteristiche dell'uscita ad impulsi

10000 Valore target

- ① Valore corrente dell'uscita ad impulsi
- ② Condizione di esecuzione
- ③ Flag "controllo uscita attivo"
- ④ Uscita del PLC

L'uscita del PLC commuta su TRUE quando il valore corrente corrisponde al valore target. Inoltre il flag "controllo uscita attivo" commuta su FALSE e l'istruzione viene disattivata.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.4.3.4 Uscita OFF al raggiungimento del valore target

Se il valore corrente corrisponde al valore target del canale dell'uscita ad impulsi, l'uscita specificata passa immediatamente a FALSE.

Istruzione estesa: Pulse_TargetValueMatch_Reset

FP instruction: F167_PulseOutput_Reset

Caratteristiche dell'uscita ad impulsi

- (1) Valore corrente dell'uscita ad impulsi
- ② Condizione di esecuzione
- ③ Flag "controllo uscita attivo"
- ④ Uscita del PLC

L'uscita del PLC commuta su FALSE quando il valore corrente corrisponde al valore target. Inoltre il flag "controllo uscita attivo" commuta su FALSE e l'istruzione viene disattivata.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.4.3.5 Controllo trapezoidale

Questa istruzione effettua automaticamente un controllo trapezoidale secondo i parametri della DUT specificata. Gli impulsi vengono emessi dal canale specificato quando il flag di controllo per tale canale è FALSE e la condizione di esecuzione è TRUE.

Istruzione estesa: PulseOutput_Trapezoidal_FB

Istruzione FP: F171_PulseOutput_Trapezoidal

Caratteristiche dell'uscita ad impulsi

Tipo 0: La differenza fra velocità target e velocità iniziale determina la pendenza della rampa di accelerazione. La differenza fra velocità target e velocità finale determina la pendenza della rampa di decelerazione.

Tipo 1: La differenza fra velocità massima di 50kHz e velocità finale determina la pendenza della rampa di decelerazione. La differenza fra velocità massima di 50kHz e velocità iniziale determina la pendenza della rampa di accelerazione.

Cambiamento della velocità target durante l'uscita ad impulsi

1	Velocità target	6	Decelerazione
2	1º cambio della velocità target	7	Tempo di decelerazione
3	2° cambio della velocità target	8	Flag di controllo dell'uscita ad impulsi
4	Tempo di accelerazione	9	Condizione di esecuzione
5	Accelerazione		

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.4.3.6 Operazione JOG e posizionamento

Il numero di impulsi stabilito va in uscita dopo che l'ingresso per inizio controllo di posizione è passato a TRUE. Prima che il valore target venga raggiunto e che l'uscita ad impulsi si fermi viene effettuata una decelerazione. Gli impulsi vengono emessi dal canale specificato quando il flag di controllo per tale canale è FALSE e la condizione di esecuzione è TRUE.

Scegliere una delle due diverse modalità di funzionamento:

Tipo 0: La velocità può essere variata entro il campo della velocità target determinata.

Tipo 1: La velocità target può essere cambiata una volta quando l'ingresso per inizio controllo di posizione passa a TRUE.

Istruzione estesa: PulseOutput_Jog_Positioning0_FB, PulseOutput_Jog_Positioning1_FB

FP instruction: F171_PulseOutput_Jog_Positioning

Caratteristiche dell'uscita ad impulsi

Operazione JOG tipo 0

La velocità target può essere cambiata durante l'uscita ad impulsi. La velocità può essere variata entro il campo della velocità target determinata.

Operazione JOG tipo 1

La velocità target può essere cambiata una volta quando l'ingresso per inizio controllo di posizione passa a TRUE.

Riferimento Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.4.3.7 Operazione JOG

Questa istruzione è usata per il funzionamento JOG. Gli impulsi vengono emessi dal canale specificato quando il flag di controllo per tale canale è FALSE e la condizione di esecuzione è TRUE.

Istruzione estesa: PulseOutput_Jog_FB, PulseOutput_Jog_TargetValue_FB

Istruzione FP: F172_PulseOutput_Jog

Caratteristiche dell'uscita ad impulsi

Scegliere una delle due diverse modalità di funzionamento:

 Modalità senza confronto con valore target (tipo 0): finché la condizione di esecuzione è TRUE l'uscita ad impulsi avviene secondo i valori impostati nella DUT. Uno stop decelerato inizia ogni volta che la condizione di esecuzione è FALSE.

 Modalità raggiungimento del valore target (tipo 1): l'uscita ad impulsi si arresta una volta raggiunto il valore target. Impostare questa modalità nel codice di controllo e specificare il valore target (un valore assoluto) nella DUT. Uno stop decelerato viene effettuato quando il valore target è stato raggiunto. La decelerazione è effettuata entro il tempo di decelerazione specificato.

Riferimento Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.4.3.8 Controllo mediante tabella di punti

Questa istruzione effettua un controllo rettangolare secondo i parametri nella DUT specificata con un numero arbitrario di velocità e valori target differenti. Gli impulsi vengono emessi dal canale specificato quando il flag di controllo per tale canale è FALSE e la condizione di esecuzione è TRUE.

Istruzione estesa: non disponibile

Istruzione FP: F174_PulseOutput_DataTable

Caratteristiche dell'uscita ad impulsi

- x Valore corrente dell'uscita ad impulsi
- ① Condizione di esecuzione
- 2 Flag di controllo dell'uscita ad impulsi

Nota	 Vengono emessi impulsi alla frequenza specificata fino al rag- giungimento del valore nominale. Poi l'uscita ad impulsi viene proseguita con il secondo valore di frequenza finché non viene raggiunto il secondo valore nominale e così via.
	 L'uscita ad impulsi si arresta una volta raggiunto l'ultimo valore nominale.

Riferimento Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.4.3.9 Interpolazione lineare

Gli impulsi vengono emessi su due canali contemporaneamente sulla base dei parametri impostati nella DUT associata, in modo che il percorso per il raggiungimento della posizione target formi una linea retta. Gli impulsi vengono emessi dal canale specificato quando il flag di controllo per tale canale è FALSE e la condizione di esecuzione è TRUE.

Istruzione estesa: PulseOutput_Linear_FB

FP instruction: F175_PulseOutput_Linear

Caratteristiche dell'uscita ad impulsi

I due assi sono controllati in modo tale da ottenere un moto lineare fino alla posizione target.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.4.3.10 Home Return

Questa istruzione effettua un Home Return secondo i parametri della DUT specificata.

Dopo che sistema di azionamento è stato attivato, vi è una differenza tra posizione interna (valore corrente) e la posizione meccanica dell'asse; questa differenza non può essere determinata anticipatamente. Per avere corrispondenza tra il valore interno dell'asse e la posizione reale è necessario eseguire un'operazione di sincronizzazione. La sincronizzazione si effettua mediante un'istruzione di Home Return, durante il quale il valore della posizione viene registrato (azzerato) in una determinata posizione (Home).

Istruzione estesa: PulseOutput_Home_FB

FP instruction: F177_PulseOutput_Home

Con l'istruzione di Home Return vengono emessi impulsi finché non viene attivato l'ingresso di home. L'allocazione I/O dipende dal canale.

Scegliere una delle due diverse modalità di funzionamento:

• Tipo 0: L'ingresso home può essere attivato indipendentemente dal fatto che vi sia o no un ingresso near home, che la decelerazione stia avendo luogo o che la decelerazione sia stata completata.

• Tipo 1: L'ingresso home può essere attivato solo dopo che una decelerazione (iniziata da un ingresso near home) è stata completata.

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

8.5 Funzione di uscita PWM

Usare l'istruzione F173_PulseOutput_PWM. Questa istruzione fornisce un segnale di uscita con impulsi modulati in larghezza. I parametri per l'emissione di impulsi sono stabiliti in una DUT.

Lo stato dell'uscita PWM è memorizzato in relè interni speciali. Per accedere a registri dati speciali ed a relè interni speciali, usare le variabili di sistema indipendenti dal tipo di PLC. Si possono inserire variabili di sistema direttamente nel corpo del programma utilizzando la finestra di dialogo "Variabili", senza inserire una dichiarazione nell'intestazione del POU. Fare riferimento all'help online di Control FPWIN Pro per ottenere informazioni dettagliate sull'uso delle variabili di sistema.

Impostazione registri di sistema

Quando si usa la funzione di uscita PWM, impostare l'uscita PWM prescelta nei registri di sistema.

Procedimento

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Fare doppio click su "Contatore veloce, ingresso cattura a impulsi, ingresso di interrupt"

4. Specificare l'uscita PWM per il canale usato

401	Contatore veloce: Canale 5	Non usato Non usa
402	Uscita ad impulsi: Canale 0	Non usato 💽 💽 Non usa
402	Uscita ad impulsi: Canale 1	
402	Uscita ad impulsi: Canale 2	
402	Uscita ad impulsi: Canale 3	Uscita ad impulsi (Y0-Y1)
403	Ingresso cattura impulsi: X0	Uscita ad impulsi (Y0-Y1), ingresso home (X4)
403	Ingresso cattura impulsi: X1	Uscita ad impulsi (Y0-Y1), ingresso home (X4), I
403	Ingresso cattura impulsi: X2	Uscita PWM (Y0)
403	Ingresso cattura impulsi: X3	Disabilitato Disabilit

Riferimento

Fare riferimento all'help online di Control FPWIN Pro per dettagli ed esempi di programmazione.

Numeri canale e uscita ad impulsi

Canale n.°	Uscita ad impulsi
0	YO
1	Y2
2	Y4
3	Y6

Variabili di sistema per aree di memoria usate

Descrizione		Variabile di sistema	Indirizzo
Uscita impulsi: flag di controllo del cana-	0	sys_bIsPulseChannel0Active	R9120
	1	sys_bIsPulseChannel1Active	R9121
le	2	sys_bIsPulseChannel2Active	R9122
		sys_bIsPulseChannel3Active	R9123

Capitolo 9

Funzioni di sicurezza

9.1 Tipi di funzioni di sicurezza

Sono disponibili le seguenti impostazioni di sicurezza:

- protezione dal caricamento dati
- password di protezione
- impostazioni di sicurezza per FP Memory Loader

9.2 Impostazioni di sicurezza in Control FPWIN Pro

Se FPWIN Pro è nella modalità online, **Online** \rightarrow **Impostazioni di sicurezza** apre un dialogo che visualizza le impostazioni di sicurezza attuali e vi consente di proteggere il vostro PLC.

I LED nel dialogo mostrano le condizioni di protezione attuale del PLC. Per far apparire un'informazione rapida tenere il cursore sul LED per circa 2s.

Riferimento Per una descrizione dettagliata delle opzioni si prega di fare riferimento a Security Settings nell'help online di FPWIN Pro.

9.2.1 Protezione dal caricamento

Quando è attivata la protezione dal caricamento non potete:

- caricare progetti o codici programma sul PC
- caricare registri di sistema in un PC

PRECAUZIONI

I dati possono andare definitivamente persi anche se conoscete la password!

Quando usate questa funzione fate un back up dei vostri programmi! Anche conoscendo la password il programma non può essere ripristinato sul vostro PLC: neanche dal nostro servizio di assistenza.

Si possono cancellare le impostazioni per questa funzione con Control

FPWIN Pro. In tal caso però saranno cancellati tutti i programmi, i registri di sistema e le informazioni su password!

Se è attivata la protezione dal caricamento si possono editare file sul PLC con Control FPWIN Pro nella modalità online. Tuttavia i programmi saranno danneggiati se il programma in FPWIN Pro non è identico al programma sul PLC.

Nota

Anche se è impostata la protezione dal caricamento dati, resta possibile il caricamento nell'FP Memory Loader. Con la versione 2 dell'FP Memory Loader o con una versione più recente potete permettere o impedire il caricamento di programmi sull'FP Memory Loader o il trasferimento di programmi da un PLC all'altro con l'FP Memory Loader. Per ulteriori particolari vedere "FP Memory Loader" pag. 209.

9.2.2 Protezione del PLC (Protezione con password)

Si può impostare una nuova password con massimo 8 caratteri o cambiare una password esistente.

Per un PLC protetto da password occorre effettuare il login ogni volta che il PLC viene inserito.

Si può impostare una password con:

- il tool di programmazione
- l'istruzione SYS1

PRECAUZIONI
 La password deve essere conservata in modo sicuro! Senza password non potete leggere programmi su PLC protetti da password. Se la password va persa, il nostro personale di assistenza non sarà in grado di resettarla per voi. Se non si è fatto il log in, [Cancella password] non cancellerà solo la password ma anche il programma ed i parametri memorizzati nella memoria commenti del PLC.

Riferimento

Per particolari sul comando SYS1 si prega di consultare il Manuale di programmazione o l'help online di FPWIN Pro.

9.3 FP Memory Loader

L'FP Memory Loader V2.0, o sue versioni più recenti (AFP8670/AFP8671), può servire a trasferire un programma da un PLC all'altro.

Per impedire la copiatura non autorizzata di programmi utente si deve attivare la protezione dal caricamento dati. Tale funzione è raccomandata per tutti gli utenti che gestiscono programmi originali su un PC.

