
Motion Controller

GM1 Series
Reference Manual

Instruction Edition

WUME-GM1PGR-10

2025.5

(MEMO)

2 WUME-GM1PGR-10

Introduction

Thank you for purchasing a Panasonic product. Before you use the product, please carefully
read through the installation instructions and the manuals, and understand them in detail to use
the product properly.

Types of Manuals

● There are different types of manuals for the GM1 series, as listed below. Please refer to a
relevant manual for the unit and purpose of your use.
These manuals can be downloaded from our website: https://industry.panasonic.com/
global/en/products/fasys/plc/mc/gm1

Manuals for GM1 series

Manual name Manual code Manual description

GM1 Series Reference Manual
(Hardware Edition)

WUME-GM1H Explains the functions and performance of each GM1
unit.

GM1 Series Reference Manual
(Instructions Edition)

WUME-
GM1PGR

Explains the specifications of each instruction that can
be used with the GM1 Series.

GM1 Series Reference Manual
(Analog I/O Unit Edition)

WUME-
GM1AIO

Explains the functions and performance of the GM1
Analog Expansion Unit.

GM1 Series Reference Manual
(Pulse Output Unit Edition)

WUME-GM1PG Explains the functions and performance of the GM1
Pulse Output Unit.

GM1 Series Reference Manual
(Serial Communication Unit Edition)

WUME-GM1SC Explains the functions and performance of the GM1
Serial Communication Unit.

GM1 Series User’s Manual
(Operation Edition)

WUME-GM1OP Explains how to use GM Programmer and
PANATERM Lite for GM, set up each function, create
projects, and perform other operations.

Copyright / Trademarks

● The copyright of this manual belongs to Panasonic Industry Co., Ltd..
● Unauthorized reproduction of this manual is strictly prohibited.
● Windows is a registered trademark of Microsoft Corporation in the U.S. and other countries.
● Ethernet is a registered trademark of FUJIFILM Business Innovation Corp. and Xerox Corporation.
● EtherCAT is a registered trademark of and patented technology licensed by Beckhoff Automation GmbH,

Germany.
● EtherNet/IP is a registered trademark of ODVA (Open DeviceNet Vendor Association).
● SDHC and SD logos are trademarks of LLC.
● Other company and product names are trademarks or registered trademarks of their respective companies.

WUME-GM1PGR-10 iii

https://industry.panasonic.com/global/en/products/fasys/plc/mc/gm1
https://industry.panasonic.com/global/en/products/fasys/plc/mc/gm1

(MEMO)

iv WUME-GM1PGR-10

Table of Contents

1 List of Instructions..1-1
1.1 List of Ladder Instructions...1-2
1.2 List of Function Instructions ..1-3
1.3 List of Function Block Instructions ..1-12

1.3.1 Basic Instructions... 1-12
1.3.2 Motion Control Function Blocks (Single Axis Control) 1-15
1.3.3 Motion Control Function Blocks (Synchronous Control) 1-18
1.3.4 Motion Control Function Blocks (Interpolation Control) 1-19
1.3.5 Motion Control Function Blocks (CNC Control) 1-20
1.3.6 Motion Control Function Blocks (Motion Communication Control) .. 1-24
1.3.7 Motion Control Function Blocks (Auxiliary Function) 1-27
1.3.8 Function Blocks (Others) ... 1-30
1.3.9 Function Blocks (For the GM1 Expansion Unit) 1-40

1.4 List of Function Block Instructions that Cannot Be Used with the
GM1 ..1-42

2 Ladder Instructions ..2-1
2.1 Ladder Instructions ...2-2

2.1.1 NO Contact .. 2-2
2.1.2 NC Contact .. 2-3
2.1.3 Rising Edge Detection Contact .. 2-4
2.1.4 Falling Edge Detection Contact ... 2-5
2.1.5 Parallel NO Contact ... 2-6
2.1.6 Parallel NC Contact ... 2-7
2.1.7 Coil ... 2-8
2.1.8 Negated Coil .. 2-9
2.1.9 Set Coil .. 2-10
2.1.10 Reset Coil .. 2-11
2.1.11 Execute Box ... 2-12

3 Functions...3-1
3.1 Basic Instructions..3-4

3.1.1 MOVE (Substitution) .. 3-4
3.1.2 SIZEOF (Get the Size) ... 3-5
3.1.3 ADR (Get the Address) .. 3-6

3.2 Arithmetic Operation Instructions..3-7
3.2.1 ADD (Addition) ... 3-7
3.2.2 SUB (Subtraction) .. 3-9
3.2.3 MUL (Multiplication) ... 3-10
3.2.4 DIV (Division) ... 3-11
3.2.5 MOD (Remainder).. 3-12

3.3 Boolean Operation Instructions...3-13
3.3.1 AND (Logical AND) .. 3-13
3.3.2 OR (Logical OR) .. 3-14
3.3.3 NOT (Negation).. 3-15
3.3.4 XOR (Exclusive OR) .. 3-16

WUME-GM1PGR-10 v

3.3.5 AND_THEN (Logical AND) .. 3-17
3.3.6 OR_ELSE (Logical OR) ... 3-18

3.4 Comparison Operation Instructions ..3-19
3.4.1 EQ (“Equal” Comparison) .. 3-19
3.4.2 NE (“Not Equal” Comparison) .. 3-20
3.4.3 LT (“Less Than” Comparison) .. 3-21
3.4.4 LE (“Less Than or Equal” Comparison) ... 3-22
3.4.5 GT (“Greater Than” Comparison) .. 3-23
3.4.6 GE (“Greater Than Or Equal” Comparison) 3-24

3.5 Bit Shift Instructions ..3-25
3.5.1 SHL (Shift Left) .. 3-25
3.5.2 SHR (Shift Right) ... 3-26
3.5.3 ROL (Rotate Left)... 3-27
3.5.4 ROR (Rotate Right).. 3-28

3.6 Numerical Operation Instructions..3-29
3.6.1 ABS (Absolute Value)... 3-29
3.6.2 SQRT (Square Root).. 3-30
3.6.3 LN (Natural Logarithm) .. 3-31
3.6.4 LOG (Common Logarithm) .. 3-32
3.6.5 EXP (Natural Exponent)... 3-33
3.6.6 EXPT (Exponentiation) .. 3-34
3.6.7 SIN (Trigonometric Function Sine)... 3-35
3.6.8 COS (Trigonometric Function Cosine) ... 3-36
3.6.9 TAN (Trigonometric Function Tangent) .. 3-37
3.6.10 ASIN (Trigonometric Function Arc Sine) .. 3-38
3.6.11 ACOS (Trigonometric Function Arc Cosine) 3-39
3.6.12 ATAN (Trigonometric Function Arc Tangent).................................. 3-40
3.6.13 Triangular function operator constant .. 3-40

3.7 Data Type Conversion Instructions...3-41
3.7.1 Type 1_TO_Type 2 (Type 1>Type 2 Conversion) 3-41
3.7.2 TRUNC (Real Number to DINT Conversion) 3-48
3.7.3 TRUNC_INT (Real Number to INT Conversion) 3-49
3.7.4 BCD_TO_** (BCD to Binary Conversion) .. 3-50
3.7.5 **_TO_BCD (Binary to BCD Conversion) .. 3-53
3.7.6 GRAY_TO_** (Gray Code to Binary Conversion) 3-55
3.7.7 **_TO_GRAY (Binary to Gray Code Conversion) 3-57
3.7.8 BYTE_TO_HEXinASCII (Binary to ASCII Conversion) 3-59
3.7.9 HEXinASCII_TO_BYTE (ASCII to Binary Conversion) 3-61
3.7.10 MEM.Decode (4BYTE to DWORD Conversion) 3-63
3.7.11 MEM.Encode (DWORD to 4BYTE Conversion)............................. 3-64
3.7.12 MEM.PackArrayOfBoolToArrayOfByte (BOOL Array to BYTE

Conversion)... 3-66
3.7.13 MEM.PackBitsTo**(Bit Data to BYTE/WORD/DWORD

Conversion)... 3-68
3.7.14 MEM.PackBytesTo**(BYTE to WORD/DWORD Conversion)........ 3-73
3.7.15 MEM.PackWordsToDword (WORD to DWORD Conversion) 3-75
3.7.16 MEM.UnpackArrayOfByte (BYTE to BOOL Array Conversion) 3-76

3.8 Bit operation instructions...3-78
3.8.1 EXTRACT (Bit Extraction).. 3-78
3.8.2 PUTBIT (Bit Change) ... 3-79
3.8.3 SWITCHBIT (Bit Inversion) .. 3-80

vi WUME-GM1PGR-10

3.8.4 MEMUtils.BitCpy (Bit Copying) .. 3-81
3.8.5 MEM.ReverseBitsIn** (Bit Order Change) 3-83

3.9 Memory operation instructions..3-85
3.9.1 SEL (Binary Selector) .. 3-85
3.9.2 MUX (Multiplexer) .. 3-86
3.9.3 LIMIT (Limiter).. 3-87
3.9.4 MAX (Maximum Value) .. 3-88
3.9.5 MIN (Minimum Value)... 3-89
3.9.6 MEMUtils.Swap (Byte Swapping) .. 3-90
3.9.7 MEM.Compare (Memory Comparison) .. 3-91
3.9.8 MEM.FindBlock(Memory block search) ... 3-92
3.9.9 MEM.FindByte (Find Byte Data) .. 3-94
3.9.10 MEM.MemFill (Memory Fill) ... 3-96
3.9.11 MEM.MemMove (Memory Copying)... 3-97
3.9.12 MEM.High** (High Byte/High WORD Extraction)........................... 3-99
3.9.13 MEM.Low** (Low Byte/Low WORD Extraction) 3-100
3.9.14 MEM.ReverseBYTEsIn** (Byte Order Change)............................. 3-101
3.9.15 MEM.ReverseWORDsInDWORD (WORD Order Change) 3-103

3.10 Character string instructions ...3-104
3.10.1 LEN/WLEN (string length).. 3-104
3.10.2 LEFT/WLEFT (extract text from left edge) 3-105
3.10.3 RIGHT/WRIGHT (Extract text from the right end).......................... 3-106
3.10.4 MID/WMID (extract string from specified position)......................... 3-107
3.10.5 CONCAT/WCONCAT (string concatenation) 3-108
3.10.6 INSERT/WINSERT (Inserting a Character String) 3-109
3.10.7 DELETE/WDELETE (delete string).. 3-111
3.10.8 REPLACE/WREPLACE (replace string) .. 3-112
3.10.9 FIND/WFIND (find text) .. 3-114
3.10.10 ConvertUTF16toUTF8 (UTF-16 → UTF-8) 3-115
3.10.11 ConvertUTF8toUTF16(UTF-8 → UTF-16) 3-117

3.11 SD Memory Card Slot Instruction..3-119
3.11.1 SYS_GetSDCoverState (Get SD Card Cover Open / Close State) 3-119
3.11.2 SYS_GetSDAccessRdy (Get SD Card Access Ready State) 3-119

3.12 CRC operation instructions...3-120
3.12.1 MEM.CRC16_standard (CRC16)... 3-120
3.12.2 MEM.CRC32(CRC32).. 3-122

3.13 System Time Instructions..3-123
3.13.1 SysTimeGetMs(Get System Time in units of milliseconds)............ 3-123
3.13.2 SysTimeGetUs(Get System Time in units of microseconds) 3-123
3.13.3 SysTimeGetNs(Get System Time in units of nanoseconds) 3-124

4 Function Blocks (Basic Instructions) ...4-1
4.1 Timer Instructions ...4-2

4.1.1 TON (Timer ON)... 4-2
4.1.2 TOF (Timer OFF) ... 4-3
4.1.3 TP (Timer Pulse) .. 4-4
4.1.4 RTC (Realtime Clock) .. 4-6

4.2 Counter Instructions..4-7
4.2.1 CTU (Up Counter) .. 4-7
4.2.2 CTD (Down Counter) ... 4-8

WUME-GM1PGR-10 vii

4.2.3 CTUD (Up-down Counter) ... 4-9
4.3 Edge Detection Instructions..4-11

4.3.1 R_TRIG (Rising Edge Detection) ... 4-11
4.3.2 F_TRIG (Falling Edge Detection)... 4-12

4.4 Bistable Circuit Instructions...4-13
4.4.1 SR (Set-priority Bistable Circuit) .. 4-13
4.4.2 RS (Reset-priority Bistable Circuit) .. 4-14

4.5 Data Type Conversion Instructions...4-16
4.5.1 MEM.Unpack** (BYTE/WORD/DWORD to Bit Data Conversion) ... 4-16

4.6 Data manipulation instructions..4-22
4.6.1 LIN_TRAFO (linear conversion)... 4-22
4.6.2 STATISTICS_REAL (maximum, minimum, and average input

values) .. 4-23
4.6.3 LIMITALARM (Monitoring of input values) 4-24

4.7 Other instructions..4-25
4.7.1 BLINK (output of blinking signal).. 4-25

5 Motion Control Function Blocks (Single Axis Control)5-1
5.1 Servo ON ..5-3

5.1.1 MC_Power (motion readiness) .. 5-3
5.2 Home Return...5-5

5.2.1 PMC_Home (Home Return)... 5-5
5.2.2 MC_Home (Home Return) ... 5-8

5.3 Control Switch...5-9
5.3.1 SMC_SetControllerMode (Control Mode Setting) 5-9

5.4 Stop...5-11
5.4.1 MC_Stop (Forced Stop) ... 5-11
5.4.2 MC_Halt (Halt) ... 5-13
5.4.3 Example: Stop.. 5-15

5.5 JOG / Inching..5-17
5.5.1 MC_Jog (Jogging).. 5-17
5.5.2 SMC_Inch (Inching) ... 5-19
5.5.3 Example: JOG Operation... 5-22

5.6 Position Control...5-23
5.6.1 MC_MoveAbsolute (Absolute Value Positioning)............................. 5-23
5.6.2 MC_MoveRelative (Relative Value Positioning)............................... 5-27
5.6.3 MC_MoveAdditive (Target Position Change) 5-31
5.6.4 MC_MoveSuperImposed (Superimposed positioning) 5-34
5.6.5 MC_PositionProfile (Position Profile Move) 5-38
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure.... 5-41
5.6.7 SMC_MoveContinuousAbsolute (Absolute Value Position Velocity

Move) .. 5-43
5.6.8 SMC_MoveContinuousRelative (Relative Value Position Velocity

Move) .. 5-47
5.6.9 Example: Absolute Positioning, Relative Positioning....................... 5-51
5.6.10 Example: Target Position Change.. 5-52

5.7 Velocity Control ...5-54
5.7.1 MC_MoveVelocity (Velocity Control) .. 5-54
5.7.2 MC_VelocityProfile (Velocity Profile Movement) 5-57

viii WUME-GM1PGR-10

5.7.3 MC_AccelerationProfile (Acceleration Profile Movement) 5-60
5.7.4 Example: Speed Control .. 5-63

5.8 Torque Control ..5-65
5.8.1 PMC_SetTorque (Torque Control).. 5-65
5.8.2 SMC_SetTorque (Torque Control).. 5-67
5.8.3 Example: Torque Control ... 5-69

5.9 Direct commands..5-71
5.9.1 SMC_FollowPosition (Target Position Command at Every Interval) 5-71
5.9.2 SMC_FollowVelocity (Target Velocity Command at Every Interval) . 5-73

5.10 Buffer Mode ..5-76
5.10.1 Buffer Mode Execution Rules... 5-76
5.10.2 MC_BUFFER_MODE (Enumeration type)..................................... 5-79
5.10.3 Usage Example of Buffer Mode ... 5-85

5.11 Axis Structure..5-92

6 Motion Control Function Blocks (Synchronous Control)6-1
6.1 Gear Operation ...6-2

6.1.1 MC_GearIn (Start Gear Operation).. 6-2
6.1.2 MC_GearInPos (Position Specified Gear Operation) 6-5
6.1.3 MC_GearOut (Cancel Gear Operation) ... 6-10
6.1.4 Example: Gear Synchronization .. 6-11

6.2 Cam Synchronous Control..6-14
6.2.1 Overview of Cam Synchronous Control ... 6-14
6.2.2 MC_CAM_REF (Cam Profile) .. 6-15
6.2.3 MC_CamTableSelect (Select Cam Profile) 6-23
6.2.4 MC_CamIn (Start Cam Synchronization)... 6-27
6.2.5 MC_CamOut (Cancel Cam Synchronization) 6-32
6.2.6 SMC_GetTappetValue (Get Single Tappet Information)................... 6-33
6.2.7 SMC_CamRegister (Get All Tappet Information) 6-35
6.2.8 SMC_CAMBounds (Calculate Maximum/Minimum Parameters of

Slave).. 6-38
6.2.9 SMC_GetCamSlaveSetPosition (Calculate Condition for Slave

Synchronization Start)... 6-40
6.2.10 Sample Example: Allow Different MC_CAM_REF Profiles to

Work.. 6-42
6.2.11 Sample Example: Adjust Phase of Cam Control Using

MC_Phasing ... 6-44
6.2.12 Sample Example: Create MC_CAM_REF by POU........................ 6-47
6.2.13 Sample Example: Create MC_CAM_REF Using Recipe Function 6-55

6.3 Phase Correction ..6-59
6.3.1 MC_Phasing (Master Axis Phase Correction) 6-59

7 Motion Control Function Blocks (Interpolation Control)...................7-1
7.1 Interpolation Control..7-2

7.1.1 PMC_Interpolator2D (2-axis Interpolation Control) 7-2
7.1.2 PMC_Interpolator3D (3-axis Interpolation Control) 7-4
7.1.3 PMC_NCDecoder (CNC Table Conversion) 7-6

8 Motion Control Function Blocks (CNC Control).................................8-1
8.1 Overview of CNC Control and How to Use It8-3

WUME-GM1PGR-10 ix

8.2 CNC Data Decoding ...8-7
8.2.1 SMC_NCDecoder (CNC Program Conversion) 8-7
8.2.2 SMC_ReadNCFile2 (Read CNC File) .. 8-11
8.2.3 SMC_NCInterpreter (Convert CNC File).. 8-16
8.2.4 SMC_GEOINFO (CNC Executable Format Data) 8-19

8.3 Pre-processing after decoding..8-22
8.3.1 SMC_CheckVelocities (Check Angle between Paths) 8-22
8.3.2 SMC_SmoothPath (path smoothing) ... 8-23
8.3.3 SMC_RoundPath (Arc correction between paths) 8-26
8.3.4 SMC_ToolRadiusCorr (Tool Radius Correction for Path) 8-29

8.4 Control calculation ..8-31
8.4.1 SMC_Interpolator (CNC Control Operation) 8-31
8.4.2 SMC_GetMParameters (Get M-code Parameters) 8-35
8.4.3 SMC_PreAcknowledgeMFunction (Deactivate M-code).................. 8-36

8.5 Control command & kinematics conversion..8-37
8.5.1 SMC_ControlAxisByPos (Axis Position Control).............................. 8-37
8.5.2 SMC_ToolLengthCorr (Tool Length Correction) 8-38
8.5.3 SMC_TRAFO_Polar (Conversion from Two-dimensional (X, Y)

Coordinates to Polar Coordinates) ... 8-41
8.5.4 SMC_TRAFOF_Polar (Conversion from Polar Coordinates to Two-

dimensional (X, Y) Coordinates) ... 8-42
8.5.5 SMC_TRAFO_Bipod_Arm (Bipod robot hand XY coordinates →

conversion of each axis position).. 8-44
8.5.6 SMC_TRAFO_Gantry2 (Convert XY Gantry Coordinates to

Positions of Axes) ... 8-46
8.5.7 SMC_TRAFOF_Gantry2 (Conversion Positions of Axes -> XY

Gantry Coordinates).. 8-47
8.5.8 SMC_TRAFO_Gantry3 (Convert XYZ Gantry Coordinates to

Positions of Axes) ... 8-49
8.5.9 SMC_TRAFOF_Gantry3 (Conversion Positions of Axes -> XYZ

Gantry Coordinates).. 8-50
8.5.10 SMC_TRAFO_GantryCutter2 (Convert XY Gantry Coordinates

with Tool rotation to Positions of Axes) ... 8-52
8.5.11 SMC_TRAFO_GantryCutter3 (Convert XYZ Gantry Coordinates

with Tool rotation to Positions of Axes) ... 8-53
8.5.12 SMC_TRAFO_Scara2 (Conversion from Hand Coordinates of a

2-link SCARA Robot to Angle Information of Each Axis Motor)........ 8-54
8.5.13 SMC_TRAFO_Scara3 (Conversion from Hand Coordinates of a

3-link SCARA Robot to Angle Information of Each Axis Motor)........ 8-56
8.5.14 SMC_TRAFOF_Scara2 (Conversion from Angle Information of

Each Axis Motor to Hand Coordinates of a 2-link SCARA Robot) 8-59
8.5.15 SMC_TRAFOF_Scara3 (Conversion from Angle Information of

Each Axis Motor to Hand Coordinates of a 3-link SCARA Robot) 8-61
8.6 CNC Program Operation and Setting Method8-64

8.6.1 CNC Editor and Coding Rules ... 8-64
8.6.2 List of G-codes... 8-66
8.6.3 G00, G01: Linear Interpolation... 8-69
8.6.4 G02, G03: Circular Interpolation .. 8-72
8.6.5 G04: Dwell Time... 8-79
8.6.6 G05, G10: Spline Interpolation... 8-81
8.6.7 G08, G09: Elliptic Interpolation .. 8-90
8.6.8 G15, G16, G17, G18, G19: Plane Specification 8-95
8.6.9 G20, G36, G37: Jump and Loop Process.. 8-98

x WUME-GM1PGR-10

8.6.10 G40, G41, G42: Tool Radius Correction for Path........................... 8-108
8.6.11 G43: Tool Length Correction .. 8-114
8.6.12 G50, G51, G52: Path Smoothing ... 8-123
8.6.13 G53, G54, G55, G56: Coordinate Conversion 8-127
8.6.14 G75: Timing Synchronization ... 8-138
8.6.15 G90, G91: Coordinate Specification .. 8-140
8.6.16 G92: Start position specification .. 8-142
8.6.17 G98, G99: Circular arc coordinate specification 8-144
8.6.18 M-code ... 8-147
8.6.19 H-Switch... 8-151
8.6.20 CNC Program File.. 8-155

8.7 Example of Use of CNC Control ...8-160
8.7.1 Example of USE: Specifying Starting Coordinates 8-160
8.7.2 Example of Use: C-point Control and P-point Control 8-165
8.7.3 Example of Use: Repeating Processes ... 8-169
8.7.4 Example of use: Pre-processing and tool correction 8-173

9 Motion Control Function Blocks (Motion Communication Control) 9-1
9.1 RTEX/EtherCAT Common ..9-3

9.1.1 SetCommunicationState (Set Device Communication State) 9-3
9.1.2 CheckSupportedCommunicationState (Check if Device Provides

Communication State Setting) .. 9-4
9.1.3 CheckCurrentSupportedCommunicationState (Check if Device in

Current State Provides Communication State Setting)..................... 9-5
9.2 RTEX ..9-6

9.2.1 Types of Data To Be Handled by AMP Function Blocks 9-6
9.2.2 RTEX_ClearAmpAlarm (Clear Amplifier Alarm)............................... 9-6
9.2.3 RTEX_ReadAmpAlarm (Read Amplifier Alarm)............................... 9-9
9.2.4 RTEX_ReadAmpState (Amplifier Alarm Status) 9-10
9.2.5 RTEX_ReadAmpData (Amplifier Monitor).. 9-11
9.2.6 RTEX_ReadAmpParameter (Read Amplifier Parameter) 9-12
9.2.7 RTEX_WriteAmpParameter (Write Amplifier Parameter) 9-13
9.2.8 RTEX_WriteAmpEEPROM (Write Amplifier EEPROM)................... 9-14
9.2.9 RTEX_Reset (Reset RTEX)... 9-15
9.2.10 RTEX_ClearAmpMultiTurnData (Clear Amplifier Multi-turn Data) . 9-16
9.2.11 RTEX_ClearAmpPositionalDeviation (Clear Amplifier Deviation

Counter) .. 9-17
9.2.12 RTEX_GetTrackingCommandError (Read RTEX Command Send

Statistics Information) ... 9-19
9.2.13 RTEX_ReadPot (Read POT of Amplifier) 9-20
9.2.14 RTEX_ReadNot (Read NOT of Amplifier)...................................... 9-20
9.2.15 Sample example: Read the POT/NOT signal of the servo

amplifier and forcibly stop it. ... 9-21
9.3 EtherCAT ..9-22

9.3.1 ETC_CO_SdoRead (Read Slave Parameter).................................. 9-22
9.3.2 ETC_CO_SdoRead4 (Read Four Bytes of Slave Parameter) 9-23
9.3.3 ETC_CO_SdoReadDWord (Read Double Word of Slave

Parameter) .. 9-24
9.3.4 ETC_CO_SdoRead_Access (Read Slave Parameter Index) 9-25
9.3.5 ETC_CO_SdoRead_Channel (Read Priority Specification of Slave

Parameter) .. 9-27
9.3.6 ETC_CO_SdoWrite (Write Slave Parameter) 9-28

WUME-GM1PGR-10 xi

9.3.7 ETC_CO_SdoWrite4 (Write Four Bytes of Slave Parameter).......... 9-30
9.3.8 ETC_CO_SdoWriteDWord (Write Double Words of Slave

Parameter) .. 9-31
9.3.9 ETC_CO_SdoWrite_Access (Write Slave Parameter Index)........... 9-32
9.3.10 ReadIdentification (Read Slave Identification Data) 9-34
9.3.11 ReadMemory (Read Slave Memory).. 9-35
9.3.12 ReadNbrSlaves (Read the Number of Connected Slaves)............ 9-36
9.3.13 WriteMemory (Write Slave Memory) .. 9-37
9.3.14 PETC_ClearAmpPositionalDeviation (Clear Amplifier Deviation

Counter) .. 9-38
9.4 EtherCAT Master/Slave ..9-40

9.4.1 EtherCAT Master/Slave Communication Control and Monitoring 9-40
9.4.2 IoDrvEtherCAT (Control EtherCAT Master Communication) 9-40
9.4.3 IoDrvEtherCAT.GetStatistics (Get EtherCAT Communication

Statistics Information) ... 9-41
9.4.4 IoDrvEtherCAT.ClearStatistics (Clear EtherCAT Communication

Statistics Information) ... 9-42
9.4.5 ETCSlave (Control EtherCAT Slave Communication) 9-42
9.4.6 Sample Example: Process for Monitoring EtherCAT Master

Communication... 9-43
9.4.7 Sample Example: Process for Monitoring EtherCAT Slave

Communication... 9-44
9.4.8 Sample Example: Stop/Restart EtherCAT Master Communication . 9-45

10 Motion Control Function Blocks (Auxiliary Function).....................10-1
10.1 Motion Auxiliary Function (Monitoring)..10-2

10.1.1 MC_ReadActualPosition (Read Current Position) 10-2
10.1.2 MC_ReadActualVelocity (Read Current Velocity) 10-2
10.1.3 PMC_ReadActualTorque (Read Current Torque) 10-3
10.1.4 MC_ReadActualTorque (Read Current Torque)............................. 10-4
10.1.5 MC_ReadAxisError (Read Axis Error) ... 10-5
10.1.6 MC_ReadStatus (Read Status) ... 10-6
10.1.7 SMC_InPosition (In-position Judgment) .. 10-8
10.1.8 SMC_ReadFBError (Read Oldest Error) 10-10
10.1.9 SMC_ClearFBError (Clear Oldest Error) 10-11
10.1.10 SMC_CheckAxisCommunication (Check Axis Communication

Status)... 10-12
10.1.11 SMC_CheckLimits (Check Exceeding Limits) 10-13
10.1.12 SMC_GetMaxSetAccDec (Measure Maximum Acceleration /

Deceleration)... 10-14
10.1.13 SMC_GetMaxSetVelocity (Measure Maximum Velocity) 10-15
10.1.14 SMC_GetTrackingError (Measure Tracking Error)....................... 10-16
10.1.15 SMC_MeasureDistance (Measure Turnaround Travel Distance) 10-17
10.1.16 SMC_ReadSetPosition (Read Axis Set Position) 10-18

10.2 Motion Auxiliary Function (Change / Reset)10-19
10.2.1 MC_Reset (Axis Error Reset) .. 10-19
10.2.2 SMC3_ReinitDrive (Reinitialize Axis) ... 10-20
10.2.3 MC_SetPosition (Change Current Position) 10-21
10.2.4 SMC_ChangeDynamicLimits(Dynamic limit change) 10-21
10.2.5 SMC_ChangeGearingRatio(Gear ratio and axis type change)...... 10-23
10.2.6 SMC_SetMovementType(Virtual axis type change)....................... 10-26
10.2.7 SMC_SetRampType(Velocity ramp type change).......................... 10-28
10.2.8 SMC_SetSoftwareLimits(Soft limit change) 10-29

xii WUME-GM1PGR-10

10.3 Motion Auxiliary Function (Other Functions).....................................10-31
10.3.1 PMC_ReadLatchPosition (Amplifier Latch Monitor)....................... 10-31
10.3.2 PMC_StopLatchPosition (Stop Amplifier Latch) 10-33
10.3.3 MC_TouchProbe (Enable AMP Latch Monitoring) 10-36
10.3.4 MC_AbortTrigger (Disable AMP Latch Monitoring)........................ 10-38
10.3.5 MC_DigitalCamSwitch (Enable Digital Cam Switch) 10-39
10.3.6 SMC_BacklashCompensation (Compensate Backlash)................ 10-43

11 Other Function Blocks..11-1
11.1 COM Port (General-purpose Communication)..................................11-5

11.1.1 COM.Open (Open COM port) .. 11-5
11.1.2 COM.Close (Close COM Port) ... 11-8
11.1.3 COM.Read (Read COM Port) .. 11-9
11.1.4 COM.Write (Write COM Port) ... 11-10
11.1.5 COM.ERROR (Error ID) ... 11-11

11.2 COM port (Modbus COM) ...11-12
11.2.1 IoDrvModbusComPort.. 11-12
11.2.2 IoDrvModbus.ModbusChannel(Start Sending Modbus Command)11-12
11.2.3 IoDrvModbus.ModbusRequest (Modbus Request) 11-13
11.2.4 IoDrvModbus.ModbusRequest 2 (Modbus Request 2) 11-15
11.2.5 IoDrvModbus.ModbusSlaveComPort ... 11-16
11.2.6 IoDrvModbus.MB_ErrorCodes (Error Codes) 11-17

11.3 LAN port (IoDrvEthernet) ..11-18
11.3.1 IoDrvEthernet ... 11-18
11.3.2 IoDrvEthernet.IPARRAY_TO_INADDR (Array Type to Union

Type) ... 11-18
11.3.3 IoDrvEthernet.IPARRAY_TO_IPSTRING (Array Type to

Character String Type).. 11-19
11.3.4 IoDrvEthernet.IPARRAY_TO_UDINT (Array Type to UDINT Type) 11-19
11.3.5 IoDrvEthernet.IPSTRING_TO_UDINT (Character String Type to

UDINT Type) ... 11-20
11.3.6 IoDrvEthernet.UDINT_TO_IPARRAY (UDINT Type to Array Type) 11-20
11.3.7 IoDrvEthernet.UDINT_TO_IPSTRING (UDINT Type to Character

String Type)... 11-21
11.4 LAN Port (General-purpose Communication)11-22

11.4.1 NBS.TCP_Client (Connect to TCP Client) 11-22
11.4.2 NBS.TCP_Connection (Connect TCP)... 11-23
11.4.3 NBS.TCP_Read (Receive TCP Data) .. 11-24
11.4.4 NBS.TCP_Server (Connect TCP Server)....................................... 11-25
11.4.5 NBS.TCP_Write (Send TCP Data)... 11-26
11.4.6 NBS.UDP_Peer (Open UDP Port) ... 11-27
11.4.7 NBS.UDP_Receive (Receive UDP Data)....................................... 11-28
11.4.8 NBS.ERROR (Error Code) ... 11-29
11.4.9 NBS.UDP_Send (Send UDP Data) .. 11-30
11.4.10 Program example: General communication (Ethernet) TCP

CLIENT processing... 11-30
11.4.11 Program example: General communication (Ethernet) TCP

SERVER processing... 11-34
11.4.12 Program example: General communication (Ethernet) UDP

processing... 11-37
11.4.13 Program example:General-purpose Communication(Serial)COM

transmission / reception processing ... 11-40

WUME-GM1PGR-10 xiii

11.5 LAN Port (Modbus TCP) ...11-43
11.5.1 IoDrvModbusTCP... 11-43
11.5.2 IoDrvModbusTCP.ModbusChannel (Start Sending Modbus

Command) .. 11-43
11.5.3 IoDrvModbusTCP.ModbusRequest (Modbus Request) 11-44
11.5.4 IoDrvModbusTCPSlave.. 11-46
11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes) 11-47

11.6 LAN Port (EtherNet/IP)..11-48
11.6.1 IoDrvEtherNetIP (EtherNet/IP Scanner Device)............................. 11-48
11.6.2 RemoteAdapter (Remote Adapter Device)..................................... 11-49
11.6.3 IoDrvEtherNetIPAdapter (EtherNet/IP adapter device) 11-51
11.6.4 Module (EtherNet/IP Module Device)... 11-53
11.6.5 Apply_Attributes (Apply_Attributes Service)................................... 11-54
11.6.6 Generic_Service (Generic Service Execution) 11-55
11.6.7 Get_Attribute_Single (Inquire Specific Attributes of a Specific

Instance) ... 11-57
11.6.8 Get_Attributes_All (Inquire All Attributes of a Specific Instance).... 11-58
11.6.9 Set_Attribute_Single (Set Specific Attributes of a Specific

Instance) ... 11-59
11.6.10 Set_Attributes_All (Set All Attributes of a Specific Instance)........ 11-60
11.6.11 NOP (NOP Service).. 11-61
11.6.12 Reset (Reset Service) .. 11-62
11.6.13 Start (Start Service).. 11-63
11.6.14 Stop (Stop Service) .. 11-64
11.6.15 ENIP.ERROR (Message Service Instruction Error Code) 11-65
11.6.16 ENIP.CIPClass (Service Class Code) .. 11-68

11.7 LAN Port (MQTT) ..11-71
11.7.1 What is MQTT? .. 11-71
11.7.2 MQTT Client Specifications.. 11-72
11.7.3 Overview of MQTT Functions... 11-75
11.7.4 MQTT.MQTTClient (MQTT Client Connection) 11-77
11.7.5 MQTT.MQTTPublish (MQTT Publish Function) 11-83
11.7.6 MQTT.MQTTSubscribe (MQTT Subscribe Function) 11-86
11.7.7 MQTT.MQTT_REASON_CODE (Reason Code) 11-88
11.7.8 MQTT.MQTT_ERROR (Error Code) .. 11-90
11.7.9 Sample Example: MQTT Communication 11-92
11.7.10 Example: MQTT Communication Using Filter Mode 11-94
11.7.11 MQTT Communication: Request/Response Type

Communication... 11-96
11.7.12 Example: MQTT Communication Using Topic Alias..................... 11-100

11.8 LAN Port (DNS)...11-103
11.8.1 What is DNS?... 11-103
11.8.2 DNS_GetIPAddress (Name Resolution)... 11-103
11.8.3 DNS_CLI_ERROR (Enumeration Type)... 11-104
11.8.4 Sample Example: DNS Name Resolution 11-105

11.9 SD Card Operation (File Operation)..11-107
11.9.1 FILE.Open (Open File) ... 11-107
11.9.2 FILE.Close (Close File) .. 11-108
11.9.3 FILE.Read (Read File) ... 11-109
11.9.4 FILE.Write (Write File) .. 11-110
11.9.5 FILE.Flush (Flush File) ... 11-111
11.9.6 FILE.Copy (Copy File).. 11-112

xiv WUME-GM1PGR-10

11.9.7 FILE.Rename (Rename File) ... 11-113
11.9.8 FILE.Delete (Delete File).. 11-114
11.9.9 FILE.EOF (End of File)... 11-115
11.9.10 FILE.GetAttribute (Get File Attribute) ... 11-116
11.9.11 FILE.GetPos (Get File Offset) .. 11-117
11.9.12 FILE.GetSize (Get File Size) .. 11-118
11.9.13 FILE.GetTime (Get File Update Time).. 11-119
11.9.14 FILE.SetPos (Set File Offset) ... 11-120
11.9.15 FILE.ERROR (Error ID).. 11-121
11.9.16 Program example:SD CardFile write processing 11-121
11.9.17 Program example:SD CardFile read processing.......................... 11-123

11.10 SD Card Operation (Directory Operation)11-126
11.10.1 FILE.DirCreate (Create Directory).. 11-126
11.10.2 FILE.DirOpen (Open Directory).. 11-127
11.10.3 FILE.DirClose (Close Directory) ... 11-128
11.10.4 FILE.DirCopy (Copy Directory)... 11-129
11.10.5 FILE.DirRename (Rename Directory) .. 11-130
11.10.6 FILE.DirRemove (Delete Directory).. 11-131
11.10.7 FILE.DirList (Directory List) .. 11-132