In FPWIN Pro, **Online** \rightarrow **Impostazioni di sicurezza** apre la finestra di dialogo Impostazioni di sicurezza che offre due impostazioni di sicurezza per l'FP Memory Loader:

- protezione dal caricamento dati
- protezione dal trasferimento dati

9.3.1 Protezione dal caricamento dati

La protezione dal caricamento dati impedisce che programmi vengano caricati sull'FP Memory Loader.

Procedimento

1. Online \rightarrow Impostazioni di sicurezza

Si apre la finestra di dialogo Impostazioni di sicurezza.

- 2. Selezionare "Attivare la protezione dal caricamento dati"
- 3. Inserire la password
- 4. Selezionare [Impostare password] o [Cambiare password]

Quando si definiscono impostazioni di sicurezza per la prima volta, selezionare [Impostare password]. Per cambiare impostazioni di sicurezza esistenti selezionare [Cambiare

password].

- 5. Scaricare il programma dal PLC di origine all'FP Memory Loader
- 6. Trasferire il programma al PLC target

Dopo il trasferimento di un programma dall'FP Memory Loader al PLC target, tale PLC è protetto dal caricamento.

Il caricamento di un programma può essere disattivato nella finestra di dialogo Impostazioni di sicurezza (vedere la tabella qui sotto)

 Sull'FP Memory Loader c'è un programma protetto da password e dal caricamento Password: 01234567

Protezione dal caricamento dati: attivata

- (2) Le impostazioni di sicurezza sono trasferite insieme al programma al PLC target.
 Il PLC target è ora doppiamente protetto.
- ③ Il caricamento di un programma su un PC richiede l'inserimento della password.
- ④ Il caricamento in un FP Memory Loader non è possibile anche se il PLC di origine e il PLC target sono protetti da password identiche ("01234567").

9.3.2 Protezione dal trasferimento di dati

La protezione dal trasferimento permette di trasmettere programmi da un PLC ad un altro con l'FP Memory Loader solo a condizione che le password dei due PLC siano identiche.

Procedimento

1. Online \rightarrow Impostazioni di sicurezza

Si apre la finestra di dialogo Impostazioni di sicurezza.

- 2. Selezionare "Trasmissione a PLC solo con password identiche"
- 3. Inserire la password
- 4. Selezionare [Impostare password] o [Cambiare password]

Quando si definiscono impostazioni di sicurezza per la prima volta, selezionare [Impostare password].

Per cambiare impostazioni di sicurezza esistenti selezionare [Cambiare password].

- 5. Scaricare il programma dal PLC di origine all'FP Memory Loader
- 6. Trasferire il programma al PLC target

Si possono trasferire programmi solo a PLC protetti da password identiche (vedere la tabella qui sotto)

- Nell'FP Memory Loader c'è un programma protetto da password. Password: 01234567
- Il trasferimento è possibile solo se il PLC target è protetto dalla stessa password ("01234587").
- ③ Non è possibile il trasferimento ad un PLC target protetto da una password diversa ("abcdefgh").
- A Non è possibile il trasferimento ad un PLC target non protetto da una password ("-----").

PRECAUZIONI

Durante il trasferimento di un programma dall'FP Memory Loader ad un PLC target la password impostata sul PLC di origine può essere cambiata a determinate condizioni:

Impostazioni di sicurezza su	Impostazione della password sul
FP Memory Loader	PLC target dopo il trasferimento
Non è impostata una password	La password sarà cancellata
Impostata password di 8 cifre, l'impostazione "Trasmissione a PLC solo con password identi- che" è disattivata	La password sarà sovrascritta con nuova password da 8 cifre
Impostata password di 8 cifre, l'impostazione	La password non sarà cambiata
"Trasmissione a PLC solo con password identi-	(il trasferimento non è possibi-
che" è attivata	le)

Capitolo 10

Altre funzioni

10.1 Backup nelle F-ROM (P13_EPWT)

Nell'F-ROM integrata nell'FPOR si possono scrivere registri dati di 32765 word con l'istruzione P13_EPWT.

Sono possibili fino a 10000 operazioni di scrittura. Dopo non può più essere garantito un funzionamento corretto.

Se l'alimentazione viene a mancare durante l'esecuzione dell'istruzione P13_EPWT o durante la programmazione in "RUN mode", i dati nell'area ritentiva potrebbero andare persi.

Riferimento

Per ulteriori particolari consultare il manuale di programmazione o l'help online di Control FPWIN Pro.

10.2 Andamento temporale

Usando la funzione dell'andamento temporale si possono visualizzare le condizioni attuali di contatti e/o valori di variabili su un asse del tempo. Una volta completata la registrazione dei dati nel PLC i dati sono caricati in FPWIN Pro. I parametri dell'andamento temporale, come il tempo e le condizioni trigger, possono essere impostati in FPWIN Pro.

Per ciascuna procedura di esplorazione si possono leggere al massimo 16 variabili booleane e tre variabili di 16 bit.

Riferimento

Per ulteriori particolari consultare il manuale di programmazione o l'help online di Control FPWIN Pro.

10.3 Costante di tempo di ingresso

Si possono stabilire costanti di tempo di ingresso per evitare gli effetti di rumori o rimbalzi, p.es. quando si usano interruttori in ingressi veloci.

Per impostare costanti di tempo usare i registri di sistema o il comando F182_FILTER.

Le impostazioni di costanti di tempo non sono valide se l'ingresso è usato come contatore veloce, per il riconoscimento di impulsi o come ingresso di interrupt.

Riferimento Per ulteriori particolari consultare il manuale di programmazione o l'help online di Control FPWIN Pro.

A seconda del tipo di CPU si possono impostare costanti di tempo per i seguenti ingressi:

Ingrassa	Tipo di CPU			
Ingresso	C10/C14/C16	C32/T32/F32		
X0-X3	•	•		
X4-X7	•	•		
X8-XB	-	•		
XC-XF	_	•		

Capitolo 11

Eliminazione di errori

11.1 Indicazione dello stato di funzionamento con LED

Se si verifica un errore, i LED che indicano lo stato di funzionamento della CPU cambiano il loro stato come illustrato nella tabella sottostante.

① LED indicatori dello stato di funzionamento

LED indicatori dello stato di funzionamento sulla CPU

	Stato del LED					
	RUN	PROG.	ERROR/ ALARM	Descrizione	Programma	
	ON	OFF	OFF	Funzionamento normale	Continua	
Normale	OFF	ON	OFF	Modalità PROG	Fermo	
Normale	Lampeggia	Lampeggia	OFF	Forzare ingres- si/uscite nella mo- dalità RUN	Continua	
Errore	ON OFF		Lampeggia	È avvenuto un errore di autodia- gnosi	Continua	
	OFF ON		Lampeggia	È avvenuto un errore di autodia- gnosi	Fermo	
	A seconda della situa- zione	A seconda della situa- zione	ON	È stato attivato il watchdog timer del sistema	Fermo	

11.2 Funzionamento in caso di errore

La CPU ha una funzione di autodiagnosi che identifica errori e arresta il funzionamento se necessario. Per alcuni errori l'utente può scegliere se il funzionamento debba continuare o arrestarsi quando si verifica un errore.

Procedimento

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Doppio click su "Azione su errore"

Selezionare le impostazioni necessarie per ogni tipo di errore.

Esempio

Il funzionamento deve continuare anche se si è verificato un errore di calcolo:

Impostare il registro di sistema n.º 26 "Errore di calcolo" su "Continua". Gli errori di calcolo saranno gestiti come errori, ma il funzionamento continuerà.

11.3 II LED di ERROR/ALARM lampeggia

Determinare il codice di errore usando il tool di programmazione.

Procedimento

1. Nella modalità online: **Monitor** \rightarrow **Stato PLC** oppure

Il codice di errore appare in "Errore autodiagnosi".

Codice di errore 20 o maggiore: si è verificato un errore di autodiagnosi diverso da un errore di sintassi.

Ci sono tre possibilità di cancellare l'errore:

- selezionare [Cancella] nella finestra di dialogo Stato PLC durante la modalità PROG.
- Mettere l'alimentazione su OFF e su ON durante la modalità PROG (questo fa cancellare tutti i contenuti della memoria operativa tranne che i dati ritentivi).
- Mediante l'istruzione F148_ERR.

Nota

- Se il selettore modale della CPU è stato posto su RUN, l'errore viene cancellato e allo stesso tempo il controllore viene messo subito in funzione. Se però la causa dell'errore non è stata eliminata, la condizione di errore subentra immediatamente di nuovo.
- Se si verifica un errore di calcolo (codice di errore 45), l'indirizzo al quale l'errore si è verificato viene salvato nei registri dati speciali DT90017 (sys_iOperationErrorStepHold) e DT90018 (sys_iOperationErrorNonHold). Se questo accade, prima di cancellare l'errore, annotare l'indirizzo al quale si è verificato.

11.4 II LED di ERROR/ALARM è ON

Se il LED ERROR/ALARM è ON, il watchdog timer del sistema è stato attivato e il funzionamento del PLC è stato fermato. Le possibilità di rimediare al problema sono due:

- mettere il selettore modale del PLC da RUN alla modalità PROG, disinserire l'alimentazione e reinserirla.
 - Se il LED ERROR/ALARM si accende di nuovo, probabilmente c'è un'anomalia nella CPU. Si prega di contattare il rivenditore.
 - Controllare se il LED ERROR/ALARM sta lampeggiando. Vedere "Il LED di ERROR/ALARM lampeggia" pag. 215.
- Impostare il selettore dalla modalità PROG alla modalità RUN. Se il LED ERROR/ALARM si accende, il periodo di esecuzione del programma è troppo lungo.
 - Controllare se istruzioni come JP o LOOP sono programmate in modo tale che uno scan non possa mai terminare.
 - Le istruzioni del programma di interrupt sono eseguite ad intervalli troppo brevi che impediscono lo svolgimento regolare del programma?

11.5 Tutti i LED sono OFF

Se tutti i LED sono OFF provare quanto segue:

- controllare il cavo di alimentazione di corrente.
- Controllare se la CPU è alimentata con la corrente giusta. Controllare se ci sono sbalzi di tensione.
- Scollegare il cavo di alimentazione di altri dispositivi se sono alimentati dalla stessa fonte della CPU.
 - Se poi i LED della CPU si accendono, aumentare la potenza dell'alimentazione oppure allacciare gli altri apparecchi ad un'altra fonte di alimentazione.
 - Contattare il rivenditore per ulteriori informazioni.
11.6 Malfunzionamento delle uscite

Se le uscite non funzionano correttamente, controllare prima il lato di uscita e poi il lato di ingresso.

Se i LED delle uscite sono ON:

- controllare se le uscite sono cablate correttamente.
- Controllare se l'alimentazione delle uscite è sufficiente.
 - Se il carico è alimentato adeguatamente, controllare il carico stesso.
 - Se il carico non è alimentato adeguatamente, l'anomalia è probabilmente nel circuito di uscita del PLC. Si prega di contattare il rivenditore.

Se i LED delle uscite sono OFF:

- monitorare le uscite con Control FPWIN Pro.
 - Se l'uscita monitorata è TRUE, probabilmente le uscite sono occupate più volte.
- Mettere forzatamente l'uscita su TRUE con Control FPWIN Pro.
 - Se il LED indicatore di uscita è ON controllare il lato di ingresso.
 - Se il LED indicatore di uscita resta OFF il lato delle uscite è probabilmente guasto. Si prega di contattare il rivenditore.

Se i LED degli ingressi sono OFF:

- controllare se gli ingressi sono cablati correttamente.
- Controllare se l'alimentazione degli ingressi è sufficiente.
 - Se gli ingressi sono alimentati adeguatamente, il lato degli ingressi è probabilmente guasto. Si prega di contattare il rivenditore.
 - Se l'alimentazione non è adeguata, il dispositivo di ingresso o l'alimentazione esterna sono probabilmente guasti. Controllare il dispositivo di ingresso e l'alimentazione esterna per gli ingressi.

Se i LED degli ingressi sono ON:

monitorare gli ingressi con Control FPWIN Pro.

- Se l'ingresso monitorato è FALSE, probabilmente il lato di ingresso è guasto. Si prega di contattare il rivenditore.
- Se l'ingresso monitorato è TRUE, controllare la corrente di dispersione del dispositivo di ingresso (p.es. sensore a due fili) e controllare il programma:
 - controllare se le uscite sono occupate più volte e controllare come sono impiegate le uscite nel programma.
 - L'area di programma degli ingressi viene saltata da istruzioni di salto come MC o JP?

11.7 PLC protetto da password

Se compare un messaggio relativo alla protezione del PLC significa che è stata impostata una password sul PLC.

Per accedere a un PLC per il quale è stata impostata una password, è necessario eseguire un login ad ogni sua accensione.

Procedimento

- 1. Online \rightarrow Impostazioni di sicurezza
- 2. Inserire la password in "Accesso PLC"
- 3. Scegliere [Login]

11.8 Non si può commutare da PROG a RUN

Se la modalità PROG non passa a RUN, un errore di sintassi o un errore di autodiagnosi ha causato l'arresto del funzionamento.