11.11 SD Card Operation (CSV File Operation)11-133
11.11.1 Overview of CSV File Reading ... 11-133
11.11.2 CSV.CSVReaderInit (Specify Target CSV File To Be Read) 11-134
11.11.3 CSV.ReadAll (Read All File Data by Batch).................................. 11-136
11.11.4 CSV.NextElement (Read One Element) 11-138
11.11.5 CSV.NextLine (Read One Line).. 11-139
11.11.6 CSV.CSV_ERROR (Reading Error Code).................................... 11-141
11.11.7 Overview of CSV File Writing ... 11-141
11.11.8 CSV.Init (Specify Target CSV File To Write) 11-143
11.11.9 CSV.Add’Type’ (Add Data to Internal Buffer)................................ 11-145
11.11.10 CSV.NewLine (Add Line Separator to Internal Buffer)................ 11-147
11.11.11 CSV.WriteFile (Write, Save Data to CSV File) 11-148
11.11.12 CSV.NewFile (Change Target To Write to New CSV File) 11-149
11.11.13 CSV.CSVWriter... 11-151
11.11.14 CSV.ERROR (Writing Error Code) ... 11-151
11.11.15 Example of Process for Reading All Data from CSV File 11-152
11.11.16 Example of Process for Reading Data from Multiple CSV Files. 11-153
11.11.17 Example of Process for Writing Log Data to CSV File 11-156

11.12 Clock Setting ...11-160
11.12.1 SYS_GetTime (Get Time) .. 11-160
11.12.2 SYS_SetTime (Set Time) ... 11-161
11.12.3 SYS_GetTimezone (Get Time Zone Information) 11-162
11.12.4 SYS_SetTimezone (Set Time Zone Information) 11-163
11.12.5 SYS_DateConcat (Convert from UINT Type to DATE Type)........ 11-163
11.12.6 SYS_DateSplit (Convert from DATE Type to UINT Type) 11-164
11.12.7 SYS_DTConcat (Convert from UINT Type to DT Type) 11-165
11.12.8 SYS_DTSplit (Convert from DT Type to UINT Type) 11-166
11.12.9 SYS_GetDayOfWeek (Get Day of the Week) 11-167
11.12.10 SYS_TODConcat (Convert from UINT Type to TOD Type) 11-168
11.12.11 SYS_TODSplit (Convert from TOD Type to UINT Type) 11-169
11.12.12 ERROR (Clock Instruction Error Code)...................................... 11-170
11.12.13 SNTP.SNTPGetUTCTime (Get SNTP Time).............................. 11-170
11.12.14 SNTP.ERROR (SNTP Error Code)... 11-171

WUME-GM1PGR-10 xv

11.12.15 Example of SNTP Time Synchronization 11-172
11.13 System Data..11-174

11.13.1 SYS_GetSystemError (Get System Error) 11-174
11.13.2 SYS_ClearSystemError (Clear System Error).............................. 11-174

11.14 PID Control..11-175
11.14.1 PD (PD Control) ... 11-175
11.14.2 PID (PID Control) ... 11-176
11.14.3 PID_FIXCYCLE ［PID Control (Any Cycle Time)］ 11-177

11.15 Recipe function ...11-179
11.15.1 CreateRecipe (Create Recipe) ... 11-180
11.15.2 DeleteRecipe (Delete Recipe)... 11-183
11.15.3 LoadFromAndWriteRecipe (Load and Write Recipe File) 11-184
11.15.4 ReadAndSaveRecipe (Recipe File Overwrite Save) 11-186
11.15.5 prvCompareRecipe (Compare Recipes) 11-187
11.15.6 ReloadRecipes (Load Recipe File in SD Card) 11-189
11.15.7 GetRecipeCount (Count Recipes)... 11-190
11.15.8 GetRecipeNames (Get Recipe Names) 11-191
11.15.9 GetLastError (Get Last ReturnValues) .. 11-193
11.15.10 GetLastInfo (Get Last InfoValues) ... 11-195
11.15.11 ResetLastError (GetLastError Reset) .. 11-197
11.15.12 ResetLastInfo (GetLastInfo Reset).. 11-198

11.16 Enable/Disable Devices ..11-199
11.16.1 Overview of Device Enable/Disable Settings 11-199
11.16.2 INode.Enable (Enable/Disable Setting).. 11-200
11.16.3 Reconfigure (Reconfigure Devices) ... 11-201
11.16.4 DED.ERROR (Error Code)... 11-201
11.16.5 Sample Example: Changing EtherCAT Slave Enable/Disable

Setting... 11-202
11.17 Project Management Function ..11-204

11.17.1 What is Project Management Function? 11-204
11.17.2 SYS_PRJBackup (Project Backup).. 11-206
11.17.3 SYS_PRJRestore (Restore Project)... 11-208
11.17.4 PRJMNG_ERROR (Error Code) .. 11-210
11.17.5 SYS_GetPRJRestoreResult (Project Restoration Results).......... 11-211

12 Function Blocks for Units ..12-1
12.1 Basic Configuration of Function Blocks for the Pulse Output Unit12-2

12.1.1 Specifications of the Function Block .. 12-2
12.1.2 Notes for Executing the Function Block ... 12-3

12.2 Function Blocks for the Pulse Output Unit ..12-4
12.2.1 PG_Power.. 12-4
12.2.2 PG_Jog .. 12-5
12.2.3 PG_MoveAbsolute ... 12-6
12.2.4 PG_MoveRelative .. 12-7
12.2.5 PG_LatchPosition .. 12-9
12.2.6 PG_Pulser.. 12-11
12.2.7 PG_Stop .. 12-13
12.2.8 PG_Home .. 12-15
12.2.9 PG_SetPosition.. 12-17
12.2.10 PG_WriteParameter... 12-18

xvi WUME-GM1PGR-10

12.2.11 PG_ReadParameter... 12-22
12.2.12 PG_ClearError ... 12-23
12.2.13 PG_ReadStatus ... 12-24

12.3 Error Codes...12-26
12.3.1 Error Check Method... 12-26
12.3.2 PG_ERROR... 12-27

12.4 Functions for the Serial Communication Unit....................................12-28
12.4.1 NSC_ReadComStatus (Read COM Port Status) 12-28
12.4.2 NSC_ERROR (Error Code) ... 12-29

13 Reference Information..13-1
13.1 Motion Errors (SMC_ERROR Type) ...13-2

13.1.1 Error Check Method... 13-2
13.1.2 SMC_ERROR .. 13-3

13.2 RTEX communication error...13-11
13.2.1 RTEX Error ID .. 13-11
13.2.2 Alarm Codes .. 13-14
13.2.3 Warning Codes .. 13-18

13.3 List of AMP Parameters ..13-21
13.3.1 Class 0: Basic Setting .. 13-21
13.3.2 Class 1: Gain Adjustment .. 13-21
13.3.3 Class 2: Vibration Suppression Function 13-22
13.3.4 Class 3: Speed, Torque Control, Full-closed Control 13-23
13.3.5 Class 4: I/O Monitor Setting ... 13-24
13.3.6 Class 5: Enhancing Setting.. 13-25
13.3.7 Class 6: Special Setting 1 .. 13-27
13.3.8 Class 7: Special Setting 2 .. 13-29
13.3.9 Class 8: Special Setting 3 .. 13-31

13.4 Monitor Commands...13-32

WUME-GM1PGR-10 xvii

(MEMO)

xviii WUME-GM1PGR-10

1 List of Instructions
1.1 List of Ladder Instructions...1-2
1.2 List of Function Instructions ..1-3
1.3 List of Function Block Instructions ..1-12

1.3.1 Basic Instructions... 1-12
1.3.2 Motion Control Function Blocks (Single Axis Control) 1-15
1.3.3 Motion Control Function Blocks (Synchronous Control) 1-18
1.3.4 Motion Control Function Blocks (Interpolation Control) 1-19
1.3.5 Motion Control Function Blocks (CNC Control) 1-20
1.3.6 Motion Control Function Blocks (Motion Communication Control) .. 1-24
1.3.7 Motion Control Function Blocks (Auxiliary Function) 1-27
1.3.8 Function Blocks (Others) ... 1-30
1.3.9 Function Blocks (For the GM1 Expansion Unit) 1-40

1.4 List of Function Block Instructions that Cannot Be Used with the
GM1 ..1-42

WUME-GM1PGR-10 1-1

1.1 List of Ladder Instructions

The following table lists contact and coil ladder instructions that can be used in ladder diagram
programs for GM Programmer.

Name Code Description Simulation (●:
Supported, -:
Not
supported)

Page

NO contact This instruction outputs a BOOL-type input from
the left to the right.
If the variable of the contact is TRUE, then the
input value from the left is output.
If the variable of the contact is FALSE, then
FALSE is output.

● "P.2-2"

NC contact This instruction outputs the negated value of the
BOOL-type input from the left to the right.
If the variable of the contact is TRUE, then
FALSE is output.
If the variable of the contact is FALSE, then the
input value from the left is output.

● "P.2-3"

Rising edge
detection

When a rising edge is detected in the BOOL-type
input from the left, TRUE is output for one cycle
only.

● "P.2-4"

Falling edge
detection

When a falling edge is detected in the BOOL-
type input from the left, TRUE is output for one
cycle only

● "P.2-5"

Parallel NO
contact

- NO contacts can be wired in parallel.
The contacts wired in parallel are treated as OR
logic. If the output of one or more contacts is
TRUE, TRUE is output.

● "P.2-6"

Parallel NC
contact

- NC contacts can be wired in parallel.
The contacts wired in parallel are treated as OR
logic. If the output of one or more contacts is
TRUE, TRUE is output.

● "P.2-7"

Coil A BOOL-type input from the left can be saved.
If the input is TRUE, then TRUE is saved.
If the input is FALSE, then FALSE is saved.

● "P.2-8"

Negated coil The negated value of the BOOL-type input from
the left can be saved.
If the input is TRUE, then FALSE is saved.
If the input is FALSE, then TRUE is saved.

● "P.2-9"

Set coil If the BOOL-type input from the left becomes
TRUE, TRUE is saved.
It can be used together with the reset coil.

● "P.2-10"

Reset coil If the BOOL-type input from the left becomes
TRUE, FALSE is saved.
It can be used together with the set coil.

● "P.2-11"

Execute Box ST language programming is possible. If "Enter
ST code here ..." is clicked, an input field using a
multi-line ST will open.

● "P.2-12"

1.1 List of Ladder Instructions

1-2 WUME-GM1PGR-10

1.2 List of Function Instructions

This section provides lists of the functions used by the GM Programmer. These functions can
be used without declaring them with variables.

■ Basic instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MOVE Substitution Substitutes the input
argument values with the
output argument.

● ● ● "P.3-4"

SIZEOF Get the size Outputs the size (in units
of byte) of the input
argument.

● ● ● "P.3-5"

ADR Get the
address

Outputs the address of the
input argument.

● ● ● "P.3-6"

■ Arithmetic operation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

ADD Addition Adds the input arguments. ● ● ● "P.3-7"

SUB Subtraction Subtracts the input
arguments.

● ● ● "P.3-9"

MUL Multiplication Multiplies the input
arguments.

● ● ● "P.3-10"

DIV Division Divides the input
arguments.

● ● ● "P.3-11"

MOD Mod Outputs the remainder of
the input argument.

● ● ● "P.3-12"

■ Boolean operation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

AND Logical AND Outputs the logical AND of
the input arguments.

● ● ● "P.3-13"

OR Logical OR Outputs the logical OR of
the input arguments.

● ● ● "P.3-14"

XOR Exclusive OR Outputs the Exclusive OR
of the input arguments.

● ● ● "P.3-16"

NOT Negation Outputs the negation of
the input argument.

● ● ● "P.3-15"

1.2 List of Function Instructions

WUME-GM1PGR-10 1-3

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

AND_THEN Logical AND Outputs the logical AND of
the input arguments.

● ● ● "P.3-17"

OR_ELSE Logical OR Outputs the logical OR of
the input arguments.

● ● ● "P.3-18"

■ Comparison operation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

EQ “Equal”
comparison

Compares the two input
arguments and, if they are
equal to each other,
outputs TRUE.

● ● ● "P.3-19"

NE “Not Equal”
comparison

Compares the two input
arguments and, if they are
not equal to each other,
outputs TRUE.

● ● ● "P.3-20"

LT “Less Than”
comparison

Compares the two input
arguments and, if the first
argument is less than the
second argument, outputs
TRUE.

● ● ● "P.3-21"

LE “Less Than or
Equal”
comparison

Compares the two input
arguments and, if the first
argument is less than the
second argument or
equal, outputs TRUE.

● ● ● "P.3-22"

GT “Greater Than”
comparison

Compares the two input
arguments and, if the first
argument is greater than
the second argument,
outputs TRUE.

● ● ● "P.3-23"

GE “Greater Than
Or Equal”
comparison

Compares the two input
arguments and, if the first
argument is greater than
the second argument or
equal, outputs TRUE.

● ● ● "P.3-24"

■ Bit shift instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SHL Shift left Shifts the input argument
to the left by the specified
number of bits. Inserts “0”
from the least significant

● ● ● "P.3-25"

1.2 List of Function Instructions

1-4 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

bit to the specified bit and
outputs the data.

SHR Shift right Shifts the input argument
to the right by the
specified number of bits.
Inserts “0” from the most
significant bit to the
specified bit and outputs
the data.

● ● ● "P.3-26"

ROL Rotate
left

Shifts the input argument
to the left by the specified
number of bits. Inserts the
value in excess from the
most significant bit into the
data starting from the
least significant bit and
outputs the data.

● ● ● "P.3-27"

ROR Rotate
right

Shifts the input argument
to the right by the
specified number of bits.
Inserts the value in excess
from the least significant
bit into the data starting
from the most significant
bit and outputs the data.

● ● ● "P.3-28"

■ Numerical operation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

ABS Absolute value Outputs the absolute
value.

● ● ● "P.3-29"

SQRT Square root Outputs the the square
root (√) of a number.

● ● ● "P.3-30"

LN Natural
logarithm

Outputs the natural
logarithm (logeX) of a
number.

● ● ● "P.3-31"

LOG Common
logarithm

Outputs the common
logarithm (log10X) of a
number.

● ● ● "P.3-32"

EXP Natural
exponent

Outputs the natural
exponent (eX) of a
number.

● ● ● "P.3-33"

EXPT Exponentiation Outputs the
exponentiation of a
number (an).

● ● ● "P.3-34"

SIN Trigonometric
function (sine)

Outputs the result of the
sine function calculation.

● ● ● "P.3-35"

1.2 List of Function Instructions

WUME-GM1PGR-10 1-5

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

COS Trigonometric
function
(cosine)

Outputs the result of the
cosine function
calculation.

● ● ● "P.3-36"

TAN Trigonometric
function
(tangent)

Outputs the result of the
tangent function
calculation.

● ● ● "P.3-37"

ASIN Trigonometric
function (arc
sine)

Outputs the result of the
arc sine function
calculation.

● ● ● "P.3-38"

ACOS Trigonometric
function (arc
cosine)

Outputs the result of the
arc cosine function
calculation.

● ● ● "P.3-39"

ATAN Trigonometric
function (arc
tangent)

Outputs the result of the
arc tangent function
calculation.

● ● ● "P.3-40"

SMC_PI trigonometric
constant

The conversion constants
Pi, degree, and Radian
are available.

● ● "P.3-40"

■ Data type conversion instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

<Type
1>_TO_<Type
2>

Data type
conversion

Converts type 1 input
argument to type 2.

● ● ● "P.3-41"

TRUNC Data type
conversion

Changes the real number
to the DINT-type data.

● ● ● "P.3-48"

TRUNC_INT Data type
conversion

Changes the real number
to the INT-type data.

● ● ● "P.3-49"

BCD_TO_** Data type
conversion

Converts BCD data to
binary data (BYTE type /
INT type / WORD type /
DWORD type).

● ● ● "P.3-50"

**_TO_BCD Data type
conversion

Converts binary data
(BYTE type / INT type /
WORD type / DWORD
type) to BCD data.

● ● ● "P.3-53"

GRAY_TO_** Data type
conversion

Converts a Gray code to
binary data (BYTE type /
WORD type / DWORD
type).

● ● ● "P.3-55"

**_TO_GRAY Data type
conversion

Converts binary data
(BYTE type / WORD
type / DWORD type) to a
Gray code.

● ● ● "P.3-57"

1.2 List of Function Instructions

1-6 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

BYTE_TO_HE
XinASCII

Data type
conversion

Converts a one-byte
hexadecimal binary-coded
value to a one-word ASCII
code.

● ● ● "P.3-59"

HEXinASCII_T
O_BYTE

Data type
conversion

Converts a one-word
ASCII code to a one-byte
hexadecimal binary-coded
value.

● ● ● "P.3-61"

MEM.Decode Data type
conversion

Converts data in units of
byte to data in units of
DWORD.

● ● ● "P.3-63"

MEM.Encode Data type
conversion

Converts data in units of
DWORD to data in units of
byte.

● ● ● "P.3-64"

MEM.PackArra
yOfBoolToArra
yOfByte

Data type
conversion

Packs a BOOL type array
into an array in bytes and
copies a specified bit size
data.

● ● ● "P.3-66"

MEM.PackBits
To**

Data type
conversion

Packs BOOL type data
and converts it to a BYTE,
a WORD, or a DWORD.

● ● ● "P.3-68"

MEM.PackByt
esTo**

Data type
conversion

Packs BYTE type data
and converts it to one-
word or one-dword data.

● ● ● "P.3-73"

MEM.PackWor
dsToDword

Data type
conversion

Packs WORD type data
and converts it to a
DWORD.

● ● ● "P.3-75"

MEM.UnpackA
rrayOfByte

Data type
conversion

Unpacks a BYTE type
array to data in bits and
copies the data to a
specified BOOL array.

● ● ● "P.3-76"

■ Bit operation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

EXTRACT Bit extraction Outputs a BOOL status at
a specified bit of a
DWORD.

● ● ● "P.3-78"

PUTBIT Bit change Changes the status of a
specified bit of a DWORD.

● ● ● "P.3-79"

SWITCHBIT Bit inversion Inverts the status of a
specified bit of a DWORD.

● ● ● "P.3-80"

MEMUtils.BitC
py

Bit copying Copies a specified size of
bit data.

● ● ● "P.3-81"

1.2 List of Function Instructions

WUME-GM1PGR-10 1-7

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MEM.Reverse
BitsIn**

Bit order
change

Reverses the order of the
bits of BYTE-, WORD-, or
DWORD-type data and
outputs the data of the bits
in reverse order.

● ● ● "P.3-83"

■ Data manipulation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SEL Binary selector Outputs “IN0” when the
input argument G is
FALSE and “IN1” when
the input argument G is
TRUE.

● ● ● "P.3-85"

MUX Multiplexer Outputs the input
argument value
depending on the input
argument K (0,1,2,…).

● ● ● "P.3-86"

LIMIT Limiter Limits the value of the
input argument IN
between the input
arguments MN and MX
and outputs the data.

● ● ● "P.3-87"

MAX Maximum
value

Outputs the maximum
value of the input
argument.

● ● ● "P.3-88"

MIN Minimum value Outputs the minimum
value of the input
argument.

● ● ● "P.3-89"

MEMUtils.Swa
p

Byte swapping Swaps specified bytes (2,
4, or 8 bytes) in order.

● ● ● "P.3-90"

MEM.Compare Memory
comparison

Compares two specified
memory block data pieces
to determine whether they
match

● ● ● "P.3-91"

MEM.FindBloc
k

Memory block
search

Searches memory block
data for specified memory
block data.

● ● ● "P.3-92"

MEM.FindByte Find byte data Searches specified
memory block data for
specified one-byte data.

● ● ● "P.3-94"

MEM.MemFill Memory fill Fills a specified size in
data memory with a
specified data value.

● ● ● "P.3-96"

MEM.MemMov
e

Memory
copying

Copies a specified size in
data memory onto copy
destination data memory.

● ● ● "P.3-97"

1.2 List of Function Instructions

1-8 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MEM.High** High byte/High
WORD
extraction

Outputs high byte / high
WORD of an input value.

● ● ● "P.3-119"

MEM.Low** Low byte/Low
WORD
extraction

Outputs low byte / low
WORD of an input value.

● ● ● "P.3-100"

MEM.Reverse
BYTEsIn**

Byte order
change

Reverses the order of the
bytes of WORD-, or
DWORD-type data and
outputs the data of the
bytes in reverse order.

● ● ● "P.3-101"

MEM.Reverse
WORDsInDW
ORD

WORD order
change

Reverses the order of the
bytes of DWORD-type
data and outputs the data
of the WORD in reverse
order.

● ● ● "P.3-103"

■ Character string instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

LEN/WLEN Length of a
character
string

Outputs the length of a
character string.

● ● ● "P.3-104"

LEFT/WLEFT Extracting
characters
from the left
end

Extracts a character string
consisting of the specified
number of characters from
the left of the character
string.

● ● ● "P.3-105"

RIGHT/
WRIGHT

Extracting
characters
from the right
end

Extracts a character string
consisting of the specified
number of characters from
the right of the character
string.

● ● ● "P.3-106"

MID/WMID Extracting
characters
from the
specified
position

Extracts a character string
consisting of the specified
number of characters from
the specified position of
the character string.

● ● ● "P.3-107"

CONCAT/
WCONCAT

Concatenating
character
strings

Concatenates two
character strings.

● ● ● "P.3-108"

INSERT/
WINSERT

Inserting a
character
string

Inserts another character
string into the specified
position of one character
string.

● ● ● "P.3-109"

DELETE/
WDELETE

Deleting a
character
string

Deletes a character string
consisting of the specified
number of characters from

● ● ● "P.3-111"

1.2 List of Function Instructions

WUME-GM1PGR-10 1-9

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

the specified position of
the character string.

REPLACE/
WREPLACE

Replacing a
character
string

Replaces a character
string, consisting of the
specified number of
characters from the
specified position of the
character string, with
another character string.

● ● ● "P.3-112"

FIND/WFIND Search for a
character
string

Searches for a specified
character string in the
character strings and
outputs the position.

● ● ● "P.3-114"

ConvertUTF16
toUTF8

Character
code
conversion

Converts a UTF-16
character string into a
UTF-8 character string.

● ● ● "P.3-115"

ConvertUTF8t
oUTF16

Character
code
conversion

Converts a UTF-8
character string into a
UTF-16 character string.

● ● ● "P.3-117"

■ SD memory card slot instruction

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SYS_GetSDC
overState

Get SD card
cover open /
close state

Gets an open / close state
of the card cover for the
SD memory card slot.

● ● - "P.3-119"

SYS_GetSDAc
cessRdy

Get SD card
access ready
state

Gets the state whether an
access to the SD memory
card is allowed.

● ● - "P.3-119"

■ CRC operation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MEM.CRC16_
standard

CRC16 Calculates CRC16
checksum.

● ● ● "P.3-120"

MEM.CRC32 CRC32 Calculates CRC32
checksum.

● ● ● "P.3-122"

1.2 List of Function Instructions

1-10 WUME-GM1PGR-10

■ System time instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

SysTimeGetM
s

Get system
time in units of
milliseconds

Gets a length of time that
has been elapsed since
the start of the controller
in units of milliseconds.

● ● ● "P.3-123"

SysTimeGetUs Get system
time in units of
microseconds

Gets a length of time that
has been elapsed since
the start of the controller
in units of microseconds.

● ● ● "P.3-123"

SysTimeGetNs Get system
time in units of
nanoseconds

Gets a length of time that
has been elapsed since
the start of the controller
in units of nanoseconds.

● ● ● "P.3-124"

1.2 List of Function Instructions

WUME-GM1PGR-10 1-11

1.3 List of Function Block Instructions

This section provides lists of the function blocks used by the GM Programmer. These function
blocks can be used with declaring the instances with variables.

1.3.1 Basic Instructions

■ Timer instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

TON Timer ON Starts the timer when the
input argument changes
from FALSE to TRUE and,
after an elapse of the
specified time, the output
argument outputs TRUE.

● ● ● "P.4-2"

TOF Timer OFF Starts the timer when the
input argument changes
from TRUE to FALSE and,
after an elapse of the
specified time, the output
argument outputs FALSE.

● ● ● "P.4-3"

TP Timer pulse Starts the timer when the
input argument changes
from FALSE to TRUE until
the specified time elapses.
Outputs TRUE to the
output argument while the
timer keeps counting.

● ● ● "P.4-4"

RTC Realtime clock Starts counting time from
the specified date and
time when the input
argument changes from
FALSE to TRUE.
Outputs TRUE to the
output argument while the
clock keeps counting time.

● ● ● "P.4-6"

■ Counter instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

CTU Up counter Starts incrementing the
counter value at the rising
edge of the input
argument CU and, after
counting the specified
number of count values,
outputs TRUE.

● ● ● "P.4-7"

1.3 List of Function Block Instructions

1-12 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

CTD Down counter Starts decrementing from
the specified number of
count value at the rising
edge of the input
argument CD. Outputs
TRUE when it reaches 0.

● ● ● "P.4-8"

CTUD Up-down
counter

Starts incrementing the
counter value at the rising
edge of the input
argument CU and, after
counting the specified
number of count values,
outputs TRUE.
Starts decrementing the
counter value at the rising
edge of the input
argument CD and, when it
reaches 0, outputs TRUE.

● ● ● "P.4-9"

■ Edge detection instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

R_TRIG Rising edge
detection

Outputs TRUE for one
cycle only when detecting
a rising edge.

● ● ● "P.4-11"

F_TRIG Falling edge
detection

Outputs TRUE for one
cycle only when detecting
a falling edge.

● ● ● "P.4-12"

■ Bistable circuit instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SR Set-priority
bistable circuit

If the input argument
SET1 is TRUE, outputs
TRUE.
If the input argument
RESET is TRUE, outputs
FALSE.
If both SET1 and RESET1
are TRUE, outputs TRUE

● ● ● "P.4-13"

RS Reset-priority
bistable circuit

If the input argument
SET1 is TRUE, outputs
TRUE.

● ● ● "P.4-14"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-13

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

If the input argument
RESET is TRUE, outputs
FALSE.
If both SET1 and RESET1
are TRUE, outputs
FALSE.

■ Data Type Conversion Instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MEM.Unpack*
*

Data type
conversion

Unpacks BYTE- , WORD-,
or DWORD-type data to
data in bits and outputs
the data.

● ● ● "P.4-16"

■ Data manipulation instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

LIN_TRAFO linear
conversion

Convert one range of
numbers to another
linearly.

● ● ● "P.4-22"

STATISTIC_R
EAL

Statistical data Acquire the maximum,
minimum, and average
values of the input data
(REAL type).

● ● ● "P.4-23"

LIMITALARM Monitoring of
input values

Monitor whether the input
value is between LOW
(lower limit) and HIGH
(upper limit)

● ● ● "P.4-24"

■ Other instructions

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

BLINK output of
blinking signal

Switch the output
argument OUT to TRUE
or FALSE according to the
setting time.

● ● ● "P.4-25"

1.3 List of Function Block Instructions

1-14 WUME-GM1PGR-10

1.3.2 Motion Control Function Blocks (Single Axis Control)

■ Servo ON

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_Power Servo ON Sets the axis to the servo
ON state to be ready for
operation.

● ● ● "P.5-3"

■ Home return

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

PMC_Home Home return Performs home return
operation on the axis.
Uses the home return
function of the amplifier.

● - - "P.5-5"

MC_Home Home return Performs home return
operation on the axis.
Uses the home return
function of the amplifier.

- ● ● "P.5-8"

■ Control switch

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_SetContr
ollerMode

Control mode
setup

Sets up the control mode
for controlling the position,
velocity, and torque.

● ● - "P.5-9"

■ Stop

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_Stop Forced stop Causes the axis to make a
deceleration stop. After
stopping, the axis remains
stopped while Execute is
TRUE.

● ● ● "P.5-11"

MC_Halt Stop Causes the axis to make a
deceleration stop. After
the axis is stopped or
while the axis is being
decelerated, other motion

● ● ● "P.5-13"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-15

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

instructions can be
executed.

■ JOG / Inching

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_Jog Jogging Causes the axis to keep
traveling in a forward or
reverse direction at a
constant velocity while the
input is TRUE.

● ● ● "P.5-17"

SMC_Inch Inching Causes the axis to travel
in a forward or reverse
direction for a specified
relative distance when the
input turns TRUE.

● ● ● "P.5-19"

■ Position control

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_MoveAbs
olute

Absolute value
positioning

Causes the axis to travel
to a position specified as
an absolute position.

● ● ● "P.5-23"

MC_MoveRela
tive

Relative value
positioning

Causes the axis to travel
to a position specified as a
relative position.

● ● ● "P.5-27"

MC_MoveAddi
tive

Change target
position

Adds a relative distance to
the target position of the
immediately preceding
instruction.

● ● ● "P.5-31"

MC_MoveSup
erImposed

Superimposed
positioning

Adds a relative distance, a
velocity, an acceleration,
and a deceleration to the
operations of the
immediately preceding
instruction.

● ● ● "P.5-34"

MC_PositionPr
ofile

Position profile
move

Causes the axis to
operate according to the
profile data that consists
of a combination of
position and time.

● ● ● "P.5-38"

SMC_MoveCo
ntinuousAbsol
ute

Absolute value
position
velocity move

Executes absolute value
positioning and, after the
axis reaches the target
position, causes the axis

● ● ● "P.5-43"

1.3 List of Function Block Instructions

1-16 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

to keep moving at a
specified velocity.

SMC_MoveCo
ntinuousRelati
ve

Relative value
position
velocity move

Executes relative value
positioning and, after the
axis reaches the target
position, causes the axis
to keep moving at a
specified velocity.

● ● ● "P.5-47"

■ Velocity control

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_MoveVelo
city

Velocity control Specifies the velocity of
the axis.

● ● ● "P.5-54"

MC_VelocityPr
ofile

Velocity profile
move

Causes the axis to
operate according to the
profile data that consists
of a combination of time
and velocity.

● ● ● "P.5-57"

MC_Accelerati
onProfile

Acceleration
profile move

Causes the axis to
operate according to the
profile data that consists
of a combination of time
and acceleration.

● ● ● "P.5-60"

■ Torque control

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

PMC_SetTorq
ue

Torque control Specifies by % the torque
of the axis.

● ● ● "P.5-65"

SMC_SetTorq
ue

Torque control Specifies by Nm the
torque of the axis.

- ● ● "P.5-67"

■ Direct commands

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_FollowP
osition

Target position
command at
every control
interval

Commands the target
position at every control
interval.

● ● ● "P.5-71"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-17

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_FollowV
elocity

Target velocity
command at
every control
interval

Commands the target
velocity at every control
interval.

● ● ● "P.5-73"

■ Axis structure

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

AXIS_REF_S
M3
AXIS_REF_VI
RTUAL_SM3
FREE_ENCO
DER_REF

Axis device
control

Controls devices with real
axis, virtual axis, or
encoder axis.

● ● ● "P.5-92"

1.3.3 Motion Control Function Blocks (Synchronous Control)

■ Cam operation

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_CAM_RE
F

Cam profile Cam profile structure ● ● ● "P.6-15"

MC_CamTable
Select

Cam profile
selection

Specifies the cam profile
for cam synchronous
operation.

● ● ● "P.6-23"

MC_CamIn Start cam
control

Starts cam synchronous
operation.

● ● ● "P.6-27"

MC_CamOut Cancel cam
operation

Cancels cam synchronous
operation.

● ● ● "P.6-32"

SMC_GetTapp
etValue

Get single
tappet
information

Outputs single tappet
information defined in the
cam profile.

● ● ● "P.6-33"

SMC_CamReg
ister

Get all tappet
information

Outputs all tappet
information relative to any
master axis according to
the cam profile.

● ● ● "P.6-35"

SMC_CAMBo
unds

Slave
parameter
calculation

Calculate the maximum/
minimum parameter
values that the slave is

● ● ● "P.6-38"

1.3 List of Function Block Instructions

1-18 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

reaching relative to master
parameters.

SMC_GetCam
SlaveSetPositi
on

Slave position
calculation

Calculates starting
position, velocity, and
acceleration values of the
slave based on the set
cam table.

● ● ● "P.6-40"

■ Gear operation

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_GearIn Start gear
operation

Starts gear synchronous
operation.

● ● ● "P.6-2"

MC_GearInPo
s

Position
specified gear
operation

Starts gear synchronous
operation from the
specified absolute
position.

● ● ● "P.6-5"

MC_GearOut Cancel gear
operation

Cancels the gear
synchronous operation.

● ● ● "P.6-10"

■ Phase correction

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_Phasing Master axis
phase
correction

Corrects the phase
between the master and
slave axes.

● ● ● "P.6-59"

1.3.4 Motion Control Function Blocks (Interpolation Control)

■ Interpolation Control

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

PMC_
Interpolator2D

2-axis
Interpolation
Control

Specify the CNC pattern
to perform 2-axis
interpolation control.

● ● ● "P.7-2"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-19

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

PMC_
Interpolator3D

3-axis
Interpolation
Control

Specify the CNC pattern
to perform 3-axis
interpolation control.

● ● ● "P.7-4"

PMC_NCDeco
der

CNC Table
Conversion

Convert the CNC table to
executable format.

● ● ● "P.7-6"

1.3.5 Motion Control Function Blocks (CNC Control)

■ CNC data decoding

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_
NCDecoder

CNC program
conversion

Converts the CNC
program to executable
format.

● ● ● "P.8-7"

SMC_ReadNC
File2

Read CNC file Reads a CNC file from an
SD card.

● ● ● "P.8-11"

SMC_NCInter
preter

CNC file
conversion

Converts CNC data read
through
SMC_ReadNCFile2 to
executable format.

● ● ● "P.8-16"

SMC_GEOINF
O

CNC
executable
format data

This is a structure of CNC
executable format data.

● ● ● "P.8-19"

■ Pre-processing after decoding

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_CheckV
elocities

Check angle
between paths

Check the angle between
the paths and switch
between P point control
and C point control.

● ● ● "P.8-22"

SMC_Smooth
Path

Path
smoothing

Smooths the path of the
specified CNC program.

● ● ● "P.8-23"

SMC_RoundP
ath

Arc correction
between paths

Corrects between paths in
the specified CNC
program with an arc.

● ● ● "P.8-26"

SMC_ToolRadi
usCorr

Tool radius
correction for
path

Applies tool radius
correction to the path of
the specified CNC
program.

● ● ● "P.8-29"

1.3 List of Function Block Instructions

1-20 WUME-GM1PGR-10

■ Control calculation

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_Interpola
tor

CNC control
operation

Calculates discrete data
for the control interval
from the continuous path.

● ● ● "P.8-31"

SMC_GetMPa
rameters

Get M-code
parameters

Parameters can be
received from the CNC
processing unit that is
paused by the M-code.

● ● ● "P.8-35"

SMC_PreAckn
owledgeMFun
ction

Deactivate M-
code

The operation can
continue without pausing
by ignoring the M-code
description.

● ● ● "P.8-36"

■ Control command & kinematics conversion

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_ControlA
xisByPos

Control
command

Command the CNC
position information to the
motor.

● ● ● "P.8-37"

SMC_ToolLen
gthCorr

Tool length
correction

Offsets the coordinates by
the tool length.

● ● ● "P.8-38"

SMC_TRAFO_
Polar

Conversion to
polar
coordinates

Converts two-dimensional
coordinates to polar
coordinates.

● ● ● "P.8-41"

SMC_TRAFO
F_Polar

Conversion to
polar
coordinates

Converts polar
coordinates to two-
dimensional coordinates.

● ● ● "P.8-42"

SMC_TRAFO_
Bipod_Arm

Bipod robot
conversion

Converts Bipod robot
hand XY coordinates to
angle information of each
axis motor.

● ● ● "P.8-44"

SMC_TRAFO_
Gantry2

XY linear type
robot
conversion

Converts two-dimensional
(X, Y) coordinates to
position information of
each axis motor.

● ● ● "P.8-46"

SMC_TRAFO
F_Gantry2

XY linear type
robot
conversion

Converts position
information of each axis
motor to two-dimensional
(X, Y) coordinates.

● ● ● "P.8-47"

SMC_TRAFO_
Gantry3

XYZ linear
type robot
conversion

Converts three-
dimensional (X, Y, Z)
coordinates to position
information of each axis
motor.

● ● ● "P.8-49"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-21

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SMC_TRAFO
F_Gantry3

XYZ linear
type robot
conversion

Converts position
information of each axis
motor to three-
dimensional (X, Y, Z)
coordinates.

● ● ● "P.8-50"

SMC_TRAFO_
GantryCutter2

Conversion of
XY linear type
robot with
single
rotational axis

Converts two-dimensional
(X, Y) gantry coordinates
with a rotational axis
cutter to position
information of each axis
motor.

● ● ● "P.8-52"

SMC_TRAFO_
GantryCutter3

Conversion of
XYZ linear
type robot with
single
rotational axis

Converts three-
dimensional (X, Y, Z)
gantry coordinates with a
rotational axis cutter to
position information of
each axis motor.

● ● ● "P.8-53"

SMC_TRAFO_
Scara2

SCARA robot
transformation

Converts hand coordinate
pi (X, Y) of a 2-link
SCARA robot to angle
information of each axis
motor.

● ● ● "P.8-54"

SMC_TRAFO_
Scara3

SCARA robot
transformation

Converts hand coordinate
pi (X, Y) of a 3-link
SCARA robot, equipped
with a 1-link mechanism
that maintains the posture
of the tip tool to a constant
direction, to angle
information of each axis
motor.

● ● ● "P.8-56"

SMC_TRAFO
F_Scara2

SCARA robot
transformation

Converts angle
information of each axis
motor to hand coordinates
(dX, dY) of a 2-link
SCARA robot.

● ● ● "P.8-59"

SMC_TRAFO
F_Scara3

SCARA robot
transformation

Converts angle
information of each axis
motor.to hand coordinates
(dX, dY) of a 3-link
SCARA robot.