- Controllare se il LED ERROR/ALARM sta lampeggiando. Vedere "Il LED di ERROR/ALARM lampeggia" pag. 215.
- Localizzare l'errore di sintassi eseguendo $\textbf{Monitor} \rightarrow \textbf{Stato PLC}$

Caratteristiche tecniche

12.1 Caratteristiche generali

Elemento		Descrizione				
Tensione nominale		24V DC				
Tensione d'esercizio		20,4-28,8V DC				
Tempo di assenza di cor- C1 C1 C1		5ms a 20,4V, 10ms a 21,6V				
rente momentanea	C32 T32 F32	10ms a 20,4V				
Fusibile		Integrato (non può essere sostituito)				
Temperatura ambiente		0-+55°C				
Temperatura di stoccaggio		-40-+70°C (T32: -20-+70°C)				
Umidità ambiente		10%-95% UR (a 25°C, non condensante)				
Umidità di stoccaggio		10%-95% UR (a 25°C, non condensante)				
			Tipo a transi- stor	Tipo a relè		
		Terminali in ingresso \leftrightarrow Terminali in uscita	500V AC per 1min	1500V AC per 1min		
Tensione di rottura		Terminali in uscita ↔ Terminali in uscita (di diversi terminali COM)	-	1500V AC per 1min		
(corrente residua: 5mA)		Terminali in ingresso \leftrightarrow Terminale alimentazione/Terra	500V AC per 1min	500V AC per 1min		
		Terminali in uscita \leftrightarrow Terminale alimenta- zione/Terra	500V AC per 1min	1500V AC per 1min		
		Terra ↔ Terminale alimentazione500V AC per 1min		500V AC per 1min		
		Terminali in ingresso \leftrightarrow Terminali in uscita	Min. 100M Ω	Min. $100M\Omega$		
		Terminali in uscita ↔ Terminali in uscita (di diversi terminali COM)	-	Min. 100ΜΩ		
Resistenza d'isolamento (misurata con un megaohmme-	ne-	Terminali in ingresso ↔ Terminale alimen- tazione/Terra	Min. 100MΩ	Min. 100ΜΩ		
		Terminali in uscita \leftrightarrow Terminale alimenta- zione/Terra	Min. 100MΩ	Min. 100MΩ		
		Terra \leftrightarrow Terminale alimentazione Min. 100M Ω Min. 100M				

Elemento	Descrizione
Resistenza alle vibrazioni	5–9Hz, 1 ciclo/min: ampiezza di 3,5mm 9–150Hz, 1 ciclo/min: accelerazione costante di 9,3m/s2, 10min su 3 assi (in direzione X, Y e Z)
Resistenza agli urti	147m/s ² , 4 volte su 3 assi (in direzione X, Y e Z)
Resistenza ai rumori (Terminale alimentazione)	1000Vp-p, con ampiezza impulsi 50ns e $1\mu s$ (sulla base di misurazioni interne)
Condizioni di funzionamento	In assenza di gas corrosivi e di eccesso di polvere
Categoria sovratensione	II
Livello di inquinamento	2
Peso	C10: 100g, C14: 105g, C16: 85g, C32: 115g, T32: 115g, F32: 120g

12.2 Caratteristiche prestazionali

	Elemento	C10, C14, C16	C32, T32, F32	
Metodo di programma	zione/Metodo di controllo	Ladder/funzionamento ciclico		
	Memoria integrata	F-ROM		
	Capacità di programma (passi)	16000 32000		
Memoria programma	Modalità di programmazione in RUN	Possibile (intero programma)		
	Funzione di sicurezza	Password di protezione (8 cifre), protezione dal caricamento dati		
	Capacità memoria	328kbyte		
Memoria commenti	Modalità di programmazione in RUN	Possibile (informazioni sul progetto)		
Aggiornamento I/O		≤0,2ms Con unità di espansione: ≤0,2ms + (1 × n.º di unità di espansione)ms		
Velocità di elabora-	≤3000 passi	Istruzioni di base: 0,08µs, istruzione timer: 2,2µs Istruzioni di alto livello: 0,32µs (istruzione MV)		
zione	>3000 passi	Istruzioni di base: 0,58μs, istruzione sul timer: 3,66μs Istruzioni di alto livello: 1,62μs (istruzione MV)		
Istruzioni di base		Circa 110		
Istruzioni di alto livello		Circa 210		

Elemento		C10, C14, C16	C32, T32, F32	
	Ingressi esterni (X)	1760		
	Uscite esterne (Y)	1760		
	Relè interni (R)	4096		
	Relè interni speciali (R)	224		
Memoria operativa: Relè	Temporizzatore/Contatore (T/C)	1024 Impostazioni di fabbrica temporizzatore: 1008 punti (TO-T1007) Impostazioni di fabbrica contatori: 16 punti (C1008-C1023) Temporizzatore: 1-32767 (in unità di 1ms, 10ms, 100ms, o 1s). Contatore: 1-32767		
	Relè di link (L)	2048		
	Registri dati (DT)	12315 word	32765 word	
Memoria operativa:	Registri dati speciali (DT)	440 word (DT90000-DT9	90443)	
Aree di memoria	Registri di link (LD)	256 word		
	Registri indice (I)	14 word (I0-ID)		
Istruzione impulsiva (DF)	Dipende dalla capacità d	el programma	
Relè per istruzione ma	aster controllo (MCR)	256		
Numero di label (JP e	LOOP)	256		
Passi di SFC		1000		
Numero di subroutine		500		
		300 campionature	1000 campionature	
Andamento campiona	mento	Per scan o per intervallo Max. 16 variabili boolear per campionamento	Per scan o per intervallo di tempo Max. 16 variabili booleane e 3 variabili di 16 bit per campionamento	
Contatore veloce 1)		1 fase: 6 canali (max. 50 2 fasi: 3 canali (max. 15)kHz) kHz)	
Uscita ad impulsi (non	disponibile per C10, C14) ¹⁾²⁾	4 canali (max. 50kHz)		
Uscita PWM (non disp	onibile per C10, C14) ¹⁾²⁾	4 canali (max. 4,8kHz)		
Ingressi di riconoscim	ento impulsi	8 (compreso contatore veloce e ingresso di inter- rupt)		
Numero programmi di interrupt		8 ingressi esterni (C10: 6) 1 interrupt periodico 4 interrupt confronto contatore		
Interrupt periodico		0,5ms–1,5s (unità: 0,5ms), 10ms–30s (unità: 10ms)		
Tempo di scan costante		0,5ms-600ms (unità: 0,5ms)		
Backup su F-ROM ³⁾	Con istruzioni F12 e P13	Tutte le aree (32765 wo	rd)	
	Automaticamente quando manca l'alimentazione	Contatore: 16 (C1008-C1023) Relè interni: 128 (R2480-R255F) Registri dati: 315 word		
		DT12000-DT12314	DT32450-DT32764	

Elemento	C10, C14, C16	C32, T32, F32
Backup su RAM (solo T32 e F32) ⁴⁾	T32: Tutte le aree (batteria integrata) ⁵⁾ F32: Tutte le aree	
Funzione orologio/calendario ⁶⁾	Disponibile solo per T32.	
Porte di comunicazione	Porta TOOL, porta USB, porta COM	
Funzione di auto-diagnostica	P.es. watchdog timer, controllo sintassi di pro- gramma (Watchdog timer: circa 690ms)	

- I dati qui indicati valgono per una tensione nominale in ingresso di 24V DC a una temperatura di 25°C. La frequenza può diminuire a seconda della tensione, della temperatura o delle condizioni di impiego.
- ²⁾ Per l'uscita impulsi e l'uscita PWM è disponibile un totale di 4 canali. La frequenza massima per l'uscita impulsi è di 50kHz. La frequenza massima per l'uscita PWM è di 4,8kHz. A seconda della tensione, della temperatura e dell'ambiente di funzionamento gli scostamenti dell'ampiezza di impulsi impostata possono raggiungere 40ms.
- ³⁾ La scrittura è possibile fino a 10000 volte.
- ⁴⁾ Timer/contatori, relè interni, relè di link, registri di link e registri di dati vengono salvati. Aree ritentive e non ritentive possono essere definite nei registri di sistema.
- ⁵⁾ La batteria di backup incorporata non è carica quando l'unità viene spedita. Caricare la batteria prima dell'uso.

Non è dotata di allarme per il livello di carica basso. Se la batteria è vuota, i valori di dati nell'area ritentiva diventano indefiniti in assenza di corrente. Vengono rimessi su 0 quando la corrente è on. Consigliamo di aggiungere un programma per controllare se i dati sono impostati su 0 quando l'alimentazione viene nuovamente inserita.

⁶⁾ Precisione: a 0°C: errore <104s/mese; a 25°C: errore <51s/mese; a 55°C: errore <155s/mese

12.3 Dati tecnici sulla comunicazione

Elemento	Descrizione
Porta	RS232C
Distanza di trasmissione	15m
Baud rate	2400, 4800, 9600, 19200, 38400, 57600, 115200bit/s
Metodo di comunicazio- ne	Semiduplex
Trasmissione sincrona	Sincronizzazione start/stop
Formato di comunica- zione	Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX
Ordine trasmissione dati	Trasmette carattere per carattere dal bit 0.
Modalità di comunica- zione	 MEWTOCOL-COM Slave Inizializzazione modem Comunicazione controllato da programma [General Purpose] (solo nella moda- lità RUN)

Porta TOOL

Porta USB

Elemento	Descrizione
Standard (baud rate)	USB2.0 Fullspeed
Modalità di comunicazione	MEWTOCOL-COM Slave

Porta COM (RS232C)

Elemento	Descrizione
Porta	RS232C
Distanza di trasmissione	15m
Baud rate	2400, 4800, 9600, 19200, 38400, 57600, 115200bit/s
Metodo di comunicazione	Semiduplex
Trasmissione sincrona	Sincronizzazione start/stop
Formato di comunicazione	Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX
Ordine trasmissione dati	Trasmette carattere per carattere dal bit 0.
Modalità di comunicazione	 MEWTOCOL-COM Master/Slave [Computer Link] Inizializzazione modem Comunicazione controllato da programma [General Purpose] Modbus RTU Master/Slave PLC Link

Porta COM (RS485)

Elemento		Descrizione	
Porta		RS485	
Tipo di colle	egamento	1:N	
Distanza di	trasmissione	1200m ¹⁾²⁾	
Baud rate		19200, 115200bit/s ²⁾³⁾	
Metodo di comunicazione		Linea a 2 fili, semiduplex	
Trasmissione sincrona		Sincronizzazione start/stop	
Linea di tra	smissione	Doppino schermato intrecciato o VCTF	
	MEWTOCOL-COM	ASCII	
Formato dati	Comunicazione controllato da programma [General Purpose]	ASCII, C16CT	
	Modbus RTU	Binario	
Formato di comunicazione (impostazione in registri di sistema) ⁴⁾		Lunghezza dati: 7 bit/8 bit Parità: Nessuna/Dispari/Pari Bit di stop: 1 bit/2 bit Codice finale: CR/CR+LF/Nessuna/ETX Codice iniziale: Nessun STX/STX	

Elemento	Descrizione
N.º di stazioni collegate 2) 5)	≤99 (≤32 con adattatore C-NET)
Modalità di comunicazione	 MEWTOCOL-COM Master/Slave [Computer Link] Inizializzazione modem Comunicazione controllato da programma [General Purpose] Modbus RTU Master/Slave PLC Link

 Il numero di stazioni, la distanza di trasmissione e il baud rate possono variare a seconda del dispositivo RS485 collegato.

²⁾ I valori per la distanza di trasmissione, la baud rate ed il numero di stazioni dovrebbero essere compresi entro i valori riportati nel grafico che segue.

- **x** Distanza di trasmissione [m]
- y Numero di stazioni
- 1) Per una baud rate di 115200bit/s
- ② Per una baud rate di 19200bit/s
- ³⁾ Impostare la baud rate nei registri di sistema e impostare nello stesso modo con gli interruttori DIP sul lato inferiore dell'unità. Quando un adattatore C-NET è collegato alla porta RS485 si può specificare solo una baud rate di 19200bit/s.
- ⁴⁾ Il codice iniziale e il codice finale possono essere usati solo nella comunicazione controllata da programma.
- ⁵⁾ I numeri della stazione dovrebbero essere impostati attraverso i registri di sistema.

Nota

Se la differenza di potenziale fra le alimentazioni degli apparecchi RS485 supera 4V, la comunicazione può essere disturbata perché la porta RS485 non è isolata. La grande differenza di potenziale potrebbe danneggiare i dispositivi collegati.