● ● ● "P.8-61"

■ CNC program

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

G00, G01 Linear
interpolation

Moves from the current
position to target
coordinates by linear
interpolation.

● ● ● "P.8-69"

1.3 List of Function Block Instructions

1-22 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

G02, G03 Circular
interpolation

Moves from the current
position to target
coordinates by circular
interpolation.

● ● ● "P.8-72"

G04 Dwell time Sets a time to wait until
next processing is
executed.

● ● ● "P.8-79"

G05, G10 Spline
Interpolation

The tool is moved from
the current coordinates to
target coordinates by
spline interpolation.

● ● ● "P.8-81"

G08, G09 Elliptic
Interpolation

The tool is moved from
the current coordinates to
target coordinates by
elliptic interpolation.

● ● ● "P.8-90"

G15, G16,
G17, G18,
G19

Plane
specification

Specifies a plane in which
interpolation motion is
performed.

● ● ● "P.8-95"

G20, G36,
G37

Jump and loop
process

Specifies variables that
can be used in jump
condition settings and
loop conditions.

● ● ● "P.8-98"

G40, G41,
G42

Tool radius
correction for
path

Sets the start and end
points of tool radius
correction.

● ● ● "P.8-114"

G43 Tool length
correction

Sets the tool length. ● ● ● "P.8-98"

G50, G51,
G52

Path
smoothing

Sets smoothing start and
end points.

● ● ● "P.8-123"

G53, G54,
G55, G56

Coordinate
conversion

Converts the reference
coordinate system under
CNC from the machine
coordinate system (MCS)
to the decoder coordinate
system (DCS).

● ● ● "P.8-127"

G75 Timing
synchronizatio
n

Synchronizes the timing of
interpolation operations in
SMC_Interolator.

● ● ● "P.8-138"

G90, G91 Specification
of coordinates

Sets any of absolute
coordinate specification
and relative coordinate
specification.

● ● ● "P.8-140"

G92 Start position
specification

Sets the start position of a
CNC program operation.

● ● ● "P.8-142"

G98, G99 Circular arc
coordinate
specification

Circular arc coordinates
can be specified as either
absolute coordinates or
relative coordinates.

● ● ● "P.8-144"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-23

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

M-code M-code
programming

When the program
reaches a line at which
the M-code is executed,
SMC_Interpolator can be
paused to execute a
desired process.

● ● ● "P.8-147"

H-Switch IO output
switching by
H-switch

You can turn ON or OFF
the IO output during the
execution of an
interpolation operation
with specified timing.

● ● ● "P.8-151"

CNC program
file

Programming
by CNC
program file

With the method of
reading a CNC program
from an SD card, you can
program code using any
of subprograms, variables,
operators, and functions.

● ● ● "P.8-155"

1.3.6 Motion Control Function Blocks (Motion Communication Control)

■ RTEX/EtherCAT Common

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

SetCommunic
ationState

Change device
state setting

Specifies a device state. - ● - "P.9-3"

CheckSupport
edCommunicat
ionState

Check
supported
state

Checks if the device
supports a transition to a
requested setting.

- ● - "P.9-4"

CheckCurrent
SupportedCom
municationStat
e

Check state
change
availability

Checks if the device in the
current state provides a
transition to a requested
setting.

- ● - "P.9-5"

■ RTEX

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

RTEX_ClearA
mpAlarm

Clear amplifier
alarm

Clears the amplifier's
alarm.

● - - "P.9-6"

RTEX_ReadA
mpAlarm

Read amplifier
alarm

Reads the amplifier's
alarm.

● - - "P.9-9"

1.3 List of Function Block Instructions

1-24 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

RTEX_ReadA
mpState

Amplifier alarm
status

Reads the amplifier's
alarm status.

● - - "P.9-10"

RTEX_ReadA
mpData

Amplifier
monitor

Reads the amplifier's
monitor data.

● - - "P.9-11"

RTEX_ReadA
mpParameter

Read amplifier
parameter

Reads the amplifier's
parameters.

● - - "P.9-12"

RTEX_WriteA
mpParameter

Write amplifier
parameter

Writes the amplifier's
parameters.

● - - "P.9-13"

RTEX_WriteA
mpEEPROM

Write amplifier
EEPROM

Writes parameters of the
servo amplifier to
EEPROM.

● - - "P.9-14"

RTEX_Reset Reset RTEX Resets the entire RTEX
network.

● - - "P.9-15"

RTEX_ClearA
mpMultiTurnD
ata

Clear the
multi-turn data

Clears the multi-turn data
of the amplifier.

● - - "P.9-16"

RTEX_ClearA
mpPositionalD
eviation

Clear amplifier
deviation
counter

Clears the deviation
counter of the amplifier.

● - - "P.9-17"

RTEX_GetTra
ckingComman
dError

Error Measures the number of
sent RTEX commands
and the number of lost
RTEX commands.

● - - "P.9-19"

RTEX_ReadP
ot

Read NOT of
amplifier

Reads the amplifier's NOT
status.

● - - "P.9-20"

RTEX_ReadN
ot

Read POT of
amplifier

Reads the amplifier's POT
status.

● - - "P.9-20"

■ EtherCAT

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

ETC_CO_Sdo
Read

Read slave
parameter

Reads EtherCAT slave
parameters.
Unlike
ETC_CO_SdoRead4, this
FB supports parameters
longer than 4 bytes.

- ● - "P.9-22"

ETC_CO_Sdo
Read4

Read four
bytes of slave
parameter

Reads EtherCAT slave
parameters.
Unlike
ETC_CO_SdoRead, this
FB supports only
parameters with 4 bytes or
less.

- ● - "P.9-23"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-25

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

ETC_CO_Sdo
ReadDWord

Read double
words of slave
parameter

Just like
ETC_CO_SdoRead4, this
FB reads the EtherCAT
slave parameters.
The read data is stored in
DWORD (dwData), not in
an array.

- ● - "P.9-24"

ETC_CO_Sdo
Read_Access

Read slave
parameter
index

Just like
ETC_CO_SdoRead, this
FB reads the EtherCAT
slave parameters.
By setting the
xCompleteAccess input to
TRUE and the
bySubIndex input to 0,
you can read complete
indexes including all
entries.

- ● - "P.9-25"

ETC_CO_Sdo
Read_Channel

Read priority
specification of
slave
parameter

Reads all EtherCAT slave
parameters.

- ● - "P.9-27"

ETC_CO_Sdo
Write

Write slave
parameter

Writes EtherCAT slave
parameters.
Unlike
ETC_CO_SdoWrite4, this
FB supports parameters
longer than 4 bytes.

- ● - "P.9-28"

ETC_CO_Sdo
Write4

Write four
bytes of slave
parameter

Writes EtherCAT slave
parameters.
Unlike
ETC_CO_SdoWrite, this
FB supports only
parameters with 4 bytes or
less.

- ● - "P.9-30"

ETC_CO_Sdo
WriteDWord

Write double
words of slave
parameter

Just like
ETC_CO_SdoWrite4, this
FB writes the EtherCAT
slave parameters.
The write data is
transferred in DWORD
(dwData), not in an array.

- ● - "P.9-31"

ETC_CO_Sdo
Write_Access

Write slave
parameter
index

Just like
ETC_CO_SdoWrite, this
FB writes the EtherCAT
slave parameters.
By setting the
xCompleteAccess input to
TRUE and the
bySubIndex input to 0,
you can write complete
indexes including all
entries.

- ● - "P.9-32"

1.3 List of Function Block Instructions

1-26 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

By using the
byChannelPriority (BYTE)
input, you can specify the
channel and priority using
a CoE mailbox message.

ReadIdentificat
ion

Read slave
identification
data

Reads identification data
from EtherCAT slaves.

- ● - "P.9-34"

ReadMemory Read slave
memory

Reads the EtherCAT slave
memory.

- ● - "P.9-35"

ReadNbrSlave
s

Read the
number of
connected
slaves

Reads the number of
slaves currently
connected.

- ● - "P.9-36"

WriteMemory Write slave
memory

Writes the EtherCAT slave
memory.

- ● - "P.9-37"

PETC_ClearA
mpPositionalD
eviation

Clear amplifier
deviation
counter

Clears the deviation
counter of the amplifier.

- ● - "P.9-38"

IoDrvEtherCAT EtherCAT
master control

Controls EtherCAT master
communication.

- ● - "P.9-40"

IoDrvEtherCAT
.GetStatistics

Get EtherCAT
frame statistics
information

Reads EtherCAT master
statistics data.

- ● - "P.9-41"

IoDrvEtherCAT
.ClearStatistics

Clear
EtherCAT
frame statistics
information

Clears EtherCAT master
statistics data.

- ● - "P.9-42"

ETCSlave EtherCAT
slave control

Controls EtherCAT slave
communication.

- ● - "P.9-42"

1.3.7 Motion Control Function Blocks (Auxiliary Function)

■ Motion auxiliary function (Monitoring)

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_ReadActu
alPosition

Read actual
position

Reads the actual position
data of the axis.

● ● ● "P.10-2"

MC_ReadActu
alVelocity

Read actual
velocity

Reads the actual velocity
of the axis.

● ● ● "P.10-2"

PMC_ReadAct
ualTorque

Read actual
torque

Read the actual torque
value of the axis.

● ● - "P.10-3"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-27

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_ReadActu
alTorque

Read actual
torque

Reads the actual torque
value of the axis.

- ● - "P.10-4"

MC_ReadAxis
Error

Read axis
error

Gets general axis errors
not related to function
blocks.

- ● ● "P.10-5"

MC_ReadStat
us

Read status Reads the status
information of the axis.

● ● ● "P.10-6"

SMC_InPositio
n

In-position
judgment

Compares the actual
position of the AMP with
the command value and
judges whether the
position is within the
specified range.

● ● ● "P.10-8"

SMC_ReadFB
Error

Read oldest
error

Reads the oldest function
block error information.

● ● ● "P.10-10"

SMC_ClearFB
Error

Clear oldest
error

Clears the oldest FB error
information.

● ● ● "P.10-11"

SMC_CheckA
xisCommunica
tion

Check axis
communication
state

Checks the
communication state of
the axis.

● ● ● "P.10-12"

SMC_CheckLi
mits

Check
exceeding
limits

Checks whether the
velocity, acceleration, or
deceleration is in excess
of the dynamic limit set
value of the device.

● ● ● "P.10-13"

SMC_GetMax
SetAccDec

Measure
maximum
acceleration /
deceleration

Measures the maximum
value of the axis
acceleration / deceleration
command.

● ● ● "P.10-14"

SMC_GetMax
SetVelocity

Measure
maximum
velocity

Measures the maximum
value of the axis velocity
command.

● ● ● "P.10-15"

SMC_GetTrac
kingError

Measure
tracking error

Measures the tracking
error of the actual position
for the axis command
position.

● ● ● "P.10-16"

SMC_Measure
Distance

Measures
turnaround
travel distance

Measures the travel
distance.

● ● ● "P.10-17"

SMC_ReadSet
Position

Read axis set
position

Reads the set command
position of the axis.

● ● ● "P.10-18"

1.3 List of Function Block Instructions

1-28 WUME-GM1PGR-10

■ Motion auxiliary function (Change / reset)

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

MC_Reset Reset axis
error

Resets the state transition
error of the axis.

● ● ● "P.10-19"

SMC3_ReinitD
rive

Reinitialize
axis

Restarts the servo
amplifier / axis.

● ● ● "P.10-20"

MC_SetPositio
n

Change actual
position

Changes the actual
command position of the
axis.

● ● ● "P.10-21"

SMC_Change
DynamicLimits

Change axis
settings

Change the dynamic limit
of the axis.

● ● ● "P.10-21"

SMC_Change
GearingRatio

Change axis
settings

Change the shaft type and
gear ratio.

● ● ● "P.10-23"

SMC_SetMove
mentType

Change axis
settings

Change the type of the
virtual axis.

● ● ● "P.10-26"

SMC_SetRam
pType

Change axis
settings

Change the speed ramp
type of the axis.

● ● ● "P.10-28"

SMC_SetSoft
wareLimits

Change axis
settings

Change the soft limit of
the axis.

● ● ● "P.10-29"

■ Motion auxiliary function (Other functions)

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

PMC_ReadLat
chPosition

Monitor AMP
latch position

Monitors the AMP latch
position.

● - - "P.10-31"

PMC_StopLatc
hPosition

Stop AMP
latch
monitoring

Stops the axis at the AMP
latch position.

● - - "P.10-33"

MC_TouchPro
be

Enable AMP
latch
monitoring

Reads the axis position
when a trigger signal
occurs.

- ● ● "P.10-36"

MC_AbortTrigg
er

Disable AMP
latch
monitoring

Aborts the trigger event
(MC_TouchProbe).

- ● ● "P.10-38"

MC_DigitalCa
mSwitch

Enable digital
cam switch

Performs ON / OFF
control on the digital
output according to the
axis position.

● ● ● "P.10-39"

SMC_Backlas
hCompensatio
n

Compensate
backlash

Compensates the
backlash.

● ● ● "P.10-43"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-29

1.3.8 Function Blocks (Others)

■ COM port (General-purpose communication)
The following table lists the function blocks that are used to perform general-purpose
communication with the COM port.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

COM.Open Open COM
port

Opens the COM port. ● ● - "P.11-5"

COM.Close Close COM
port

Closes the COM port. ● ● - "P.11-8"

COM.Read Read COM
port

Reads data from the COM
port.

● ● - "P.11-9"

COM.Write Write COM
port

Writes data to the COM
port.

● ● - "P.11-10"

COM.ERROR Error ID This is an enumeration
type error ID that is output
when the COM port
(general-purpose
communication) function
block is executed.

● ● - "P.11-11"

■ COM port (Modbus COM)
The following table lists the instructions that are used to perform ModbusRTU communication
with the COM port.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

IoDrvModbusC
omPort

ModbusComP
ort device

This is a function block
that controls the
Modbus_Master_COM_P
ort device.

● ● - "P.11-12"

IoDrvModbus.
ModbusChann
el

Start sending
Modbus
command

Sends the command set
in the Modbus Slave
channel of the
ModbusSlaveCOM_Port
device.

● ● - "P.11-12"

IoDrvModbus.
ModbusReque
st

Modbus
request

Processes the Modbus
command specified by I/O
without using the
ModbusMasterComPort
device.

● ● - "P.11-13"

IoDrvModbus.
ModbusReque
st2

Modbus
request 2

Like the ModbusRequest,
processes the Modbus
command specified by I/O
without using the
ModbusMasterComPort
device.

● ● - "P.11-15"

1.3 List of Function Block Instructions

1-30 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

IoDrvModbus.
ModbusSlave
ComPort

ModbusSlave
ComPort
device

This is a function block
that controls the
Modbus_Slave_COM_Por
t device.

● ● - "P.11-16"

IoDrvModbus.
MB_ErrorCode
s

Error code This is an enumeration
type error code that is
output when the function
block for Modbus
communication instruction
that uses the COM port is
executed.

● ● - "P.11-17"

■ LAN port (IoDrvEthernet)
The following table lists the library functions that are used for the network interface to perform
communication with the LAN port.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

IoDrvEthernet Ethernet
device

This is a function block
that acquires the status of
the LANPort device.

● ● - "P.11-18"

IoDrvEthernet.I
PARRAY_TO_I
NADDR

From array
type to union
type

This is a function that
converts an array type IP
address to an INADDR
(union type).

● ● ● "P.11-18"

IoDrvEthernet.I
PARRAY_TO_I
PSTRING

From array
type to
character
string type

This is a function that
converts an array type IP
address to a character
string type.

● ● ● "P.11-19"

IoDrvEthernet.I
PARRAY_TO_
UDINT

From array
type to UDINT
type

This is a function that
converts an array type IP
address to a UDINT type.

● ● ● "P.11-19"

IoDrvEthernet.I
PSTRING_TO
_UDINT

From
character
string type to
UDINT type

This is a function that
converts a character string
type IP address to a
UDINT type.

● ● ● "P.11-20"

IoDrvEthernet.
UDINT_TO_IP
ARRAY

From UDINT
type to array
type

This is a function that
converts a UDINT type IP
address to an array type.

● ● ● "P.11-20"

IoDrvEthernet.
UDINT_TO_IP
STRING

From UDINT
type to
character
string type

This is a function that
converts a UDINT type IP
address to an array type.

● ● ● "P.11-21"

■ LAN port (General-purpose communication)
The following table lists the library functions that are used to perform general-purpose
communication with the LAN port using the TCP or UDP protocol.

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-31

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

NBS.TCP_Clie
nt

Connect to
TCP client

Connects to the TCP/IP
client.

● ● - "P.11-22"

NBS.TCP_Con
nection

Connect TCP Establishes the
connection of the client
connecting to the
connection port opened by
TCP_Server.

● ● - "P.11-23"

NBS.TCP_Rea
d

Receive TCP
data

Acquires data received by
the connection port that is
established by
TCP_Connection.

● ● - "P.11-24"

NBS.TCP_Ser
ver

Connect TCP
server

Opens the specified port
as a TCP/IP connection
port.

● ● - "P.11-25"

NBS.TCP_Writ
e

Send TCP
data

Sends data to the
connection port that is
established by
TCP_Connection.

● ● - "P.11-26"

NBS.UDP_Pe
er

Open UDP
port

Opens the UDP/IP port. ● ● - "P.11-27"

NBS.UDP_Re
ceive

Receive UDP
data

Receives data to the
connection handle
acquired by UDP_Peer.

● ● - "P.11-28"

NBS.UDP_Se
nd

Send UDP
data

Sends data to the
connection handle
acquired by UDP_Peer.

● ● - "P.11-30"

NBS.ERROR Error code This is an enumeration
type error code that is
output when the function
block for communication
instruction that uses the
LAN port is executed.

● ● - "P.11-29"

■ LAN port (Modbus TCP)
The following table lists the library functions that are used to perform ModbusTCP
communication with the LAN port.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

IoDrvModbusT
CP

ModbusTCP
device

This is a function block
that controls the
Modbus_TCP_Master
device.

● ● - "P.11-43"

IoDrvModbusT
CP.ModbusCh
annel

Start sending
Modbus
command

Sends the command set
in the Modbus Slave
channel of the
ModbusTCP_Slave
device.

● ● - "P.11-43"

1.3 List of Function Block Instructions

1-32 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

IoDrvModbusT
CP.ModbusRe
quest

Modbus
request

Processes the Modbus
command specified by I/O
without using the
Modbus_TCP_Slave
device.

● ● - "P.11-44"

IoDrvModbusT
CPSlave

ModbusTCPSl
ave device

This is a function block
that controls the
Modbus__TCP_Slave
device.

● ● - "P.11-46"

IoDrvModbus.
MB_ErrorCode
s

Error code This is an enumeration
type error code that is
output when the function
block for Modbus
communication instruction
that uses the LAN port is
executed.

● ● - "P.11-47"

■ LAN port (EtherNet/IP)
The following table lists instructions that are used to control EtherNet/IP scanner and adapter
functions using the GM1 controller.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

IoDrvEtherNetI
P

EtherNet/IP
scanner device

This is a function block
that controls the
EtherNet/IP scanner
device.

● ● - "P.11-48"

RemoteAdapte
r

Remote
adapter device

This is a function block for
the Remote adapter
device linked to the
EtherNet/IP scanner
device.

● ● - "P.11-49"

IoDrvEtherNetI
PAdapter

EtherNet/IP
adapter device

This is a function block
that controls the
EtherNet/IP adapter
device.

● ● - "P.11-51"

Module EtherNet/IP
module device

This is a function block
that controls the
EtherNet/IP module
device.

● ● - "P.11-53"

Apply_Attribut
es

Apply_Attribut
es service

This is a function block
that calls Apply_Attributes
service of the CIP object
instance.

● ● - "P.11-54"

Generic_Servi
ce

Execute
generic service

This is a function block
that executes generic
services with the
EtherNet/IP adapter.

● ● - "P.11-55"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-33

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

Get_Attribute_
Single

Inquire specific
attributes of a
specific
instance

This is a function block
that inquires specific
attributes of a specific
instance of the CIP object

● ● - "P.11-57"

Get_Attributes
_All

Inquire all
attributes of a
specific
instance

This is a function block
that inquires all attributes
of a specific instance of
the CIP object

● ● - "P.11-58"

Set_Attribute_
Single

Set specific
attributes of a
specific
instance

This is a function block
that sets specific attributes
of a specific instance of
the CIP object

● ● - "P.11-59"

Set_Attributes
_All

Set all
attributes of a
specific
instance

This is a function block
that sets all attributes of a
specific instance of the
CIP object

● ● - "P.11-60"

NOP NOP service This is a function block
that executes the NOP
service of a specific
instance of the CIP object

● ● - "P.11-61"

Reset Reset service This is a function block
that executes the Reset
service of a specific
instance of the CIP object

● ● - "P.11-62"

Start Start service This is a function block
that executes the Start
service of a specific
instance of the CIP object

● ● - "P.11-63"

Stop Stop service This is a function block
that executes the Stop
service of a specific
instance of the CIP object

● ● - "P.11-64"

ENIP.ERROR Message
service
instruction
error code

- ● ● - "P.11-65"

ENIP.CIPClass Service class
code

- ● ● - "P.11-68"

■ MQTT

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

MQTT.MQTTCl
ient

MQTT client
connection

Connects to an MQTT
broker server.

● ● ● "P.11-77"

MQTT.MQTTP
ublish

MQTT publish
function

Sends a message to an
MQTT broker server.

● ● ● "P.11-83"

1.3 List of Function Block Instructions

1-34 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

MQTT.MQTTS
ubscribe

MQTT
subscribe
function

Registers subscriptions on
an MQTT broker server.

● ● ● "P.11-86"

■ DNS

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

DNS_GetIPAd
dress

Name
Resolution

Sends the DNS server a
query about the IP
address of the specified
host name.

● ● - "P.11-103"

■ SD card operation (File operation)
Files in the SD card inserted in the SD memory card slot can be operated.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

FILE.Open Open file Opens a file or creates a
new file.

● ● - "P.11-107"

FILE.Close Close file Closes a file. ● ● - "P.11-108"

FILE.Read Read file Reads data from the file
opened by the Open
instruction.

● ● - "P.11-109"

FILE.Write Write file Writes data to the file
opened by the Open
instruction.

● ● - "P.11-110"

FILE.Flush Flush file Flushes buffer contents to
the file opened by the
Open instruction.

● ● - "P.11-111"

FILE.Copy Copy file Copies a file. ● ● - "P.11-112"

FILE.Rename Rename file Changes a file name. ● ● - "P.11-113"

FILE.Delete Delete file Deletes a file. ● ● - "P.11-114"

FILE.EOF EOF of file Determines whether the
current offset of a file is
EOF (End Of File) or not.

● ● - "P.11-115"

FILE.GetAttrib
ute

Get file
attribute

Gets file attributes
(compressed, hidden,
normal, read only).

● ● - "P.11-116"

FILE.GetPos Get file offset Gets the current offset of
a file.

● ● - "P.11-117"

FILE.GetSize Get file size Gets the file size. ● ● - "P.11-118"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-35

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

FILE.GetTime Get file update
time

Get the update time of a
file

● ● - "P.11-119"

FILE.SetPos Set file offset Sets the offset of a file. ● ● - "P.11-120"

■ SD card operation (Directory operation)
Directories in the SD card inserted in the SD memory card slot can be operated.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

FILE.DirCreate Create
directory

Creates a directory with a
specified name.

● ● - "P.11-126"

FILE.DirOpen Open directory Opens a directory. ● ● - "P.11-127"

FILE.DirClose Close directory Closes a directory ● ● - "P.11-128"

FILE.DirCopy Copy directory Copies a directory. ● ● - "P.11-129"

FILE.DirRena
me

Rename
directory

Renames a directory ● ● - "P.11-130"

FILE.DirRemo
ve

Delete
directory

Deletes a directory. ● ● - "P.11-131"

FILE.DirList Directory list Outputs a list of
directories and files inside
the directory.

● ● - "P.11-132"

■ SD card operation (CSV file operation)
CSV files in the SD card inserted in the SD memory card slot can be operated (reading,
writing).

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

CSV.CSVRead
erInit

Specify target
CSV file to be
read

Specifies a CSV file from
which data is read.

● ● ● "P.11-134"

CSV.ReadAll Read all file
data by batch

Reads all data from a
CSV file.

● ● ● "P.11-136"

CSV.NextElem
ent

Read one
element

Reads one element from a
CSV file.

● ● ● "P.11-138"

CSV.NextLine Read one line Reads one line from a
CSV file.

● ● ● "P.11-139"

CSV.Init Specify target
CSV file to
write.

Specifies a CSV file to
which data is written.

● ● ● "P.11-143"

1.3 List of Function Block Instructions

1-36 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

CSV.Add’Type’ Add data to
internal buffer

Adds input data to an
internal buffer.

● ● ● "P.11-145"

CSV.NewLine Add line
separator to
internal buffer

Adds a line separator to
an internal buffer.

● ● ● "P.11-147"

CSV.WriteFile Write, save
data to CSV
file

Writes data added to an
internal buffer to a CSV
file and saves the data.

● ● ● "P.11-148"

CSV.NewFile Change target
to write to new
CSV file

Changes the target to
write to a new CSV file.

● ● ● "P.11-149"

CSV.CSVWrite
r

CSVWriter This FB is used in the
input / output parameters
of CSV.Init, Add’Type’,
NewLine, NewFile, and
WriteFile.

● ● ● "P.11-151"

■ Clock setting
The following table lists the function blocks that are used to set the clock of the GM1 Controller.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SYS_GetTime Get time This is a function block
that gets the current local
time

● ● - "P.11-160"

SYS_SetTime Set time This is a function block
that sets the current local
time.

● ● - "P.11-161"

SYS_GetTime
zone

Get time zone
information

This is a function block
that gets the time zone
information.

● ● - "P.11-162"

SYS_SetTimez
one

Set time zone
information

This is a function block
that sets the time zone
information.

● ● - "P.11-163"

SYS_DateCon
cat

Convert from
UINT type to
DATE type

This is a function that
converts a UINT type date
to a DATE type.

● ● - "P.11-163"

SYS_DateSplit Convert from
DATE type to
UINT type

This is a function that
converts a DATE type
date to a UINT type.

● ● - "P.11-164"

SYS_DTConc
at

Convert from
UINT type to
DT type

This is a function that
converts a UINT type date
and time to a DT type.

● ● - "P.11-165"

SYS_DTSplit Convert from
DT type to
UINT type

This is a function that
converts a DT type date
and time to a UINT type.

● ● - "P.11-166"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-37

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SYS_GetDayO
fWeek

Get day of the
week

This is a function that gets
the day of the week from
the DATE type date.

● ● - "P.11-167"

SYS_TODCon
cat

Convert from
UINT type to
TOD type

This is a function that
converts a UINT type time
with milliseconds to a
TOD type.

● ● - "P.11-168"

SYS_TODSplit Convert from
UINT type to
TOD type

This is a function that
converts a TOD type time
with milliseconds to a
UINT type.

● ● - "P.11-169"

ERROR Clock
instruction
error code

- ● ● - "P.11-170"

SNTP.SNTPG
etUTCTime

Get SNTP time This is a function block
used to communicate with
the SNTP server and get
the current server time
and Main Unit time.

● ● ● "P.11-170"

■ System data

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

SYS_GetSyste
mError

Get system
error

Gets the information of a
system error that has
occurred in the GM1
Controller.

● ● - "P.11-174"

SYS_ClearSys
temError

Clear system
error

Clears a system error in
the GM1 Controller.

● ● - "P.11-174"

■ PID control
This is a function block related to PID control of the GM1 controller.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

PD PD control Performs PD control. ● ● - "P.11-175"

PID PID control Performs PID control. ● ● - "P.11-176"

PID_FIXCYCL
E

PID control
(any cycle
time)

Performs PID control.
Cycle time can be
manually set.

● ● - "P.11-177"

■ Recipe Function
It is a method list of the function block RecipeManCommands of the recipe function.

1.3 List of Function Block Instructions

1-38 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

CreateRecipe Creating a
recipe

Create a new recipe. ● ● ● "P.11-180"

DeleteRecipe Delete recipe Delete the recipe. ● ● ● "P.11-183"

LoadFromAnd
WriteRecipe

Read recipe
file

Reads the value from the
recipe file and writes to
the recipe and the current
value.

● ● ● "P.11-184"

ReadAndSave
Recipe

Save to recipe
file

Save the current value in
the recipe and recipe file.

● ● ● "P.11-186"

prvCompareR
ecipe

Recipe
comparison

Compare the recipe with
the current value.

● ● ● "P.11-187"

ReloadRecipe
s

Reload recipe
file

Read the recipe (inside)
from the recipe file in the
SD card.

● ● ● "P.11-189"

GetRecipeCou
nt

Get the
number of
recipes

Gets the number of
recipes that belong to the
recipe definition.

● ● ● "P.11-190"

GetRecipeNa
mes

Get a list of
recipe names

Gets a list of recipe
names that belong to the
recipe definition.

● ● ● "P.11-191"

GetLastError Get last error
information

Gets the ReturnValues
values for last processing.

● ● ● "P.11-193"

GetLastInfo Get last info
information

Gets the InfoValues
values for last processing.

● ● ● "P.11-195"

ResetLastError Reset last
error
information

Resets the value of
GetLastError.

● ● ● "P.11-197"

ResetLastInfo Clear last info
information

Resets the value of
GetLastInfo.

● ● ● "P.11-198"

■ Enable/Disable devices
This is a function block related to device enable/disable switching.

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

INode.Enable Enable/Disable
setting

Configure enable/disable
setting on a device.

- ● - "P.11-200"

Reconfigure Reconfigure
devices

Reads the whole
configuration of the
specified device and its
subdevices and
reconfigures the devices.

- ● - "P.11-201"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-39

■ Project management function

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, －:
Not supported)

SYS_PRJBack
up

Backup project Creates a backup file and
a restoration configuration
file on an SD memory
card.

● ● - "P.11-206"

SYS_PRJRest
ore

Restore
project

Restores a backup file
from an SD memory card.

● ● - "P.11-208"

SYS_GetPRJ
RestoreResult

Project
restoration
results

Gets results of the
execution of project
restoration.

● ● - "P.11-211"

1.3.9 Function Blocks (For the GM1 Expansion Unit)

The following table lists the function blocks used to control the GM1 Pulse Output Unit.

Name Function Overview RTEX EtherCA
T

Simulation Page

(●: Supported, －: Not supported)

PG_Power Servo ON or
OFF

Performs servo ON/OFF
control.

● ● - "P.12-4"

PG_Jog Jogging Causes the axis to keep
traveling in a forward or
backward direction.

● ● - "P.12-5"

PG_MoveAbso
lute

Absolute value
positioning

Causes the axis to travel
to a position specified as
an absolute position.

● ● - "P.12-6"

PG_MoveRela
tive

Relative value
positioning

Causes the axis to travel
to a position specified as a
relative position.

● ● - "P.12-7"

PG_LatchPosit
ion

Latch relative
positioning

Causes the axis to travel
to the relative position
specified by an external
signal input.

● ● - "P.12-9"

PG_Pulser Pulser
operation

Enables constant speed
operation for the axes
using an external pulse
input.

● ● - "P.12-11"

PG_Stop Forced stop
and
deceleration
stop

Causes the axis to make a
forced stop or
deceleration stop

● ● - "P.12-13"

PG_Home Home return Causes the axis to make a
home return.

● ● - "P.12-15"

PG_SetPositio
n

Elapsed value
and feedback

Sets the elapsed value
and the feedback counter
to desired values.

● ● - "P.12-17"

1.3 List of Function Block Instructions

1-40 WUME-GM1PGR-10

Name Function Overview RTEX EtherCA
T

Simulation Page

(●: Supported, －: Not supported)
counter
settings

PG_WritePara
meter

Write
parameters

Writes the parameters to
the pulse output unit.

● ● - "P.12-18"

PG_ReadPara
meter

Read
parameters

Reads the parameters
from the pulse output unit.

● ● - "P.12-22"

PG_ClearError Clear errors Clears the limit error or
the set value error of the
pulse output unit.

● ● - "P.12-23"

PG_ReadStatu
s

Read status Reads the status from the
pulse output unit.

● ● - "P.12-24"

■ Serial communication unit

Name Function Overview RTEX EtherCA
T

Simulation (●:
Supported, -:
Not
supported)

Page

(●: Supported, -:
Not supported)

NSC_ReadCo
mStatus

Read COM
port status

Acquires the COM port
status of the serial
communication unit.

● ● - "P.12-28"

1.3 List of Function Block Instructions

WUME-GM1PGR-10 1-41

1.4 List of Function Block Instructions that Cannot Be Used with the
GM1

■ Instructions not available for Modbus
The following function blocks in the IoDrvModbusTCP, IoDrvModbusTCPSlave, IoDrvModbus,
and IoDrvModbusSerialSlave libraries are not available for the GM1 Controller.

Name Function Alternative function Page

ModbusTCPSlaveBase - - -

ModbusTCPSlaveUnit - - -

ModbusTCPSlaveUnit_Diag - - -

IoDrvModbusTCP_Diag - - -

ModbusTCPSlave_Diag - - -

ModbusTCPDeviceDiag - - -

IoDrvModbusComPort_Diag - - -

ModbusSlaveComPort_Diag - - -

IoDrvModbusSerialSlave - - -

ModbusSerialDeviceDiag - - -

ModbusServer - - -

■ Instructions not available for general-purpose communication
The following function blocks in the CAA NBS(Net Base Services) library are not available for
the GM1 Controller.

Name Function Alternative function Page

TCP_ReadBuffer - - -

TCP_WriteBuffer - - -

UDP_ReceiveBuffer - - -

UDP_SendBuffer - - -

DummyJob - - -

■ Instructions not available for EtherNet/IP
The following function blocks in the IoDrvEtherNetIP and IoDrvEtherNetIPAdapter libraries are
not available for the GM1 Controller.

Name Function Alternative function Page

IoDrvEtherNetIP_diag - - -

RemoteAdapter_diag - - -

AdapterDiagnosis - - -

IoDrvEtherNetIPAdapter_Diag - - -

Module_Diag - - -

1.4 List of Function Block Instructions that Cannot Be Used with the GM1

1-42 WUME-GM1PGR-10

■ Instructions not available for motion control
The following function blocks in the SM3_Basic library are not available for the GM1 Controller.
Alternative functions are listed, if available.

Name Function Alternative function Page

SMC_Commissioning Commissioning status Commissioning function of the
GM Programmer

-

SMC_SetCustomRampType Set acceleration / deceleration
custom operation

- -

SMC_CAM_ObjectManager Manage cam data - -

SMC_ReadCAM Read cam data - -

SMC_WriteCAM Write cam data - -

SMC3_CommunicateDrivePar
ameter

Communication setting RTEX_ReadAmpParameter "P.9-12"

SMC3_ReadDriveParameter Read drive parameter RTEX_ReadAmpParameter "P.9-12"

SMC3_ReadParameter Read parameter RTEX_ReadAmpParameter "P.9-12"

SMC3_WriteDriveParameter Write drive parameter RTEX_WriteAmpParameter "P.9-13"

SMC3_WriteParameter Write parameter RTEX_WriteAmpParameter "P.9-13"

MC_ReadBoolParameter Read BOOL-type parameter RTEX_ReadAmpParameter "P.9-12"

MC_ReadParameter Read parameter RTEX_ReadAmpParameter "P.9-12"

MC_WriteBoolParameter Write BOOL-type parameter RTEX_WriteAmpParameter "P.9-13"

MC_WriteParameter Write parameter RTEX_WriteAmpParameter "P.9-13"

SMC_VIRTUAL_AXIS Set virtual axis - -

SMC3_BrakeStatus Get brake status - -

SMC3_BrakeControl Brake control - -

SMC3_PersistPosition Persist actual axis position - -

SMC3_PersistPositionLogical Persist logical axis position - -

SMC3_PersistPositionSingletu
rn

Persist actual axis position with
a range

- -

SMC_PerfStat Calculate performance
statistics

- -

SMC_SeriesStat Calculate increment statistics - -

SMC_AxisDiagnosticLog Log axis parameter - -

FB_Template_Edge - -

FB_Template_EdgeAbort - -

FB_Template_EdgeAbortTime
out

- -

SMC_StartupDrive - -

SMC_CAMBounds_Pos - -

SMC_CamEditor - -

SMC_PerfTimerSum - -

SMC_FollowPositionVelocity - -

1.4 List of Function Block Instructions that Cannot Be Used with the GM1

WUME-GM1PGR-10 1-43

Name Function Alternative function Page

SMC_FollowSetValues - -

SMC_Homing - -

ETC_CO_SdoInfoGeEntryDes
cription

Read object name - -

ETC_CO_SdoInfoGetODList Read object tree - -

ETC_CO_SdoInfoGetObjectDe
scription

Read object information - -

ReadEEpromData Read slave EEPROM - -

ReadWriteEEprom Read / write slave EEPROM - -

1.4 List of Function Block Instructions that Cannot Be Used with the GM1

1-44 WUME-GM1PGR-10

2 Ladder Instructions
2.1 Ladder Instructions ...2-2

2.1.1 NO Contact .. 2-2
2.1.2 NC Contact .. 2-3
2.1.3 Rising Edge Detection Contact .. 2-4
2.1.4 Falling Edge Detection Contact ... 2-5
2.1.5 Parallel NO Contact ... 2-6
2.1.6 Parallel NC Contact ... 2-7
2.1.7 Coil ... 2-8
2.1.8 Negated Coil .. 2-9
2.1.9 Set Coil .. 2-10
2.1.10 Reset Coil .. 2-11
2.1.11 Execute Box ... 2-12

WUME-GM1PGR-10 2-1

2.1 Ladder Instructions

This section describes ladder instructions that can be used for ladder diagram program (LD
program).