Impostazioni standard

Porta	Baud rate	Lunghezza dati	Parità	Bit di stop
Porta TOOL	9600bit/s	8 bit	Dispari	1 bit
Porta COM (RS232C)	9600bit/s	8 bit	Dispari	1 bit
Porta COM (RS485)	115200bit/s	8 bit	Dispari	1 bit

12.4 Caratteristiche dell'alimentazione

Elemento		FP-PS24-024E	FP-PS24-060E	FP-PS24-120E	
	Tensione nominale in ingresso	100–240V AC/DC, 50–60Hz			
Primario	Tensione di alimen- tazione	85–264V AC, 47–63Hz (DC 100–375V)			
	Corrente in ingresso	Soddisfa i requisiti della EN 61000-3-2 (limiti per emissioni di correnti armoniche)			
	Fusibile	Interna all'unità d	li alimentazione, T4AH/25	0V, non accessibile	
	Tensione in uscita		Nominale 24V DC		
	Precisione della tensione in uscita	$\pm 1\%$ al di sopra del d	carico completo e del rang	ge tensione di ingresso	
	Range regolabile con potenziometro	23V-29V			
	Capacità nominale di commutazione max.	1A statica a 24V	2,5A statica a 24V	5,0A statica a 24V	
Secondario	Potenza nominale di commutazione min.	0A			
	Limite di corrente (tip.)	2A statica, 2A dinami- ca 2,7A statica, 5A dina- mica 5,3 statica, 9,			
	Tensione di Ripple	40mVSS misurata a 20MHz, 50 Ω terminate			
	Protezione da so- vratensioni	Sì, U1 limitata a max. 35V			
	Funzione di prote- zione da sovraccari- co	In caso di sovraccarico la tensione di uscita viene ridotta a circa 17V. Al di sotto di tale valore, l'alimentazione passa alla modalità protezione hicc-up per proteggere alimentazione e carico da temperature eccessive e combustione.			
Durata di vi	ta di capacitori	Min. 50000h ad una temperatura di flusso d'aria di Tu=50°C			

12.5 Corrente assorbita

Tipo di unità			Unità di espan- sione ²⁾	Circuito di in- gresso ³⁾	Circuito di uscita ⁴⁾
	FP0R-C10	≤100mA	-	≤15,9mA	-
	FP0R-C14	≤120mA	-	<21.1mA	-
FPOR CPU	FP0R-C16	≤70mA	-	≤21,1MA	≤20mA
	FP0R-C32 FP0R-T32 FP0R-F32	≤90mA	-	≤42,2mA	≤40mA
	FP0R-E8X			≤37,6mA	-
Unità di espansione I/O FP0/FP0R	FP0R-E8R	≤10mA	≤50mA	≤18,8mA	-
	FP0R-E8YR		≤100mA	-	-

Caratteristiche tecniche

Tipo di unità			Unità di espan- sione ²⁾	Circuito di in- gresso ³⁾	Circuito di uscita ⁴⁾
	FP0R-E8YT/P	≤15mA	_	-	≤26mA
	FP0R-E16X	≤10mA	_	≤75,2mA	-
	FP0R-E16R	<20mA	≤100mA	≤37,6mA	-
	FP0R-E16T/P	SZUIIIA	_	≤37,6mA	≤26mA
	FP0R-E16YT/P	≤25mA	-	-	<52m4
	FP0R-E32T/P	≤35mA	-	≤75,2mA	SZIIIA
	FP0R-E32RS	≤40mA	≤200mA	≤69mA	-
	FP0-A04V		≤100mA	-	-
	FP0-A04I	≤20mA	≤130mA	-	-
Unità analogica FP0	FP0-A21	_≥z0ma	≤100mA	-	-
	FP0-A80		≤60mA	-	-
	FP0- TC4/TC8/RTD6	≤25mA	-	-	-
	FP0-IOL	≤30mA	(10	-	-
Unità intelligente FP0	FP0-CCLS	≤40mA	≤40mA	-	-
	FP0-DPS2	≤30mA	≤100mA	-	-
Constitution di comunicazione	FPG-COM1 FPG-COM2	≤20mA	-	-	-
Cassetto di comunicazione	FPG-COM3 FPG-COM4	≤25mA	-	-	-
Pannello operatore della serie GT (tipo 5V)	AIGT0030B1 AIGT0030H1 AIGT0230B1 AIGT0230H1	≤80mA	-	-	-
Adattatore C-NET S2	AFP15402	≤50mA	-	-	-

¹⁾ La corrente consumata dal connettore di alimentazione della CPU. Se vengono aggiunte unità di espansione o unità intelligenti, la corrente aumenta del valore indicato nella tabella.

²⁾ La corrente consumata dal connettore di alimentazione dell'unità di espansione. Se un'unità non è elencata nella tabella, questo significa che non vi è un connettore di alimentazione.

- ³⁾ La corrente consumata dai circuiti di ingresso delle diverse unità. Il valore indica la corrente che passa nel circuito di ingresso.
- ⁴⁾ La corrente consumata dai circuiti di uscita delle diverse unità. Il valore indica la corrente usata per comandare i circuiti di uscita. Questo valore non comprende la corrente di carico.

Capitolo 13

Appendice

13.1 Dimensioni

13.1.1 CPU C10/C14 (morsettiera)

FP0RC10CRS/14CRS, FP0RC10RS/14RS

Le stesse dimensioni valgono per le seguenti unità di espansione FPO/FPOR:

- FPOR-E8RS
- FPOR-E16RS.

FP0RC10CRS/14CRS

•

المعمد

JUUU

Con morsettiera e cavo di alimentazione

① Dimensioni massime di installazione

13.1.2 CPU C16 (connettore MIL)

FP0RC16CT/P, FP0RC16T/P

Le stesse dimensioni valgono per le seguenti unità di espansione FP0/FP0R:

- FPOR-E32T, FPOR-E32P
- FPOR-E16X, FPOR-E16YT, FPOR-E16YP, FPOR-E16T, FPOR-E16P
- FPOR-E8X, FPOR-E8YT, FPOR-E8YP

Con connettore MIL e cavo di alimentazione

① Dimensioni massime di installazione

13.1.3 CPU C32 (connettore MIL)

FP0RC32CT/P, FP0RT32CT/P, FP0RF32CT/P, FP0RT32T/P

Con connettore MIL e cavo di alimentazione

① Dimensioni massime di installazione

13.1.4 Unità di alimentazione

FP-PS24-024E/FP-PS24-060E/FP-PS24-120E

13.1.5 Montaggio su guide DIN

13.2 Allocazione I/O

FP0R CPU

Tipo di CPU		Punti I/O	Indirizzi I/O
C10	Ingresso	6	X0-X5
C10	Uscita	4	Y0-Y3
<u>C14</u>	Ingresso	8	X0-X7
C14	Uscita	6	Y0-Y5
C1C	Ingresso	8	X0-X7
C16	Uscita	8	Y0-Y7
C32/T32/F32	Ingresso	16	X0-XF
	Uscita	16	Y0-YF

Unità di espansione FP0/FP0R

L'allocazione I/O viene eseguita automaticamente quando viene aggiunta un'unità di espansione. Gli indirizzi associati alle unità di espansione dipendono dalla posizione in cui vengono installate.

Tipo di unità		Bunti I/O Canala		Numero di unità (luogo di installazione)		
			Callale			3
Unità di espansione I/O FP0/FP0)R					
FP0R-E8X	Ingresso	8	-	X20-X27	X40-X47	X60-X67
	Ingresso	4	-	X20-X23	X40-X43	X60-X63
FPUK-E8R	Uscita	4	-	Y20-Y23	Y40-Y43	Y60-Y63
FPOR-E8YR, E8YT, E8YP	Uscita	8	-	Y20-Y27	Y40-Y47	Y60-Y67
FP0R-E16X	Ingresso	16	-	X20-X2F	X40-X4F	X60-X6F
FP0R-E16R,	Ingresso	8	-	X20-X27	X40-X47	X60-X67
E16T, E16P	Uscita	8	-	Y20-Y27	Y40-Y47	Y60-Y67
FPOR-E16YT, E16YP	Uscita	16	-	Y20-Y2F	Y40-Y4F	Y60-Y6F
FP0R-E32T,	Ingresso	16	-	X20-X2F	X40-X4F	X60-X6F
E32P, E32RS	Uscita	16	-	Y20-Y2F	Y40-Y4F	Y60-Y6F
	Ingresso	16	0	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)
Unità I/O analogica FP0 FP0-A21	Ingresso	16	1	WX3 (X30-X3F)	WX5 (X50-X5F)	WX7 (X70-X7F)
	Uscita	16	-	WY2 (Y20-Y2F)	WY4 (Y40-Y4F)	WY6 (Y60-Y6F)
Unità di conversione A/D FP0 FP0-A80 e	Ingresso	16	0, 2, 4, 6	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)

Tipo di unità		Durati I/O	Canala	Numero di unità (luogo di installazione)		
			Canale			3
Unità per termocoppia FP0 FP0-TC4, FP0-TC8	Ingresso	16	1, 3, 5, 7	WX3 (X30-X3F)	WX5 (X50-X5F)	WX7 (X70-X7F)
	Ingresso	16	-	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)
Unità di conversione D/A FP0 FP0-A04V, FP0-A04I	Uscita	16	0, 2	WY2 (Y20-Y2F)	WY4 (Y40-Y4F)	WY6 (Y60-Y6F)
	Uscita	16	1, 3	WY3 (Y30-Y3F)	WY5 (Y50-Y5F)	WY7 (Y70-Y7F)
	Ingresso	16	0, 2, 4	WX2 (X20-X2F)	WX4 (X40-X4F)	WX6 (X60-X6F)
Unità FP0 RTD FP0-RTD6	Ingresso	16	1, 3, 5	WX3 (X30-X3F)	WX5 (X50-X5F)	WX7 (X70-X7F)
	Uscita	16	-	WY2 (Y20-Y2F)	WY4 (Y40-Y4F)	WY6 (Y60-Y6F)
Unità di I/O link FP0 FP0-IOL	Ingresso	32	_	X20-X3F	X40-X5F	X60-X7F
	Uscita	32	-	Y20-Y3F	Y40-Y5F	Y60-Y7F

Nota

Nelle unità analogiche FPO-A80, FPO-TC4/TC8, FPO-A04V/I e FPO-RTD6 i dati dei singoli canali vengono convertiti e caricati con un programma utente che, tramite un bit di scelta del canale, posiziona i dati su aree del PLC a 16 bit. Consultare al riguardo anche la descrizione dell'hardware delle unità analogiche.

13.3 Relè di bit e aree di memoria

Relè [bit]

Tine	Capacità	Area di indiri	zzo disponibile	Functions
Про	memoria	FP	IEC	Funzione
Ingressi esterni 1)	1760	X0-X109F	%IX0.0- %IX109.15	Codice per specificare un ingresso esterno.
Uscite esterne 1)	1760	Y0-Y109F	%QX0.0- %QX109.15	Comando di un'uscita esterna.
Relè interni ²⁾	4096	R0-R255F	%MX0.0.0- %MX0.255.15	Per memorizzare informazioni in bit nel pro- gramma del PLC.
Relè di link ²⁾	2048	L0-L127F	%MX7.0.0- %MX7.127.15	Condiviso da più PLC collegati con PLC link.
Temporizzatore ²⁾	1024	T0-T1007/ C1008- C1023	%MX1.0- %MX1.1007/ %MX2.1008- %MX2.1023	Usato solo internamente. Contatto di uscita di un'istruzione TM.
Contatore ^{2) 3)}	1024	C1008- C1023/ T0-T1007	%MX2.1008- %MX2.1023/ %MX1.0- %MX1.1007	Usato solo internamente. Contatto di uscita di un'istruzione CT.
Relè interni spe- ciali	224	R9000- R913F	%MX0.900.0- %MX0.913.15	Lo stato cambia a seconda della condizione. Usato internamente come flag.

Area di memoria [word]

Тіро		Capacità	Area di indirizzo	o disponibile	Funzione
		memoria	FP	IEC	
Ingressi este	erni ¹⁾	110	WX0-WX109	%IW0- %IW109	Codice per specificare 16 ingressi esterni in una word (16 bit).
Uscite esteri	ne ¹⁾	110	WY0-WY109	%QW0- %QW109	Codice per specificare 16 uscite esterne in una word (16 bit).
Relè interni ²⁾		256	WR0-WR255	%MW0.0- %MW0.255	Codice per specificare 16 relè interni in una word (16 bit).
Relè di link		128	WL0-WL127	%MW7.0- %MW7.127	Codice per specificare 16 relè di link in una word (16 bit).
Registri dati ²⁾	C10, C14, C16	12315	DT0-DT12312	%MW5.0- %MW5.12312	Memoria dati usata dal programma. I dati sono elaborati in unità di 16 bit (una word).
	C32, T32, F32	32763	DT0-DT32762	%MW5.0- %MW5.32762	
Registri di link ²⁾		256	LD0-LD255	%MW8.0- %MW8.255	Memoria dati condivisa da più PLC collegati con PLC link. I dati sono elaborati in unità di 16 bit (una word).

Тіро	Capacità	Area di indirizzo	o disponibile	Funzione
	memoria	FP	IEC	
Valori nominali per temporizzato- re/contatore ²⁾	1024	SV0-SV1023	%MW3.0- %MW3.1023	Memoria dati per salvare i valori im- postati di temporizzatori o contatori. I valori vengono salvati con il numero di temporizzatore/contatore.
Valori correnti per temporizzato- re/contatore ²⁾	1024	EV0-EV1023	%MW4.0- %MW4.1023	Memoria dati per salvare i valori cor- renti di temporizzatori o contatori. I valori vengono salvati con il numero di temporizzatore/contatore.
Registri dati speciali	440	DT90000- DT90439	%MW5.90000- %MW5.90439	Memoria dati per salvare impostazioni e codici di errore.