2.1.1 NO Contact

If the variable corresponding to the contact is TRUE, then the input value is output. If the
variable is FALSE, then FALSE is output.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the NO contact

(2) Variable
name

BOOL Variable that corresponds to the NO contact

(3) Output BOOL Output from the NO contact

■ Input method
Use one of the following methods to input the NO contact.
● From the tool box, select Ladder elements>NO contact and drag to "Start from here".
● Right-click on the network, and, from the displayed menu, select Insert Contact.
● Click the icon on the toolbar.
● From the menu, select FBD / LD / IL>Insert Contact .
● Press the shortcut keys <Ctrl+k> simultaneously.

■ Program example
If the variable (a1) corresponding to the NO contact is TRUE, then the value input to the NO
contact (TRUE) is output as is.

If the variable (a1) corresponding to the contact is FALSE, then FALSE is output.

2.1 Ladder Instructions

2-2 WUME-GM1PGR-10

2.1.2 NC Contact

If the variable corresponding to the contact is TRUE, then FALSE is output. If the variable is
FALSE, then the input value is output.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the NC contact

(2) Variable
name

BOOL Variable that corresponds to the NC contact

(3) Output BOOL Output from the NC contact

■ Input method
Use one of the following methods to input the NC contact.
● From the tool box, select Ladder elements>NC contact and drag to "Start from here".
● Right-click on the network, and, from the displayed menu, select "Insert NC contact".
● Click the icon on the toolbar.
● From the menu, select FBD / LD / IL>Insert NC contact .

■ Program example
If the variable (a1) corresponding to the NC contact is TRUE, then FALSE is output.

If the variable (a1) corresponding to the NC contact is FALSE, then the value input to the NC
contact (TRUE) is output as is.

2.1 Ladder Instructions

WUME-GM1PGR-10 2-3

2.1.3 Rising Edge Detection Contact

If a rising edge is detected in the variable corresponding to the contact, then the input value is
output for one cycle only.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the contact

(2) Variable
name

BOOL Variable that corresponds to the rising edge detection contact

(3) Output BOOL Output from the contact

■ Input method
Input the rising edge detection contact by first inputting the NO contact and then changing the
NO contact.
Select the NO contact just input and then perform one of the following operations.
● Right-click and, from the displayed menu, select Edge detection .
● From the menu, select FBD / LD / IL>Edge detection .
● Press the shortcut keys <Ctrl+e> simultaneously.
● Click the icon on the toolbar.

■ Program example
The following program is designed to detect the rising edge with the variable (a1) corresponding
to the rising edge detection contact and to output TRUE for one cycle only.

2.1 Ladder Instructions

2-4 WUME-GM1PGR-10

2.1.4 Falling Edge Detection Contact

If a falling edge is detected in the variable corresponding to the contact, then the input value is
output for one cycle only.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the contact

(2) Variable
name

BOOL Variable that corresponds to the falling edge detection contact

(3) Output BOOL Output from the contact

■ Input method
Input the falling edge detection contact by first inputting the NO contact and then changing the
NO contact.
Select the NO contact just input and then perform one of the following operations.
● Right-click and, from the displayed menu, select Edge detection twice.
● From the menu, select FBD / LD / IL>Edge detection twice.
● Press the shortcut keys Ctrl+e simultaneously twice.
● Click the icon on the toolbar twice.

■ Program example
The following program is designed to detect the falling edge with the variable (a1)
corresponding to the falling edge detection contact and to output TRUE for one cycle only.

2.1 Ladder Instructions

WUME-GM1PGR-10 2-5

2.1.5 Parallel NO Contact

NO contacts can be input in parallel to the initial contact. Of the contacts wired in parallel, if the
output of one or more contacts is TRUE, TRUE is output.

■ Icon

■ Input method
To input a parallel NO contact below the initial contact, select Ladder elements >Parallel NO
contact from the tool box and drag to the position indicated with “▼” next to the contact.
Or, with the contact selected, perform one of the following operations.
● Right-click, and, from the displayed menu, select Insert contact in parallel (below).
● From the menu, select FBD/LD/IL>Insert contact in parallel (below) .
● Press the shortcut keys <Ctrl+r> simultaneously.
● Click the icon on the toolbar.

■ Program example
This program is designed to input one NO contact in parallel to the NO contact. TRUE is output
because the NO contact below is TRUE.

2.1 Ladder Instructions

2-6 WUME-GM1PGR-10

2.1.6 Parallel NC Contact

NC contacts can be input in parallel to the initial contact. Of the contacts wired in parallel, if the
output of one or more contacts is TRUE, TRUE is output.

■ Icon

■ Input method
To input a parallel NC contact below the initial contact, select Ladder elements >Parallel NC
contact from the tool box and drag to the position indicated with “▼” next to the contact.
Or, with the contact selected, perform one of the following operations.
● Right-click, and, from the displayed menu, select "Insert NC contact in parallel (below)".
● From the menu, select FBD / LD / IL>Insert NC contact in parallel (below) .
● Click the icon on the toolbar.

■ Program example
This program is designed to input one NC contact in parallel to the NO contact. FALSE is output
because the outputs of both contacts are FALSE.

2.1 Ladder Instructions

WUME-GM1PGR-10 2-7

2.1.7 Coil

The input value is saved in the variable corresponding to the coil. If the input value is TRUE,
then TRUE is saved. If the input value is FALSE, then FALSE is saved.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the coil

(2) Variable
name

BOOL Name of the variable that corresponds to the coil

■ Input method
Use one of the following methods to input the coil.
● From the tool box, select Ladder elements> Coil and drag to "Add output or jump here"

(when connecting to a contact).
● Right-click on the network, and, from the displayed menu, select Insert Coil .
● Click the icon on the tool bar.
● From the menu, select FBD / LD / IL>Insert Coil .
● Press the shortcut keys <Ctrl+a> simultaneously.
● Click the icon on the toolbar.

■ Program example
This program is designed to input the output from the NO contact to the coil.
TRUE is saved in the variable (b1) because the input to the coil is TRUE.

FALSE is saved in the variable (b1) because the input to the coil is FALSE.

2.1 Ladder Instructions

2-8 WUME-GM1PGR-10

2.1.8 Negated Coil

The negated value of the input is saved in the variable corresponding to the coil. If the input
value is TRUE, then FALSE is saved. If the input value is FALSE, then TRUE is saved.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the negated coil

(2) Variable
name

BOOL Name of the variable that corresponds to the negated coil

■ Input method
The negated coil can be input by inputting a coil and changing it.
With the input coil selected, perform one of the following operations.
● Right-click and, from the displayed menu, select Negation.
● From the menu, select FBD / LD / IL>Negation .
● Press the shortcut keys <Ctrl+n> simultaneously.
● Click the icon on the toolbar.

■ Program example
This program is designed to input the output from the NO contact to the negated coil.
FALSE is saved in the variable (b1) because the input to the coil is TRUE.

TRUE is saved in the variable (b1) because the input to the coil is FALSE.

2.1 Ladder Instructions

WUME-GM1PGR-10 2-9

2.1.9 Set Coil

When the input value turns TRUE, TRUE is saved in the variable corresponding to the coil.
TRUE is held until the input to the reset coil that corresponds to the same variable turns TRUE.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the set coil.

(2) Variable
name

BOOL Name of the variable that corresponds to the set coil

■ Input method
Use one of the following methods to input the set coil.
● From the tool box, select Ladder elements>Set Coil and drag to "Add output or jump here"

(when connecting to a contact).
● Right-click on the network, and, from the displayed menu, select "Insert Set Coil ".
● Click the icon on the toolbar.
● From the menu, select FBD / LD / IL>Insert Set Coil .

■ Program example
This program is designed to input the output from the NO contact to the set coil and the reset
coil.
TRUE is saved in the set coil variable (b1) because the input to the set coil is TRUE.

● Each set coil should be accompanied by a reset coil.

2.1 Ladder Instructions

2-10 WUME-GM1PGR-10

2.1.10 Reset Coil

When the input value turns TRUE, FALSE is saved in the variable corresponding to the coil.
FALSE is held until the input to set coil that corresponds to the same variable turns TRUE.

■ Icon

■ Parameter

No. Scope Type Description

(1) Input BOOL Input to the reset coil.

(2) Variable
name

BOOL Name of the variable that corresponds to the reset coil

■ Input method
Use one of the following methods to input the reset coil.
● From the tool box, select Ladder elements>Reset Coil and drag to "Add output or jump

here" (when connecting to a contact).
● Right-click on the network, and, from the displayed menu, select Reset Coil.
● Click the icon on the toolbar.
● From the menu, select FBD / LD / IL>Insert Reset Coil .

■ Program example
This program is designed to input the output from the NO contact to the set coil and the reset
coil.
FALSE is saved in the variable (b1) because the input to the reset coil is TRUE.

● Each set coil should be accompanied by a reset coil.

2.1 Ladder Instructions

WUME-GM1PGR-10 2-11

2.1.11 Execute Box

You can program in ST language by inserting an execute box in LD language.

If "Enter ST code here ..." is clicked, an input field using a multi-line ST will open.

■ Icon

■ Input method
You can enter the NO contact by any of the following operations.

● SelectGeneral→Execute in the toolbox and drag it to the position of ◆displayed next to
the contact.

● Right-click on the network and select Insert "Execute Box" from the menu that appears
● Select FBD/LD/IL>Execute Box from the menu

■ Program example
When the EN condition is ON, the entered ST language code will be executed.

2.1 Ladder Instructions

2-12 WUME-GM1PGR-10

3 Functions
3.1 Basic Instructions..3-4

3.1.1 MOVE (Substitution) .. 3-4
3.1.2 SIZEOF (Get the Size) ... 3-5
3.1.3 ADR (Get the Address) .. 3-6

3.2 Arithmetic Operation Instructions..3-7
3.2.1 ADD (Addition) ... 3-7
3.2.2 SUB (Subtraction) .. 3-9
3.2.3 MUL (Multiplication) ... 3-10
3.2.4 DIV (Division) ... 3-11
3.2.5 MOD (Remainder).. 3-12

3.3 Boolean Operation Instructions...3-13
3.3.1 AND (Logical AND) .. 3-13
3.3.2 OR (Logical OR) .. 3-14
3.3.3 NOT (Negation).. 3-15
3.3.4 XOR (Exclusive OR) .. 3-16
3.3.5 AND_THEN (Logical AND) .. 3-17
3.3.6 OR_ELSE (Logical OR) ... 3-18

3.4 Comparison Operation Instructions ..3-19
3.4.1 EQ (“Equal” Comparison) .. 3-19
3.4.2 NE (“Not Equal” Comparison) .. 3-20
3.4.3 LT (“Less Than” Comparison) .. 3-21
3.4.4 LE (“Less Than or Equal” Comparison) ... 3-22
3.4.5 GT (“Greater Than” Comparison) .. 3-23
3.4.6 GE (“Greater Than Or Equal” Comparison) 3-24

3.5 Bit Shift Instructions ..3-25
3.5.1 SHL (Shift Left) .. 3-25
3.5.2 SHR (Shift Right) ... 3-26
3.5.3 ROL (Rotate Left)... 3-27
3.5.4 ROR (Rotate Right).. 3-28

3.6 Numerical Operation Instructions..3-29
3.6.1 ABS (Absolute Value)... 3-29
3.6.2 SQRT (Square Root).. 3-30
3.6.3 LN (Natural Logarithm) .. 3-31
3.6.4 LOG (Common Logarithm) .. 3-32
3.6.5 EXP (Natural Exponent)... 3-33
3.6.6 EXPT (Exponentiation) .. 3-34
3.6.7 SIN (Trigonometric Function Sine)... 3-35
3.6.8 COS (Trigonometric Function Cosine) ... 3-36

WUME-GM1PGR-10 3-1

3.6.9 TAN (Trigonometric Function Tangent) .. 3-37
3.6.10 ASIN (Trigonometric Function Arc Sine) .. 3-38
3.6.11 ACOS (Trigonometric Function Arc Cosine) 3-39
3.6.12 ATAN (Trigonometric Function Arc Tangent).................................. 3-40
3.6.13 Triangular function operator constant .. 3-40

3.7 Data Type Conversion Instructions...3-41
3.7.1 Type 1_TO_Type 2 (Type 1>Type 2 Conversion) 3-41
3.7.2 TRUNC (Real Number to DINT Conversion) 3-48
3.7.3 TRUNC_INT (Real Number to INT Conversion) 3-49
3.7.4 BCD_TO_** (BCD to Binary Conversion) .. 3-50
3.7.5 **_TO_BCD (Binary to BCD Conversion) .. 3-53
3.7.6 GRAY_TO_** (Gray Code to Binary Conversion) 3-55
3.7.7 **_TO_GRAY (Binary to Gray Code Conversion) 3-57
3.7.8 BYTE_TO_HEXinASCII (Binary to ASCII Conversion) 3-59
3.7.9 HEXinASCII_TO_BYTE (ASCII to Binary Conversion) 3-61
3.7.10 MEM.Decode (4BYTE to DWORD Conversion) 3-63
3.7.11 MEM.Encode (DWORD to 4BYTE Conversion)............................. 3-64
3.7.12 MEM.PackArrayOfBoolToArrayOfByte (BOOL Array to BYTE

Conversion)... 3-66
3.7.13 MEM.PackBitsTo**(Bit Data to BYTE/WORD/DWORD

Conversion)... 3-68
3.7.14 MEM.PackBytesTo**(BYTE to WORD/DWORD Conversion)........ 3-73
3.7.15 MEM.PackWordsToDword (WORD to DWORD Conversion) 3-75
3.7.16 MEM.UnpackArrayOfByte (BYTE to BOOL Array Conversion) 3-76

3.8 Bit operation instructions...3-78
3.8.1 EXTRACT (Bit Extraction).. 3-78
3.8.2 PUTBIT (Bit Change) ... 3-79
3.8.3 SWITCHBIT (Bit Inversion) .. 3-80
3.8.4 MEMUtils.BitCpy (Bit Copying) .. 3-81
3.8.5 MEM.ReverseBitsIn** (Bit Order Change) 3-83

3.9 Memory operation instructions..3-85
3.9.1 SEL (Binary Selector) .. 3-85
3.9.2 MUX (Multiplexer) .. 3-86
3.9.3 LIMIT (Limiter).. 3-87
3.9.4 MAX (Maximum Value) .. 3-88
3.9.5 MIN (Minimum Value)... 3-89
3.9.6 MEMUtils.Swap (Byte Swapping) .. 3-90
3.9.7 MEM.Compare (Memory Comparison) .. 3-91
3.9.8 MEM.FindBlock(Memory block search) ... 3-92
3.9.9 MEM.FindByte (Find Byte Data) .. 3-94
3.9.10 MEM.MemFill (Memory Fill) ... 3-96
3.9.11 MEM.MemMove (Memory Copying)... 3-97
3.9.12 MEM.High** (High Byte/High WORD Extraction)........................... 3-99
3.9.13 MEM.Low** (Low Byte/Low WORD Extraction) 3-100
3.9.14 MEM.ReverseBYTEsIn** (Byte Order Change)............................. 3-101
3.9.15 MEM.ReverseWORDsInDWORD (WORD Order Change) 3-103

3.10 Character string instructions ...3-104
3.10.1 LEN/WLEN (string length).. 3-104

3 Functions

3-2 WUME-GM1PGR-10

3.10.2 LEFT/WLEFT (extract text from left edge) 3-105
3.10.3 RIGHT/WRIGHT (Extract text from the right end).......................... 3-106
3.10.4 MID/WMID (extract string from specified position)......................... 3-107
3.10.5 CONCAT/WCONCAT (string concatenation) 3-108
3.10.6 INSERT/WINSERT (Inserting a Character String) 3-109
3.10.7 DELETE/WDELETE (delete string).. 3-111
3.10.8 REPLACE/WREPLACE (replace string) .. 3-112
3.10.9 FIND/WFIND (find text) .. 3-114
3.10.10 ConvertUTF16toUTF8 (UTF-16 → UTF-8) 3-115
3.10.11 ConvertUTF8toUTF16(UTF-8 → UTF-16) 3-117

3.11 SD Memory Card Slot Instruction..3-119
3.11.1 SYS_GetSDCoverState (Get SD Card Cover Open / Close State) 3-119
3.11.2 SYS_GetSDAccessRdy (Get SD Card Access Ready State) 3-119

3.12 CRC operation instructions...3-120
3.12.1 MEM.CRC16_standard (CRC16)... 3-120
3.12.2 MEM.CRC32(CRC32).. 3-122

3.13 System Time Instructions..3-123
3.13.1 SysTimeGetMs(Get System Time in units of milliseconds)............ 3-123
3.13.2 SysTimeGetUs(Get System Time in units of microseconds) 3-123
3.13.3 SysTimeGetNs(Get System Time in units of nanoseconds) 3-124

3 Functions

WUME-GM1PGR-10 3-3

3.1 Basic Instructions

You can use basic instructions to assign the values of other variables to variables, specify
addresses, and get sizes.

3.1.1 MOVE (Substitution)

This is a function that substitutes the value of a variable specified in the input for a variable
specified in the output.

■ Icon

■ Parameter

Scope Type Description

Input All Specifies the variable of the substitution source.

Output All Specifies the variable of the substitution target.

■ Program example
This program is designed to substitute the value of input variable “input1” for the output variable
“output1”.

LD program

ST program

It is also possible to substitute the value using an operator (:=).

3.1 Basic Instructions

3-4 WUME-GM1PGR-10

3.1.2 SIZEOF (Get the Size)

This is a function that outputs the size (number of bytes) of the input argument.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the argument whose size is to be calculated.

Output (Note 1) Outputs the size of (1).

(Note 1) Usable data types
All standard data types
(BOOL, BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT,
REAL, LREAL, TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME, STRING, WSTRING)

■ Program example
This program is designed to output the size of the ULINT type input variable “input1” to the
UINT type output variable “output1”.

LD program

ST program

3.1 Basic Instructions

WUME-GM1PGR-10 3-5

3.1.3 ADR (Get the Address)

This is a function that outputs the address of the variable.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Input the variable from which to get the address.

Output (Note 1) Outputs the address (pointer) of the input variable.

(Note 1) Usable data types
All standard data types
(BOOL, BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT,
REAL, LREAL, TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME, STRING, WSTRING)

■ Usable data type
All standard data types
(BOOL, BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT,
REAL, LREAL, TIME, LTIME, DATE, TIME_OF_DAY, DATE_AND_TIME, STRING, WSTRING)

■ Program example
This program is designed to output the address of the input variable “input1” to the output
variable “output1”.

LD program

ST program

3.1 Basic Instructions

3-6 WUME-GM1PGR-10

3.2 Arithmetic Operation Instructions

Arithmetic operation instructions can be used to perform calculation such as four arithmetic
operations.