Area di memoria [doppia word]

Tino		Capacità	Area di indiriz	zzo disponibile	Funzione	
ΠΡΟ		memoria	FP	IEC	Funzione	
Ingressi esterni	1)	55	DWX0- DWX108	%ID0- %ID108	Codice per specificare 32 ingressi esterni in una doppia word (32 bit).	
Uscite esterne ¹	1)	55	DWY0- DWY108	%QD0- %QD108	Codice per specificare 32 uscite esterne in una doppia word (32 bit).	
Relè interni ²⁾		128	DWR0- DWR254	%MD0.0- %MD0.254	Codice per specificare 32 relè interni in una doppia word (32 bit).	
Relè di link		64	DWL0- DWL126	%MD7.0- %MD7.126	Codice per specificare 32 relè di link in una doppia word (32 bit).	
Degistri dati ²⁾	C10, C14, C16	6157	DDT0- DDT12311	%MD5.0- %MD5.12311	Memoria dati usata dal programma. I	
Registri dati -	C32, T32, F32	16382	DDT0- DDT32761	%MD5.0- %MD5.32761	(doppia word).	
Registri di link ²⁾		128	DLD0- DLD126	%MD8.0- %MD8.126	Memoria dati condivisa da più PLC collegati con PLC link. I dati sono elaborati in unità di 32 bit (doppia word).	
Valori nominali per tempo- rizzatore/contatore ²⁾		512	DSV0- DSV1022	%MD3.0- %MD3.1022	Memoria dati per salvare i valori im- postati di temporizzatori o contatori. I valori vengono salvati con il numero di temporizzatore/contatore.	
Valori correnti per tempo- rizzatore/contatore ²⁾		512	DEV0- DEV1022	%MD4.0- %MD4.1022	Memoria dati per salvare i valori cor- renti di temporizzatori o contatori. I valori vengono salvati con il numero di temporizzatore/contatore.	
Registri dati spe	eciali	220	DDT90000- DDT90438	%MD5.90000- %MD5.90438	Memoria dati per salvare impostazio- ni e codici di errore.	

¹⁾ Il numero di contatti di ingresso sopra riportati è il numero riservato per la memoria interna. Il numero reale è stabilito attraverso la configurazione dell'hardware. ²⁾ Ci sono aree di memoria ritentive e non ritentive. Quando l'alimentazione va su OFF o la modalità passa da RUN a PROG, le aree ritentive sono memorizzate a differenza dalle aree non ritentive.

C10/C14/C16/C32:

le aree ritentive e non ritentive non sono modificabili. Per informazioni sull'entità di ciascuna area consultare il capitolo "Dati sulle prestazioni".

T32/F32:

le impostazioni delle aree ritentive e non ritentive possono essere modificate nei registri di sistema. T32:

Se la batteria è vuota, i valori di dati nell'area ritentiva diventano indefiniti in assenza di corrente. Vengono rimessi su 0 quando la corrente è on. Vedere "Funzioni di backup e orologio/calendario" pag. 38.

³⁾ Il numero può essere cambiato nel registro di sistema 5. I numeri nella tabella corrispondono alle impostazioni standard.

13.4 Registri di sistema

I registri di sistema sono impiegati per impostare valori (parametri) che determinano i range operativi e le funzionalità del PLC utilizzate. Impostare i valori sulla base dell'uso e delle caratteristiche tecniche del programma. Non occorre impostare registri di sistema per funzioni non usate.

13.4.1 Informazioni importanti sui registri di sistema

Le impostazioni dei registri di sistema sono efficaci dal momento in cui vengono fatte.

Però, le impostazioni per MEWNET-W0 (PLC Link), per ingressi, porte TOOL e COM diventano attive solo se si passa dalla modalità PROG a RUN. Per le impostazioni modem bisogna tenere presente che non appena il PLC viene spento e riacceso o viene commutato dalla modalità PROG a RUN, il PLC invia al modem un'istruzione che lo abilita alla ricezione.

Nel caso di inizializzazione mediante **Online** \rightarrow **Cancella il programma e resetta il registro di sistema** tutte le impostazioni del registro di sistema nella CPU vengono resettate ai valori standard.

13.4.2 Tipi di registri di sistema

Capacità memoria (registro di sistema 0)

Impostare la grandezza dell'area di memoria per il programma utente.

Area ritentiva (registri di sistema 5-8, 10-14)

Con questi registri di sistema si specifica l'indirizzo iniziale dell'area ritentiva per aree relè e registri. Le aree ritentive non sono cancellate e messe su 0 quando il PLC viene messo sulla modalità PROG o quando viene spento. L'area di memoria per i temporizzatori ed i contatori è partizionata con il registro di sistema n.º 5. Specificare l'indirizzo iniziale per i contatori.

Azioni su errore (registri di sistema 4, 20, 23, 26)

Con questi registri si imposta come si debba comportarsi in caso di errori come p.es. errori di calcolo, di batteria o di monitoraggio I/O.

Time-out (registri di sistema 30-32, 34)

Serve a stabilire il time-out per la generazione di un errore. Si può anche specificare un tempo di scan costante.

PLC Link (registri di sistema 40-47, 50-55, 57)

Queste impostazioni riguardano l'uso di relè e registri di link nel caso di PLC Link tramite MEWNET-W0. Tenere presente che PLC Link non è l'impostazione standard.

Contatore veloce, riconoscimento di impulsi, ingresso di interrupt (registri di sistema 400-405)

Quando si usano le funzioni contatore veloce, riconoscimento di impulsi o interrupt, impostare la modalità di funzionamento e il numero di ingresso da usare.

Costanti di tempo (registri di sistema 430-433)

Impostare una costante di tempo per gli ingressi della CPU. Queste costanti di tempo possono essere utili per evitare gli effetti di rumori o rimbalzi, p.es. quando si usano interruttori presso ingressi veloci.

Porta TOOL, porta COM (registri di sistema 410-421)

Usare questi registri quando la porta TOOL e le porte COM 1 e 2 devono essere usate per comunicazione MEWTOCOL-COM Master/Slave, comunicazione controllata da programma, PLC Link e comunicazione modem. Tenere presente che l'impostazione standard è MEWTOCOL-COM Master/Slave.

13.4.3 Verifica e impostazione dei registri di sistema

- 1. Fare doppio click su "PLC" nel navigatore
- 2. Fare doppio click su "Registri di sistema"
- 3. Per cambiare un valore, scrivere il nuovo valore nella tabella del registro di sistema
- 4. **Online** \rightarrow **Modalità online** oppure
- 5. Online \rightarrow Scaricare il codice di programma e la configurazione del PLC

ACGM0475V3IT.docx

Il registro di progetto e di sistema vengono scaricati nel PLC. Per scaricare solo i registri di sistema:

- 6. Online \rightarrow Configurazione del PLC
- 7. Selezionare "Registri di sistema"
- 8. Scegliere [Scarica nel PLC]

13.4.4 Tabella dei registri di sistema

Capacità memoria

N.°	Nome	Standard	Valori
0	Memoria di programma PLC	12/16/32 kword ¹⁾	Fisso

¹⁾ A seconda del tipo di PLC (tipo 12k, 16k, o 32k)

Area ritentiva ¹⁾

N.°	Nome	Standard	Valori
5	Indirizzo iniziale contatore	1008	0-1024
6	Indirizzo iniziale area ritentiva temporizzatore/contatore	1008	Fisso/0-1024 ³⁾
7	Indirizzo iniziale area ritentiva indicatore (word)	248	Fisso/0-256 ³⁾
8	Indirizzo iniziale area ritentiva registro dati	12000/ 32450 ²⁾	Fisso/0-32763 ³⁾
10	Indirizzo iniziale area ritentiva relè di link per PLC Link 0 (word)	64	Fisso/0-64 ³⁾
11	Indirizzo iniziale area ritentiva relè di link per PLC Link 1 (word)	128	Fisso/64-128 ³⁾
12	Indirizzo iniziale area ritentiva registro di link per PLC Link 0	128	Fisso/0-128 ³⁾
13	Indirizzo iniziale area ritentiva registro di link per PLC Link 1	256	Fisso/128-2563)
14	Passi nel diagramma sequenziale	Non ritenti- vo	Fisso oppure Ritentivo/Non ritenti- vo ³⁾

¹⁾ FP0R-T32: Se la batteria è vuota, i valori di dati nell'area ritentiva diventano indefiniti in assenza di corrente. Vengono rimessi su 0 quando la corrente è on.

²⁾ A seconda del tipo di PLC (tipo 16k/32k)

³⁾ A seconda del tipo di PLC (fisso in C10, C14, C16, C32, variabile in T32, F32)

Azioni su errore

N.°	Nome	Standard	Valori
4	Riconoscimento di fronte per funzioni DF/P	Ritiene risultato	Ritiene risultato/Cancella risultato
20	Uscita duplicata	Attivare	Fisso
23	Errore nel confronto I/O	Fermo	Fermo/Continua
26	Errore di funzionamento	Fermo	Fermo/Continua

Time-out

N.°	Nome	Standard	Valori
30	Watchdog: time-out temporizzatore	699,1ms	Fisso
31	Tempo di attesa (multi-frame)	6500,0ms	10,0-81900,0ms
32	Tempo di time-out per le funzioni di comunicazione con F145, F146	10000,0ms	10,0-81900,0ms
34	Tempo di ciclo costante	0,0ms	0,0-600,0ms 0,0: normale (non costan- te)

PLC Link

N.°	Nome	Standard	Valori
46	Impostazione allocazione PLC Link 0 e 1	Normale	Normale/Inverso
47	PLC link 0 - Nr. stazione più alto nella rete	16	1-16
40	PLC link 0 - Relè di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC	0	0-64 word
42	PLC link 0 - Relè di Link - Area trasmissione - Iniziare la trasmissione da questa word	0	0-63
43	PLC link 0 - Relè di Link - Area trasmissione - Nr. word da inviare	0	0-64 word
41	PLC link 0 - Registri di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC collegati	0	0-128 word
44	PLC link 0 - Registri di Link - Area trasmissione - Iniziare la trasmissione da questa word	0	0-127
45	PLC link 0 - Registri di Link - Area trasmissione - Nr. di word da inviare	0	0-127 word
57	PLC link 1 - Nr. stazione più alto nella rete	16	1-16
50	PLC link 1 - Relè di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC	0	0-64 word
52	PLC link 1 - Relè di Link - Area trasmissione - Iniziare la trasmissione da questa word	64	64-127
53	PLC link 1 - Relè di Link - Area trasmissione - Nr. word da inviare	0	0-64 word
51	PLC link 1 - Registri di Link - Area trasmissione/ricezione - Nr. di word condivise da tutti i PLC collegati	0	0-128 word
54	PLC link 1 - Registri di Link - Area trasmissione - Iniziare la trasmissione da questa word	128	128-255
55	PLC link 1 - Registri di Link - Area trasmissione - Nr. di word da inviare	0	0-127 word

Contatore veloce, riconoscimento di impulsi o interrupt

N.°	Nome	Standard	Valori
400	Contatore veloce: Canale 0	Non usato	 Ingresso a due fasi (X0, X1) Ingresso a due fasi (X0, X1), Ingresso di reset (X2) Ingresso conteggio avanti (X0) Ingresso conteggio avanti (X0), Ingresso di reset (X2) Ingresso conteggio indietro (X0) Ingresso conteggio indietro (X0), Ingresso di reset (X2) Ingresso conteggio avanti (X0), Ingresso di reset (X2) Ingresso conteggio avanti (X0), Ingresso di reset (X2) Ingresso conteggio avanti (X0), Ingresso conteggio indietro (X1) Ingresso conteggio avanti (X0), Ingresso conteggio indietro (X1), Ingresso di reset (X2) Ingresso contatore (X0), Ingresso controllo conteggio avanti/indietro (X1) Ingresso contatore (X0), Ingresso controllo conteggio avanti/indietro (X1), Ingresso di reset (X2)
400	Contatore veloce: Canale 1	Non usato	 Ingresso conteggio avanti (X1) Ingresso conteggio avanti (X1), Ingresso di reset (X2) Ingresso conteggio indietro (X1) Ingresso conteggio indietro (X1), Ingresso di reset (X2)
400	Contatore veloce: Canale 2	Non usato	 Ingresso a due fasi (X3, X4) Ingresso a due fasi (X3, X4), Ingresso di reset (X5) Ingresso conteggio avanti (X3) Ingresso conteggio avanti (X3), Ingresso di reset (X5) Ingresso conteggio indietro (X3) Ingresso conteggio indietro (X3), Ingresso di reset (X5) Ingresso conteggio avanti (X3), Ingresso di reset (X5) Ingresso conteggio avanti (X3), Ingresso di reset (X5) Ingresso conteggio avanti (X3), Ingresso conteggio indietro (X4) Ingresso conteggio avanti (X3), Ingresso conteggio indietro (X4), Ingresso di reset (X5) Ingresso contatore (X3), Ingresso controllo conteggio avanti/indietro (X4) Ingresso contatore (X3), Ingresso controllo conteggio avanti/indietro (X4), Ingresso di reset X5)
400	Contatore veloce: Canale 3	Non usato	 Ingresso conteggio avanti (X4) Ingresso conteggio avanti (X4), Ingresso di reset (X5) Ingresso conteggio indietro (X4) Ingresso conteggio indietro (X4), Ingresso di reset (X5)
401	Contatore veloce: Canale 4	Non usato	 Ingresso a due fasi (X6, X7) Ingresso conteggio avanti (X6) Ingresso conteggio indietro (X6) Ingresso conteggio avanti (X6), Ingresso conteggio indietro (X7) Ingresso contatore (X6), Ingresso controllo conteggio avanti/indietro (X7)
401	Contatore veloce: Canale 5	Non usato	Ingresso conteggio avanti (X7)Ingresso conteggio indietro (X7)

N.°	Nome	Standard	Valori
402	Uscita ad impulsi: Canale 0 (solo tipi transistor)	Non usato	 Uscita ad impulsi (Y0, Y1) Uscita ad impulsi (Y0, Y1), Ingresso Home (X4) Uscita ad impulsi (Y0, Y1), Ingresso Home (X4), Ingresso per inizio controllo di posizione (X0) Uscita PWM (Y0)
402	Uscita ad impulsi: Canale 1 (solo tipi transistor)	Non usato	 Uscita ad impulsi (Y2, Y3) Uscita ad impulsi (Y2, Y3), Ingresso Home (X5) Uscita ad impulsi (Y2, Y3), Ingresso Home (X5), Ingresso per inizio controllo di posizione (X1) Uscita PWM (Y2)
402	Uscita ad impulsi: Canale 2 (solo tipi transistor)	Non usato	 Uscita ad impulsi (Y4, Y5) Uscita ad impulsi (Y4, Y5), Ingresso Home (X6) Uscita ad impulsi (Y4, Y5), Ingresso Home (X6), Ingresso per inizio controllo di posizione (X2) Uscita PWM (Y4)
402	Uscita ad impulsi: Canale 3 (solo tipi transistor)	Non usato	 Uscita ad impulsi (Y6, Y7) Uscita ad impulsi (Y6, Y7), Ingresso Home (X7) Uscita ad impulsi (Y6, Y7), Ingresso Home (X7), Ingresso per inizio controllo di posizione (X3) Uscita PWM (Y6)
403	Ingresso cattura impulsi: X0	Disabilitato	Disabilitato/Abilitato
403	Ingresso cattura impulsi: X1	Disabilitato	Disabilitato/Abilitato
403	Ingresso cattura impulsi: X2	Disabilitato	Disabilitato/Abilitato
403	Ingresso cattura impulsi: X3	Disabilitato	Disabilitato/Abilitato
403	Ingresso cattura impulsi: X4	Disabilitato	Disabilitato/Abilitato
403	Ingresso cattura impulsi: X5	Disabilitato	Disabilitato/Abilitato
403	Ingresso cattura impulsi: X6	Disabilitato	Disabilitato/Abilitato
403	Ingresso cattura impulsi: X7	Disabilitato	Disabilitato/Abilitato
404/ 405	Ingresso di interrupt: X0→Interrupt 0	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa
404/ 405	Ingresso di interrupt: X1→Interrupt 1	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa
404/ 405	Ingresso di interrupt: X2→Interrupt 2	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa
404/ 405	Ingresso di interrupt: X3→Interrupt 3	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa
404/ 405	Ingresso di interrupt: X4→Interrupt 4	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa
404/ 405	Ingresso di interrupt: X5→Interrupt 5	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa
404/ 405	Ingresso di interrupt: X6→Interrupt 6	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa
404/ 405	Ingresso di interrupt: X7→Interrupt 7	Non usato	Fronte di salita/Fronte di discesa/Fronte di salita e disce- sa

Nota

- Se lo stesso ingresso è stato impostato come ingresso di contatore veloce, di riconoscimento di impulsi o di interrupt, vale il seguente ordine di precedenza: contatore veloce → riconoscimento impulsi → interrupt.
- Se per il canale 0 e il canale 1 è stato scelto lo stesso ingresso di reset, l'impostazione vale per il canale 1. Se per il canale 2 e il canale 3 è stato scelto lo stesso ingresso di reset, l'impostazione vale per il canale 3.
- Le impostazioni ingresso trasduttore incrementale e ingresso conteggio avanti/indietro richiedono un secondo canale. Se una di queste impostazioni è stata scelta per il canale 0, 2, o 4, le impostazioni per i canali 1, 3 e 5 saranno rispettivamente non valide.
- Le impostazioni per gli ingressi cattura impulsi e di interrupt sono possibili solo attraverso i registri di sistema.

Tipo a transistor (C16 e maggiore)

Nota

- Le uscite della CPU usate come uscite di impulsi o PWM non possono essere usate come uscite normali.
- Gli ingressi da X4 a X7 possono essere usati come ingresso di home dei canali di uscita impulsi da 0 a 3. Quando si usa la funzione Home Return si deve indicare un ingresso di Home. In tal caso gli ingressi da X4 a X7 non possono essere usati come ingressi di contatore veloce.
- Gli indirizzi dell'uscita associata al segnale "deviation counter clear", che può essere usata con la funzione Home Return, sono fissati per ogni canale.

Per C16: canale 0 = Y6, canale 1 = Y7

Per C32/T32/F32: canale 0 = Y8, canale 1 = Y9, canale 2 = YA, canale 3 = YB

Se usate associate al segnale "deviation counter clear", queste uscite non sono disponibili come uscite ad impulsi.

Costanti di tempo

N.°	Nome	Standard	Valori
430	Costante di tempo dell'ingresso X0		
430	Costante di tempo dell'ingresso X1		
430	Costante di tempo dell'ingresso X2		
430	Costante di tempo dell'ingresso X3		
431	Costante di tempo dell'ingresso X4		0,1ms
431	Costante di tempo dell'ingresso X5		0,5ms
431	Costante di tempo dell'ingresso X6		1,0ms
431	Costante di tempo dell'ingresso X7	New weeks	2,0ms
432 ¹⁾	Costante di tempo dell'ingresso X8	Non usato	4,0ms 8.0ms
432 ¹⁾	Costante di tempo dell'ingresso X9		16,0ms
432 ¹⁾	Costante di tempo dell'ingresso XA		32,0ms
432 ¹⁾	Costante di tempo dell'ingresso XB		64,0ms
433 ¹⁾	Costante di tempo dell'ingresso XC		
433 ¹⁾	Costante di tempo dell'ingresso XD		
433 ¹⁾	Costante di tempo dell'ingresso XE		
433 ¹⁾	Costante di tempo dell'ingresso XF		

¹⁾ solo tipo 32k

Porta TOOL

N.°	Nome	Standard	Valori
412	Porta TOOL - modalità di comunicazione	MEWTOCOL- COM Slave	MEWTOCOL-COM Slave/Comunicazione controllato da programma [General Purpose]
410	Porta TOOL - numero della stazione	1	1-99
415	Porta TOOL - baud rate	115200 baud	115200/57600/38400/19200/9600/4800/2400 baud
413	Porta TOOL - lunghezza dati	8 bit	7 bit/8 bit
413	Porta TOOL - tipo di controllo parità	Dispari	Nessuna/Dispari/Pari
413	Porta TOOL - bit di stop	1 bit	1 bit/2 bit
413	Porta TOOL - codice iniziale	Nessun STX	Nessun STX/STX
413	Porta TOOL - codice fina- le/condizione per indicatore "ricezione conclusa"	CR	CR/CR+LF/ETX/Nessuna
420	Porta TOOL - indirizzo inizia- le del buffer di ricezione	0	0–12312 (tipo 16k) 0–32762 (tipo 32k)
421	Porta TOOL - capacità del buffer di ricezione	0	0-2048
412	Porta TOOL - connessione modem	Disattivare	Disattivare/Attivare

Porta COM

N.°	Nome	Standard	Valori
412	Porta COM 1 - modalità di comunicazione	MEWTOCOL-COM Master/Slave [Computer Link]	MEWTOCOL-COM Master/Slave [Computer Link]/Comunicazione controllato da programma [General Purpose]/PLC Link/Modbus RTU Master/Slave
410	Porta COM 1 - numero della stazione	1	1-99
415	Porta COM 1 - baud rate ¹⁾	9600 baud	115200/57600/38400/19200/9600/4800/2400 baud
413	Porta COM 1 - lunghez- za dati	8 bit	7 bit/8 bit
413	Porta COM 1 - tipo di controllo parità ¹⁾	Dispari	Nessuna/Dispari/Pari
413	Porta COM 1 - bit di stop	1 bit	1 bit/2 bit
413	Porta COM 1 - codice iniziale ¹⁾	Nessun STX	Nessun STX/STX
413	Porta COM 1 - codice finale/condizione per indicatore "ricezione conclusa" ¹⁾	CR	CR/CR+LF/ETX/Nessuna
416	Porta COM 1 - indirizzo iniziale del buffer di ricezione	0	0–12312 (tipo 16k) 0–32762 (tipo 32k)
417	Porta COM 1 - capacità del buffer di ricezione	0	0-2048
412	Porta COM 1 - connes- sione modem	Disattivare	Disattivare/Attivare

 ¹⁾ Per PLC Link, il formato di comunicazione e le impostazioni sulla baud rate sono invariabili: Lunghezza dati: 8 bit
 Parità: Dispari
 Bit di stop: 1 bit
 Codice finale: CR
 Codice iniziale: Nessun STX

Altre impostazioni di registri di sistema saranno ignorate.

13.5 Codici errore

13.5.1 Codici errore da E1 a E8

Codice errore	Nome dell'errore	Funzionamento del PLC	Descrizione e rimedi
E1 (vedere la nota)	Errore di sintassi	Fermo	C'è un errore di sintassi nel programma. Passare alla modalità PROG e correggere l'errore.
E2 (vedere la nota)	Uscite duplicate	Fermo	All'interno del programma, alla stessa uscita è stato asse- gnato più di un risultato di calcolo. (Questo errore si verifica anche se si usa lo stesso numero di temporizzato- re/contatore.) Passare alla modalità PROG e correggere l'errore. Questo errore viene riconosciuto anche durante la program- mazione in "RUN mode". Il funzionamento prosegue senza che il programma venga modificato.
E3	Coppia di istru- zioni incompleta	Fermo	Per istruzioni che devono essere usate insieme quali jump (come JP ed LBL) manca un'istruzione oppure la sequenza è inversa. Passare alla modalità PROG e correggere l'errore.
E4 (vedere la nota)	Parametro di registro di si- stema errato	Fermo	L'operando usato nell'istruzione non è compreso nel campo definito nel registro di sistema. Esempio: il numero indicato per temporizzatore/contatore è fuori del campo stabilito. Passare alla modalità PROG e correggere l'errore.
E5 (vedere la nota)	Posizione dell'i- struzione errata	Fermo	Un'istruzione non si trova nella posizione prevista (program- ma principale o routine) Passare alla modalità PROG e correggere l'errore. Questo errore viene riconosciuto anche durante la program- mazione in "RUN mode". Il funzionamento prosegue senza che il programma venga modificato.
E6 (vedere la nota)	Overflow della memoria di pro- gramma	Fermo	Il programma memorizzato nel PLC è troppo grande per la memoria programma del compilatore. Passare alla modalità PROG e correggere l'errore.
E7 (vedere la nota)	Impiego di istru- zioni di alto livel- lo miste	Fermo	Nel programma, le istruzioni di alto livello di tipo F e P ven- gono attivate dalla stessa condizione. (Finché la condizione di esecuzione è TRUE, l'istruzione F viene eseguita ad ogni scan mentre l'istruzione P viene eseguita solamente una volta sul fronte di salita della condizione di esecuzione.) Passate alla modalità PROG e programmate istruzioni di alto livello F e P in modo tale che dallo stesso risultato di calcolo dipendano solo rispettivamente gruppi di comandi omogenei.
E8	Operando errato	Fermo	In un'istruzione che richiede operandi dello stesso tipo c'è un operando non valido. Passare alla modalità PROG e correggere l'errore.

ACGM0475V3IT.docx

Nota

In FPWIN Pro questi errori sono rilevati dal compilatore. Per questo motivo non sono critici.

13.5.2 Codici di errore di autodiagnosi

Codice errore	Nome dell'errore		Funzionamento del PLC	Descrizione e rimedi
E26	Errore nella memoria ag- giuntiva ROM		Fermo	Probabilmente un problema di hardware. Si prega di contattare il rivenditore.
E27	Troppe unità inserite		Fermo	Sono inserite troppe unità. Disinserire il controllore e verificare il numero massimo ammissibile di unità.
E28	Errore di registro di siste- ma		Fermo	Probabilmente un errore nei registri di sistema. Con- trollare le impostazioni dei registri di sistema.
E30	Errore di interrupt 0		Fermo	Probabilmente un problema di hardware. Si prega di contattare il rivenditore.
E31	Errore di interrupt 1		Fermo	L'interrupt è stato effettuato senza richiesta di inter- rupt. Probabilmente sussiste un errore dell'hardware o un errore causato da rumore. Disinserire il control- lore e verificare se vi sono rumori.
E32	Errore di interrupt 2		Fermo	L'interrupt è stato effettuato senza richiesta di inter- rupt. Probabilmente sussiste un errore dell'hardware o un errore causato da rumore. Disinserire il control- lore e verificare se vi sono rumori.
				L'interrupt non è stato causato da un programma di interrupt. Controllare nella lista dei task se per il rispettivo interrupt è stato registrato un programma.
E34	Errore di unità		Fermo	Un'unità è guasta. Sostituire l'unità.
E42	La posizione di un'unità I/O è cambiata o l'unità I/O è guasta		Impostabile	La posizione di un'unità I/O è cambiata rispetto a quando è stata inserita l'alimentazione. Controllare l'errore con sys_wVerifyErrorUnit_0_15 per indivi- duare l'unità. Nel registro di sistema 23 potete impo- stare se con questo errore il funzionamento debba essere arrestato o continuato.
E45	Errore di funzionamento		Impostabile	Durante l'esecuzione di un'istruzione di alto livello si è verificato un errore. Un errore di calcolo può avere diverse cause a seconda dell'istruzione. Nel registro di sistema 23 potete impostare se con questo errore il funzionamento debba essere arrestato o continua- to.
E100-	Errore di autodia- gnosi fatto scatta-	E100- E199	Fermo	Si è verificato l'errore di autodiagnosi specificato
E299	re dall'istruzione F148_ERR	E200- E299	Continua	"Stato PLC" di FPWIN Pro di quale errore si tratti.

13.5.3 Codici di errore MEWTOCOL-COM

Codice errore	Nome	Descrizione
!21	Errore NACK	
!22	Errore WACK	
!23	Indirizzo di unità doppio	
!24	Errore del formato di tra- smissione	
!25	Errore di hardware	
!26	Errore in indirizzo di unità	
!27	Errore non supportato	
!28	Nessuna risposta	Errore di rete
!29	Buffer chiuso	
!30	Errore di time-out	
!32	Trasmissione impossibile	
!33	Comunicazione interrotta	
!36	Nessun indirizzo di destina- zione	
!38	Altro errore di comunicazio- ne	
!40	Errore BCC	Errore di trasmissione nei dati ricevuti.
!41	Errore di formato	Errore di formato nel comando ricevuto.
!42	Errore non supportato	È stato ricevuto un comando non supportato.
!43	Errore di elaborazione multi- frame	Durante un'elaborazione multi-frame è stato ricevuto un nuovo comando.
!50	Numero di processore di link errato	È stato indicato un numero di percorso non esistente. Verificare il numero di percorso stabilendo la stazione di trasmissione.
!51	Errore di time-out di tra- smissione	La trasmissione ad un altro dispositivo non è possibile perché il buffer di invio è pieno.
!52	Errore di trasmissione	La trasmissione di dati non è possibile; errore ignoto.
!53	Impossibile trasmettere	Il comando ricevuto non può essere elaborato a causa di elabora- zione multi-frame o perché il comando precedente non è ancora stato elaborato.
!60	Errore di parametro	L'indicazione del parametro contiene un errore.
!61	Errore nei dati	C'è un errore nell'operando, nell'area di memoria o nel formato di memoria.
!62	Overflow di registrazioni	È stato superato il numero di registrazioni o la registrazione di dati non ha avuto luogo.
!63	Errore modalità PLC	Il comando non può essere elaborato perché PLC in modalità RUN.

Codice errore	Nome	Descrizione
!64	Errore di memoria esterno	 Anomalia durante il caricamento del contenuto RAM nella memoria ROM/sulla scheda IC. La ROM/IC card è forse guasta. È stata supe- rata la capacità di caricamento. Si è verificato un errore di scrittu- ra. ROM o IC memory card non installata. ROM o IC memory card non conformi alle specificazioni
!65	Errore di protezione	Tentativo di scrittura in programma o registro di sistema con pro- tezione da scrittura (password, impostazione interruttore DIP ecc.) o in modalità di funzionamento ROM.
!66	Errore di indirizzo	Errore nel formato di indirizzo o nell'indicazione del campo.
!67	Programma o dati assenti	Dati non possono essere letti perché nell'area del programma non vi è programma o vi è un errore nella memoria. Oppure i dati da leggere non sono registrati.
!68	Trasmissione del program- ma nella modalità RUN non è possibile	Le istruzioni ED, SUB, RET, INT, IRET, SSTP e STPE non possono essere trasmesse al PLC nella modalità RUN.
!70	Overflow memoria di pro- gramma	Durante l'inserimento di una parte di programma è stato superato il numero massimo di passi di programma.
!71	Errore di accesso esclusivo	Il comando non può essere eseguito perché il comando precedente non è stato ancora elaborato.

13.6 Comandi MEWTOCOL-COM

Nome del comando	Codice	Descrizione
Read contact area	RC (RCS) (RCP) (RCC)	Leggere lo stato TRUE/FALSE di contatti. - Leggere un bit singolo. - Leggere bit multipli. - Leggere una word di bit.
Write contact area	WC (WCS) (WCP) (WCC)	Cambiare lo stato TRUE/FALSE di contatti. - Scrivere un bit singolo. - Scrivere bit multipli. - Scrivere una word di bit.
Read data area	RD	Leggere una o più word nell'area dati.
Write data area	WD	Leggere una o più word nell'area dati.
Read timer/counter set value area	RS	Leggere il valore impostato per temporizzatore/contatore.
Write timer/counter set value area	WS	Scrivere il valore impostato per temporizzatore/contatore.
Read timer/counter elapsed value area	RK	Leggere il valore corrente per temporizzatore/contatore.
Write timer/counter elapsed value area	wк	Scrivere il valore corrente per temporizzatore/contatore.
Register or Reset contacts moni- tored	МС	Impostare e resettare bit per monitoraggio.
Register or Reset contacts moni- tored	MD	Impostare e resettare word per monitoraggio.

Nome del comando	Codice	Descrizione
Monitoring start	MG	Avviare il monitoraggio.
Preset contact area (comando di copia)	SC	Impostare word (contatti) nell'area contatti con un pattern da 16 bit.
Preset data area (comando di co- pia)	SD	Scrivere la stessa word in ogni registro dell'area di dati indica- ta.
Read system register	RR	Leggere registro di sistema.
Write system register	WR	Cambiare impostazioni di registro di sistema.
Read the status of PLC	RT	Leggere lo stato del PLC ed eventualmente il codice di errore.
Remote control	RM	Commutare la modalità del PLC (modalità RUN/PROG).
Abort	AB	Interrompere la comunicazione.

13.7 Tipi di dato

In Control FPWIN Pro, le dichiarazioni di variabile richiedono un tipo di dato. Tutti i tipi di dati sono conformi alla IEC61131-3.

Per ulteriori particolari consultare il manuale di programmazione o l'help online di Control FPWIN Pro.

13.7.1 Tipi di dati elementari

Parola chiave	Tipi di dati	Range	Memoria riservata	Valore iniziale		
BOOL	Booleano	0 (FALSE) 1 (TRUE)	1 bit	0		
WORD	Stringa di bit di lunghezza 16	0-65535	16 bit	0		
DWORD	Stringa di bit di lunghezza 32	0-4294967295	32 bit	0		
INT	Intero	-32768-32,767	16 bit	0		
DINT	Doppio intero	-2147483648- 2147483647	32 bit	0		
UINT	Intero senza segno	0-65,535	16 bit	0		
UDINT	Doppio intero senza segno	0-4294967295	32 bit	0		
REAL	Numero reale	-3.402823466*E38 1.175494351*E-38 0.0 +1.175494351*E-38- +3.402823466*E38	32 bit	0.0		
TIME		T#0s-T#327.67s	16 bit ¹⁾	T#0s		
IIME	Durata (Tempo)	T#0s-T#21474836.47s	32 bit ¹⁾			
DATE_AND_TIME	Data e ora	DT#2001-01-01-00:00:00- DT#2099-12-31-23:59:59	32 bit	DT#2001-01-01- 00:00:00		
DATE	Data	D#2001-01-01-D#2099-12-31	32 bit	D#2001-01-01		

ACGM0475V3IT.docx

FP0R Manuale Utente

Parola chiave	Tipi di dati	Range	Memoria riservata	Valore iniziale
TIME_OF_DAY	Ora del giorno	TOD#00:00:00-TOD#23:59:59	32 bit	TOD#00:00:00
STRING	Stringa di carat- teri di lunghezza variabile	1–32767 byte (ASCII) in dipen- denza della capacità della me- moria del PLC	2 word per la testa + (n+1)/2 word per i carat- teri	

¹⁾ A seconda del tipo di PLC

13.7.2 Tipi di dato generici

I tipi di dati generici sono usati internamente da funzioni di sistema e blocchi funzione di sistema e non possono essere selezionati in POU definite dall'utente. I tipi di dato generici sono identificati dal prefisso ANY.

Nota

In POU definite dall'utente non si possono usare tipi di dato generici.

Gerarchia di tipi di dati generici

	Bit (X, Y)	ANY16 (WX, WY)	ANY32 (DWX, DWY)
ANY	BOOL	INT, UINT, WORD	DINT, UDINT, DWORD, REAL, DATE, TOD, DT
ANY_NOT_BOOL		INT, UINT, WORD	DINT, UDINT, DWORD, REAL, DATE, TOD, DT
ANY_NUM		INT, UINT	DINT, UDINT, REAL
ANY_INT		INT, UINT	DINT, UDINT
ANY_BIT	BOOL	WORD	DWORD
ANY_DATE			DATE, TOD, DT

13.8 Codice esadecimale, binario e BCD

Decimale	Esadecimale	Valori binari	BCD (Binary Coded Decimal)
0 1 2 3 4 5 6 7	0000 0001 0002 0003 0004 0005 0006 0007	0000 0000 0000 0000 0000 0000 0000 000	0000 0000 0000 0000 0000 0000 0000 000
8 9 10 11 12 13 14 15	0008 0009 000A 000B 000C 000D 000E 000F	0000 0000 0000 1000 0000 0000 0000 1001 0000 0000 0000 1010 0000 0000 0000 1011 0000 0000 0000 1100 0000 0000 0000 1101 0000 0000 0000 1111	0000 0000 0000 1000 0000 0000 0000 1001 0000 0000 0001 0000 0000 0000 0001 0001 0000 0000 0001 0010 0000 0000 0001 0011 0000 0000 0001 0100 0000 0000 0001 0101
16 17 18 19 20 21 22 23	0010 0011 0012 0013 0014 0015 0016 0017	0000 0000 0001 0000 0000 0000 0001 0001	0000 0000 0001 0110 0000 0000 0001 0111 0000 0000 0001 1000 0000 0000 0001 1001 0000 0000 0010 0000 0000 0000 0010 0001 0000 0000 0010 0010 0000 0000 0010 0011
24 25 26 27 28 29 30 31	0018 0019 001A 001B 001C 001D 001E 001F	0000 0000 0001 1000 0000 0000 0001 1001 0000 0000 0001 1010 0000 0000 0001 1011 0000 0000 0001 1100 0000 0000 0001 1101 0000 0000 0001 1110	0000 0000 0010 0100 0000 0000 0010 0101 0000 0000 0010 0110 0000 0000 0010 0111 0000 0000 0010 1000 0000 0000 0010 1001 0000 0000 0011 0000 0000 0000 0011 0001
63 255	• • 003F • • • 00FF • •	0000 0000 0011 1111	0000 0000 0110 0011

13.9 Codici ASCII

F								b	7								
							be	5	0	0	0	0	1	1	1	1	
					b5		0	0	1	1	0	0	1	1			
► 					b4	ł	0	1	0	1	0	1	0	1			
h	7	٣	b	h	h	٣	h	ASCI	Ι.		Most significant digit						
D7	5	D5	04	D3	D2	р ₁	D0	HEX	code	0	1	2	3	4	5	6	7
				0	0	0	0		0	NUL	DEL	SP AC E	0	@	Ρ		р
				0	0	0	1		1	SOH	DC1	!	1	A	Q	а	q
				0	0	1	0		2	STX	DC2	"	2	В	R	b	r
				0	0	1	1		3	ΕΤΧ	DC3	#	3	с	S	с	s
				0	1	0	0	it	4	EOT	DC4	\$	4	D	т	d	t
				0	1	0	1	nt dig	5	ENQ	NAK	%	5	E	U	е	u
				0	1	1	0	lificar	6	ACK	SYN	&	6	F	v	f	v
				0	1	1	1	t sign	7	BEL	ETB	,	7	G	w	g	w
				1	0	0	0	Leas	8	BS	CAN	(8	н	х	h	x
				1	0	0	1		9	нт	EM)	9	I	Y	i	у
				1	0	1	0		Α	LF	SUB	*	:	J	z	j	z
				1	0	1	1		В	VT	ESC	+	;	к	[k	ł
				1	1	0	0		с	FF	FS	,	<	L	١	I	?
				1	1	0	1		D	CR	GS	-	=	м]	m	}
				1	1	1	0		Е	so	RS	·	>	N	^	n	~
				1	1	1	1		F	SI	US	/ /	?	0	_	o	DEL
Indice

Α

Accessori	21
Alimentazione	12, 46
Alimentazione, interruzioni di	66
Terra	66, 70
Ambiente operativo	12
Andamento temporale	212
ASCII, tabella codice	
Autodiagnosi, errore	215, 246
Avvio, sequenza di	66

В

60
169

С

Cablaggio

Comunicazione, funzione di98
Contatore veloce, funzione162
Corrente assorbita225
Prestazioni, dati sulle220
Unità di espansione47, 49
Uscita ad impulsi, funzione163
Uscita PWM, funzione di165
Carico induttivo77, 78
Cavo di programmazione23
Compatibilità con i programmi di FP024
Comunicazione
Caratteristiche tecniche98
Comunicazione 1 a 1
Caratteristiche tecniche98
Comunicazione 1 a N
Caratteristiche tecniche98
Comunicazione controllata da programma134
MEWTOCOL-COM114
Comunicazione 1a 1
Comunicazione controllata da programma134
Modbus RTU155
MEWTOCOL-COM111
con computer112
con serie GT113
MEWTOCOL-COM Master/Slave104
Modbus RTU155
Comunicazione controllata da programma117
Comunicazione 1 a 1134
Comunicazione 1 a N134
con computer112
Flag, significato nella comunicazione controllata da programma129
Formato dei dati128
Parametri di comunicazione119
Comunicazione, modalità di88
Cambiamenti con F159_MTRN103
Comunicazione controllata da programma117
MEWTOCOL-COM Master/Slave104
Modbus RTU155
PLC Link136
PLC Link

Connettore uscita27, 46
Connettori27, 46
Contatore veloce, funzione 160, 168
Caratteristiche tecniche162, 166
Codice di controllo del contatore veloce 174
Conteggio in ingresso, modalità169
F166_HighSpeedCounter_Set177
F167_HighSpeedCounter_Reset178
I/O, allocazione171
Impulsi in ingresso, larghezza minima 171
Programmazione, esempi180
Valore corrente, scrittura e lettura 177
Variabili di sistema172
Control FPWIN Pro23
Corrente assorbita
Corto circuito, protezione77
CPU
Dimensioni 17, 27, 30, 32, 35, 227, 228, 230
Parti e funzioni27

D

Diagramma circuito interno
CPU relay output32
CPU transistor output32
CPU, ingressi30
Unità di espansione47, 49
Dimensioni
Unità di espansione47, 49
DIP, interruttori
RS485 baud rate setting84

Е

Eliminazione di errori2	214
Errore	
Codici di errore2	245
ERROR/ALARM, LED215, 2	216
Errore di funzionamento2	215
MEWTOCOL-COM2	247
Esadecimale tabella codice2	251
Espansione	.45

Tipi di unità 18, 19, 20

F

F166_HighSpeedCounter_Set 17	7
F167_HighSpeedCounter_Reset 17	8
F171_PulseOutput_Jog 20	1
F171_PulseOutput_Jog_Positioning 19	9
F171_PulseOutput_Trapezoidal 19	7
F173_PulseOutput_PWM 20	5
F174_PulseOutput_DataTable 20	2
F175_PulseOutput_Linear 20	3
F177_PulseOutput_Home 20	4
Finecorsa 7	2
Flag, significato nella comunicazione controllata da programma 12	ہ 9
Formato di comunicazione 9	8
FP Memory Loader 20	9
Funzionamento in caso di errore	5

Н

Home Return 20)4
----------------	----

I

I/O, allocazione	187
Impulsi in ingresso, larghezza minima	171
Ingressi, specifiche	30
Unità di espansione	47, 49
Ingresso avanti	169
Ingresso di reset conteggio	169
Ingresso indietro	169
Installazione	58
Barra DIN, fissaggio	60
Montaggio, piastra	61
Unità di espansione	65
Interlock, circuito	66
Interruttore magnetico	72
Interruzioni di alimentazione	66

L

LED	27
Eliminazione di errori	. 214, 216

Stato di funzionamento	27
LED indicatori di stato	27
Eliminazione di errori2	14, 216
Stato di funzionamento	27

Μ

Malfunzionamento delle uscite	
Memoria commenti	14
Messa a terra	66, 70
MEWTOCOL-COM Master/Slave	
Codici di errore	
Comandi	
Comunicazione 1 a 1	
con computer	
con serie GT	113
Comunicazione 1 a N	
Comunicazione Master, esempio	
Formato di comando	
Parametri di comunicazione	
MIL, connettore	79
Modbus RTU	155
Comunicazione Master, esempio	
Parametri di comunicazione	
Montaggio, piastra	61

Ν

Numero di stazione	101
MEWTOCOL-COM Slave	110
PLC Link	137

0

Orologio	 41

Ρ

Parti e funzioni	27
Password, funzione2	08, 218
Periodo impulsi in ingresso, misurazione	179
Piastra di montaggio flat	63
Piastra di montaggio slim	61
PLC Link	136
Area di link, allocazione	139

Istruzione SYS	153, 154
Monitoraggio	148
Parametri di comunicazione	137
Porta TOOL 27,	, 88, 91, 98
Porte COM	
Comunicazione, caratteristiche tecnicl	he98
Comunicazione, modalità di	88
Parti e funzioni	27
Porte, funzioni	91
Porte di comunicazione	98
Posizionamento, modalità di	185
POU	5
Protezione dal caricamento	207, 209
Protezione del PLC	208
Protezione, lesione della	218

R

Registri di sistema	236
RUN/PROG, commutazione	27

S

Selettore modale	27
Sensore a due fili	72
Sensore di prossimità	72
Sensore fotoelettrico	72
Serie GT	113
Sicurezza	12
Alimentazione, interruzioni di	66
Installazione	58
Sicurezza, funzioni di	207
Stato di funzionamento	27
Stop di emergenza, circuito	66

Т

Tabella dati, controllo	202
Terminali, configurazione	
Unità di espansione	35
Terra	66, 70
Tipi di dato	249
Tipi di unità	17

Trapezoidale, controllo	197
Trasferimento di dati, protezione dal	210

U

Unità di espansione
Caratteristiche tecniche
I/O, allocazione50
Installazione6
Montaggio, piastra6
Tipi
Unità, combinazioni2
Unità FP0/FP0R45, 65
I/O, allocazione50
USB14, 27, 88, 93, 98
Driver USB, installazione94
Driver USB, reinstallazione9
Sistema, requisiti93
Uscita a relè, caratteristiche tecniche
Unità di espansione47, 49
Uscita a transistor, caratteristiche tecniche
Unità di espansione47, 49
Uscita ad impulsi CW/CCW 184
Uscita ad impulsi, codice di controllo'192
Uscita ad impulsi, funzione
Caratteristiche tecniche
F171_PulseOutput_Jog20
F171_PulseOutput_Jog_Positioning19
F171_PulseOutput_Trapezoidal19
F174_PulseOutput_DataTable
F175_PulseOutput_Linear203
F177_PulseOutput_Home204
Home Return204
I/O, allocazione18
Interpolazione lineare203
JOG, operazione199, 20
Posizionamento, modalità di18
Tabella dati, controllo202
Uscita ad impulsi, codice di controllo'192
Uscita ad impulsi, tipologia di184
Valore corrente, scrittura e lettura 19

Variabili di sistema	188
Uscita ad impulsi/direzione, modalità	184
Uscita PWM, funzione di 160,	205
Caratteristiche tecniche 165,	166
F173_PulseOutput_PWM	205

V

Valore corrente, scrittura e lettura	195
Variabili di sistema	172

W

Watchdog timer		216
----------------	--	-----

Registrazione delle modifiche

Manuale n.°	Data	Elenco delle modifiche
ACGM0475V3IT	\$, #2013	Prima edizione
ACGM0475V3"%IT	%\$#&\$%(AcX]Z]WUhcdf]aUdU[]bU

Methanica Europe Aga Pacific Chal Japa

Panasonic Electric Works

Please contact our Global Sales Companies in:

	Енгоро		
	Headquarters Austria	Panasonio Electric Works Europe AG Panasonio Electric Works Austria GmbH	Rudolf-Diesel-Ring 2, 83007 Holzkinchen, Tel. +49 (D) 8024 645-0, Fax +49 (D) 8024 648-111, www.panasonic-electric-works.com Josef Madersperger Str. 2, 2362 Biedermannsdorf, Tel. +43 (O) 2236-26646, Fax +43 (D) 2236-46138 www.panasonic-electric-works.zt
		Panasonic Industrial Devices Materials Europe GmbH	Ennshalenstraße 30, 4470 Enns, Tel. +43 (0) 7223 868, Fax +43 (0) 7228 88338, www.panasonic-electronic-materials.com
•	Benelux	Panasonic Electric Works Sales Western Europe B.V.	De Rijn 4. (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. +31 (0) 499 372727, Fax +31 (0) 499 372185, www.panasonic-electric-works.nl
•	Czech Republie	Panasonio Electric Works Europe AG	Administrative centre PLATINIUM, Verveit 3163/111, 616 00 Erno, Tel. +420 541 217 001, Fax +420 541 217 101, www.parasonic-electric-works.cz
•	France	Panasonio Electrio Works Sales Western Europe B.V.	Suboursale française, 10, rue des petits ruisseaux, 91370 Verrières Le Buisson, Tél. +33 (0) 1 6013 5757, Fax +33 (0) 1 6013 5758, www.panasonic-electric-works.fr
)	Germany	Panasonic Electric Works Europe AG	Rudolf-Diesel-Ring 2, 83907 Holzkinchen, Tel. +49 (0) 8024 645-0, Fax +49 (0) 8024 648-111, www.panasonic-electric-works.de
•	Hungary	Panasonio Electric Works Europe AG	Magyararszági Közvetlen Kereskedelmi Képviselet, 1117 Budapest, Neumann János u. 1., Tel. +35 1 999-89 25 www.panasonic-electric-works.hu
•	Ireland	Panasonic Electric Works UK Ltd.	irish Branch Office, Dublin, Tel. +353 (0) 14600909, Fax +353 (0) 14601131, www.panasonic-electric-works.co.uk
•	Italy	Panasonio Electric Works Italia srl	Via del Commercio 3-5 (ZJ. Ferrina), 37012 Bussolengo (VR), TeL +39 0456752711, Fax +39 0456700444, www.panasonic-electric-works.h
•	Nordia Countries	Panasonic Electric Works Europe AG Panasonic Ece Selutions Nordis AB	Filial Nordio, Knanamäsgatan 15, 154 40 Kista, Sweden, Tel. 445 850470690, Fax 445 850470590, www.panasonio-electric-warks.se Jungmansgatan 12, 21119 Malmit, Tel. 445 40 697 7000, Fax 445 40 697 7099, www.panasonio-fire-security.com
•	Poland	Panasonic Electric Works Polska sp. z e.o	ul. Wołoska 94, 02-583 Warszawa, Tel. +48 22 338-11-33, Fax +48 22 338-12-00, www.panasonio-electric-works.pl
•	Spain	Panasonic Electric Works España S.A.	Barajas Park, San Severo 20, 29042 Madrid, Tel. +34 013292876, Fax +34 013292976, www.panasonic-electric-works.es
•	Switzerland	Panasonic Electric Works Schweiz AG	Grundstrasse 8, 6343 Rotoreuz, Tel. +41 (0) 41 7007050, Fax +41 (0) 41 7007055, www.panasonic-electric-works.ch
•	United Kingdom	Panasonic Electric Works UK Ltd.	Sunrise Fariway, Linford Wood, Millon Keynes, MK14 BLF, Tel. +44 (0) 1908 231555, Fax +44 (0) 1908 231599,

North & South America

•	USA	Panasonio Industrial Devices Sales Company ef America	629 Central Avenue, New Providence, N.J. 07974, Tel. 1-908-464-3550, Fax 1-908-464-6513, www.pewa.panasonic.com
	Asia Pasifia/Chine	a/Japas	
۲	China	Pasasosis Electric Works Sales (China) Co. Ltd.	Level 2, Tower W3, The Towers Oriental Plaza, No. 2, East Chang An Ave., Dong Cheng District, Beijing 100738, Tel. +86-10-5025-5068, Fax +86-10-5025-5073
١	Hong Kong	Panasonic Industrial Devices Automation Controls Sales (Hong Kong) Co., Ltd.	RM1205-Q, 12/F, Tower 2, The Bateway, 25 Canton Road, Tsimshatsul, Kawloon, Hong Kang, Tel. +852-2556-311B, Fax +852-2556-0366
۲	Japan	Panasonic Corporation	1048 Kadoma, Kadoma-shi, Osaka 571-8666, Japan, Tel. 481-6-6006-1050, Fax 481-6-6608-5781, www.panasonic.net
•	Singapore	Panasonic Industrial Devices Automation Controls Sales Asia Pacific	300 Beach Road, #16-01 The Concourse, Singapore 196555, Tel. +65-6300-3811, Fax +65-6300-3810

Panasonic