3.2.1 ADD (Addition)

This is a function that adds input arguments and outputs the sum.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the variables to be added.

Output (Note 1) Outputs the sum of variables specified in the input.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL, TIME, TIME_OF_DAY, DATE_AND_TIME

Time type data can be added in the following combinations.
● TIME + TIME = TIME
● TIME_OF_DAY + TIME = TIME_OF_DAY
● DATE_AND_TIME + TIME = DATE_AND_TIME

■ Program example
This program is designed to output the sum of input variables “input1” and “input2” to the output
variable “output”.

LD program

ST program
It is possible to add the values using “+” operator.

3.2 Arithmetic Operation Instructions

WUME-GM1PGR-10 3-7

● If you want to increase input arguments in the LD program, right-click on the ADD function,
and, on the displayed menu, select "Add Input".

3.2 Arithmetic Operation Instructions

3-8 WUME-GM1PGR-10

3.2.2 SUB (Subtraction)

This is a function that subtracts input arguments and outputs the difference.

■ Icon

■ Parameter

Scope Number Type Description

Input (1), (2) (Note 1) Specifies the variables to be subtracted.

Output - (Note 1) Outputs the value obtained by subtracting the input (2) from the input (1).

(Note 1) Usable data types
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL, TIME, TIME_OF_DAY, DATE, DATE_AND_TIME

For time type data, subtraction can be performed in the following combinations. Note that negative
time cannot be calculated.
● TIME - TIME = TIME
● DATE - DATE = TIME
● TOD - TIME = TOD
● TOD - TOD = TIME
● DT - TIME = DT
● DT - DT = TIME

■ Program example
This program is designed to output the difference between the input variables “input1” and
“input2” to the output variable “output1”.

LD program

ST program
It is possible to subtract the values using “-” operator.

3.2 Arithmetic Operation Instructions

WUME-GM1PGR-10 3-9

3.2.3 MUL (Multiplication)

This is a function that multiplies input arguments and outputs the product.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the variables to be multiplied.

Output (Note 1) Outputs the product of variables specified in the input.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL, TIME

■ Program example
This program is designed to output the product of the input variables “input1” and “input2” to the
output variable “output1”.

LD program

ST program
It is possible to multiply the values using “*” operator.

● If you want to increase input arguments in the LD program, right-click on the MUL function,
and, on the displayed menu, select "Add Input".

● TIME type data cannot be multiplied by REAL type, LREAL type, or TIME type data.

3.2 Arithmetic Operation Instructions

3-10 WUME-GM1PGR-10

3.2.4 DIV (Division)

This is a function that divides input arguments and outputs the quotient.

■ Icon

■ Parameter

Scope No. Type Description

Input (1), (2) (Note 1) Specifies the variables to be divided.

Output - (Note 1) Outputs the quotient obtained by dividing the input (2) by the input
(1).

(Note 1) Usable data types
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL, TIME

■ Program example
This program is designed to output the quotient of the INT type input variables “input1” and
“input2” to the INT type output variable “output1”.

LD program

ST program
It is possible to divide the values using the division operator ("/") .

● TIME type variables can be divided by integer type variables.
● When a variable is divided by a DINT, LINT, REAL, or LREAL type variable, it can be checked if

0 is used in the calculation. (Refer to “Auto Check POU” in the “SMC Tool Introduction Guide”.)

3.2 Arithmetic Operation Instructions

WUME-GM1PGR-10 3-11

3.2.5 MOD (Remainder)

This is a function that divides input arguments and outputs the remainder.

■ Icon

■ Parameter

Scope No. Type Description

Input (1), (2) (Note 1) Specifies the variables to be divided.

Output - (Note 1) Outputs the remainder obtained by dividing the input (2) by the input
(1).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

■ Program example
This program is designed to output the remainder obtained from dividing the INT type input
variables “input1” and “input2” to the INT type output variable “output1”.

LD program

ST program

3.2 Arithmetic Operation Instructions

3-12 WUME-GM1PGR-10

3.3 Boolean Operation Instructions

Boolean operation instructions can be used to perform bool operations such as logical AND or
logical OR.

3.3.1 AND (Logical AND)

This is a function that outputs logical AND of the input arguments.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the variables to be used to obtain logical AND.

Output (Note 1) Outputs the logical AND of the variables specified in the input.

(Note 1) Usable data type
BOOL, BYTE, WORD, DWORD, LWORD

■ Program example
This program is designed to output the logical AND of the WORD type input variables “input1”
and “input2” to the output variable “output1”.
The execution result is displayed in a hexadecimal number.

LD program

ST program

● If you want to increase input arguments in the LD program, right-click on the AND function,
and, on the displayed menu, select "Add Input".

3.3 Boolean Operation Instructions

WUME-GM1PGR-10 3-13

3.3.2 OR (Logical OR)

This is a function that outputs logical OR of the input arguments.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the variables to be used to obtain logical OR.

Output (Note 1) Outputs the logical OR of the variables specified in the input.

(Note 1) Usable data type
BOOL, BYTE, WORD, DWORD, LWORD

■ Program example
This program is designed to output the logical OR of the WORD type input variables “input1”
and “input2” to the output variable “output1”.
The execution result is displayed in a hexadecimal number.

LD program

ST program

● If you want to increase input arguments in the LD program, right-click on the OR function,
and, on the displayed menu, select "Add Input".

3.3 Boolean Operation Instructions

3-14 WUME-GM1PGR-10

3.3.3 NOT (Negation)

This is a function that outputs the negation of the input argument.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the variable to be used to obtain the negation.

Output (Note 1) Outputs the negation of the variable specified in the input.

(Note 1) Usable data type
BOOL, BYTE, WORD, DWORD, LWORD

■ Program example
This program is designed to output the negation of the BYTE type input variable “input1” to the
output variable “output1”.
The execution result is displayed in a binary number.

LD program

ST program

3.3 Boolean Operation Instructions

WUME-GM1PGR-10 3-15

3.3.4 XOR (Exclusive OR)

This is a function that outputs exclusive OR of the input arguments.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the variables to be used to obtain exclusive OR.

Output (Note 1) Outputs the exclusive OR of the variables specified in the input.
Outputs 0 if both input bits are 1 or 0.
Outputs 1 if one of the two input bits is 1 and the other bit is 0.

(Note 1) Usable data type
BOOL, BYTE, WORD, DWORD, LWORD

■ Program example
This program is designed to output the exclusive OR of the BYTE type input variables “input1”
and “input2” to the output variable “output1”.
The execution result is displayed in a binary number.

LD program

ST program

3.3 Boolean Operation Instructions

3-16 WUME-GM1PGR-10

3.3.5 AND_THEN (Logical AND)

This is a conditional AND evaluation function of the input operand.

■ Usable data types
BOOL, BIT

■ Program example
This program is designed to compare the value of the variable accessed by pwAddress
(pointer) with wExpected if the pwAddress is not NULL and, if they are the same, substitute with
the value of wNewValue.
As default values, “5” is stored in the variable “test1” accessed by pwAddress, “5” in
wExpected, and “3” in wNewValue.
As an initial step, judgment is made whether pwAddress is NULL or not. Since it is not NULL,
comparison is made between the value of “test1” and the value of wExpected as the next step.
Since these two values are both “5”, TRUE is assigned. As a result, the value of wNewValue “3”
is stored in the “test1” and the xFlag flag is set to TRUE.

ST program
[Declaration section]

[Implemment section]

● Expressions of other operands are executed only when the first operand is TRUE.
Therefore, if no value is stored in pwAddress in the above example, the initial NULL judgment
turns FALSE. As a result, no judgment is performed on operands after the AND_THEN
operator.

3.3 Boolean Operation Instructions

WUME-GM1PGR-10 3-17

3.3.6 OR_ELSE (Logical OR)

This is a conditional OR evaluation function of the input operand.

■ Usable data types
BOOL, BIT

■ Program example
16#000000FF is stored in the variable dw.
”dw.8” that represents bit 8 of dw is FALSE and “dw.1” that represents bit 1 is TRUE.
Therefore, the operation result flag bX is TRUE.
Note that the third input expression is not executed and bEver remains FALSE.

ST program
[Declaration section]

[Implemment section]

● In case of OR_ELSE, when one of the operands is evaluated TRUE, all other operator
expressions are not evaluated.

3.3 Boolean Operation Instructions

3-18 WUME-GM1PGR-10

3.4 Comparison Operation Instructions

Comparison operation instructions can be used to compare two arguments.

3.4.1 EQ (“Equal” Comparison)

This is a function that compares two input arguments and determines if they are the same
value.

■ Icon

■ Parameter

Scope Type Description

Input All Specifies the variables to be compared.

Output BOOL Outputs TRUE if the input variable values are the same.
Outputs FALSE if they are different.

■ Program example
This program is designed to compare the input variables “input1” and “input2” and output the
result to the output variable “output1”.

LD program
TRUE is output because the input variable values “input1” and “input2” are the same.

ST program
Use the operator (=) to compare the values.
FALSE is output because the input variable values “input1” and “input2” are different.

3.4 Comparison Operation Instructions

WUME-GM1PGR-10 3-19

3.4.2 NE (“Not Equal” Comparison)

This is a function that compares two input arguments and determines if they are not the same.

■ Icon

■ Parameter

Scope Type Description

Input All Specifies the variables to be compared.

Output BOOL Outputs TRUE if the input variable values are different.
Outputs FALSE if they are the same.

■ Program example
This program is designed to compare the input variables “input1” and “input2” and output the
result to the output variable “output1”.

LD program
FALSE is output because the input variable values “input1” and “input2” are the same.

ST program
Use the operator (<>) to compare the values.
TRUE is output because the input variable values “input1” and “input2” are different.

3.4 Comparison Operation Instructions

3-20 WUME-GM1PGR-10

3.4.3 LT (“Less Than” Comparison)

This is a function that compares two input arguments and determines if the first argument is
less than the second argument.

■ Icon

■ Parameter

Scope No. Type Description

Input (1), (2) All Specifies the variables to be compared.

Output - BOOL Outputs TRUE if the value of input (1) is less than the value of input
(2).
Otherwise, outputs FALSE.

■ Program example
This program is designed to compare the input variables “input1” and “input2” and output the
result to the output variable “output1”.

LD program
TRUE is output because the input variable “input1” is less than the input variable “input2”.

ST program
Use the operator (<) to compare the values.
FALSE is output because the input variable “input1” is not less than the input variable “input2”.

3.4 Comparison Operation Instructions

WUME-GM1PGR-10 3-21

3.4.4 LE (“Less Than or Equal” Comparison)

This is a function that compares two input arguments and determines if the first argument is
less than or equal to the second argument.

■ Icon

■ Parameter

Scope No. Type Description

Input (1), (2) All Specifies the variables to be compared.

Output - BOOL Outputs TRUE if the value of input (1) is less than or equal to the
value of input (2).
Otherwise, outputs FALSE.

■ Program example
This program is designed to compare the input variables “input1” and “input2” and output the
result to the output variable “output1”.

LD program
TRUE is output because the input variable “input1” is less than or equal to the input variable
“input2”.

ST program
Use the operator (<=) to compare the values.
FALSE is output because the input variable “input1” is not less than or equal to the input
variable “input2”.

3.4 Comparison Operation Instructions

3-22 WUME-GM1PGR-10

3.4.5 GT (“Greater Than” Comparison)

This is a function that compares two input arguments and determines if the first argument is
greater than the second argument.

■ Icon

■ Parameter

Scope No. Type Description

Input (1), (2) All Specifies the variables to be compared.

Output - BOOL Outputs TRUE if the value of input (1) is greater than the value of
input (2).
Otherwise, outputs FALSE.

■ Program example
This program is designed to compare the input variables “input1” and “input2” and output the
result to the output variable “output1”.

LD program
FALSE is output because the input variable “input1” is not greater than the input variable
“input2”.

ST program
Use the operator (>) to compare the values.
TRUE is output because the input variable “input1” is greater than the input variable “input2”.

3.4 Comparison Operation Instructions

WUME-GM1PGR-10 3-23

3.4.6 GE (“Greater Than Or Equal” Comparison)

This is a function that compares two input arguments and determines if the first argument is
greater than or equal to the second argument.

■ Icon

■ Parameter

Scope No. Type Description

Input (1), (2) All Specifies the variables to be compared.

Output - BOOL Outputs TRUE if the value of input (1) is greater than or equal to the
value of input (2).
Otherwise, outputs FALSE.

■ Program example
This program is designed to compare the input variables “input1” and “input2” and output the
result to the output variable “output1”.

LD program
FALSE is output because the input variable “input1” is not greater than or equal to the input
variable “input2”.

ST program
Use the operator (>=) to compare the values.
TRUE is output because the input variable “input1” is greater than or equal to the input variable
“input2”.

3.4 Comparison Operation Instructions

3-24 WUME-GM1PGR-10

3.5 Bit Shift Instructions

Bit shift instructions can be used to perform bit shift operation on input arguments.

3.5.1 SHL (Shift Left)

This is a function that shifts the input argument to the left by the specified number of bits and
outputs the shifted value. “0” is inserted from the least significant bit up to the bit position shifted
by the shift quantity.

■ Icon

■ Parameter

Scope No. Type Description

Input (1) (Note 1) Specifies the variable on which bit shift is performed.

(2) (Note 1) Specifies the number of times bit shift is performed (shift quantity).

Output - (Note 1) Outputs the value bit shifted to the left from the value of input (1) by
the quantity specified in the input (2).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

■ Program example
This program is designed to output the value that is shifted to the left from the value
(2#11000011) of input variable “input1” by the number of bits (2 bits) specified in “input2” to the
output variable “output1”.

LD program

ST program

3.5 Bit Shift Instructions

WUME-GM1PGR-10 3-25

3.5.2 SHR (Shift Right)

This is a function that shifts the input argument to the right by the specified number of bits and
outputs the shifted value. “0” is inserted from the most significant bit up to the bit position shifted
by the shift quantity.

■ Icon

■ Parameter

Scope No. Type Description

Input (1) (Note 1) Specifies the variable on which bit shift is performed.

(2) (Note 1) Specifies the number of times bit shift is performed (shift quantity).

Output - (Note 1) Outputs the value bit shifted to the right from the value of input (1) by
the quantity specified in the input (2).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

■ Program example
This program is designed to output the value that is shifted to the right from the value
(2#11000011) of input variable “input1” by the number of bits (2 bits) specified in “input2” to the
output variable “output1”.

LD program

ST program

3.5 Bit Shift Instructions

3-26 WUME-GM1PGR-10

3.5.3 ROL (Rotate Left)

This is a function that shifts the input argument to the left by the specified number of bits and
outputs the shifted value. The bit value that has overflowed the most significant bit when the bit
is shifted is inserted into the data starting from the least significant bit up to the bit position
shifted by the shift quantity.

■ Icon

■ Parameter

Scope No. Type Description

Input (1) (Note 1) Specifies the variable on which bit shift is performed.

(2) (Note 1) Specifies the number of times bit shift is performed (shift quantity).

Output - (Note 1) Outputs the value rotated and shifted to the left from the value of
input (1) by the quantity specified in the input (2).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

■ Program example
This program is designed to output the value that is rotated and shifted to the left from the value
(2#11000011) of input variable “input1” by the number of bits (2 bits) specified in “input2” to the
output variable “output1”.

LD program

ST program

3.5 Bit Shift Instructions

WUME-GM1PGR-10 3-27

3.5.4 ROR (Rotate Right)

This is a function that shifts the input argument to the right by the specified number of bits and
outputs the shifted value. The bit value that has overflowed the least significant bit when the bit
is shifted is inserted into the data starting from the most significant bit up to the bit position
shifted by the shift quantity.

■ Icon

■ Parameter

Scope No. Type Description

Input (1) (Note 1) Specifies the variable on which bit shift is performed.

(2) (Note 1) Specifies the number of times bit shift is performed (shift quantity).

Output - (Note 1) Outputs the value rotated and shifted to the right from the value of
input (1) by the quantity specified in the input (2).

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

■ Program example
This program is designed to output the value that is rotated and shifted to the right from the
value (2#11000011) of input variable “input1” by the number of bits (2 bits) specified in “input2”
to the output variable “output1”.

LD program

ST program

3.5 Bit Shift Instructions

3-28 WUME-GM1PGR-10

3.6 Numerical Operation Instructions

Numerical operation instructions can be used to perform various numerical calculations.

3.6.1 ABS (Absolute Value)

This is a function that outputs the absolute value of the input argument.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value from which to obtain the absolute value.

Output (Note 1) Outputs the absolute value of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

■ Program example
This program is designed to output the absolute value of the input variable “input1” to the output
variable “output1”.

LD program

ST program

3.6 Numerical Operation Instructions

WUME-GM1PGR-10 3-29

3.6.2 SQRT (Square Root)

This is a function that outputs the square root (√) of the input argument.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value from which to obtain the square root.

Output (Note 2) Outputs the square root of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the square root of the input variable “input1” to the output
variable “output1”.

LD program

ST program

3.6 Numerical Operation Instructions

3-30 WUME-GM1PGR-10

3.6.3 LN (Natural Logarithm)

This is a function that outputs the natural logarithm (logeX) of the input argument (X).

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value from which to obtain the natural logarithm.

Output (Note 2) Outputs the natural logarithm of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the natural logarithm (loge10) of the input variable “input1”
(10) to the output variable “output1”.

LD program

ST program

3.6 Numerical Operation Instructions

WUME-GM1PGR-10 3-31

3.6.4 LOG (Common Logarithm)

This is a function that outputs the common logarithm (log10X) of the input argument (X).

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value from which to obtain the common logarithm.

Output (Note 2) Outputs the common logarithm of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the common logarithm (log105) of the input variable “input1”
(5) to the output variable “output1”.

LD program

ST program

3.6 Numerical Operation Instructions

3-32 WUME-GM1PGR-10

3.6.5 EXP (Natural Exponent)

This is a function that outputs the natural exponent (eX) of the input argument (X).

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value from which to obtain the natural exponent.

Output (Note 2) Outputs the natural exponent of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the natural exponent of the input variable “input1” to the
output variable “output1”.

LD program

ST program

3.6 Numerical Operation Instructions

WUME-GM1PGR-10 3-33

3.6.6 EXPT (Exponentiation)

This is a function that outputs the exponentiation (an) of the input arguments (a, n).

■ Icon

■ Parameter

Scope No. Type Description

Input (1) (Note 1) Inputs the base of exponentiation.

(2) (Note 1) Inputs the exponent of exponentiation.

Output (3) (Note 2) Outputs the exponentiation obtained from the input arguments.

Outputs an in the following case.
Input (1): a
Input (2): n

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example

This program is designed to output the exponentiation (53 = 125) obtained from the input
variables “input1” and “input2” to the output variable “output1”.

LD program

ST program

3.6 Numerical Operation Instructions

3-34 WUME-GM1PGR-10

3.6.7 SIN (Trigonometric Function Sine)

This is a function that outputs the value of the trigonometric function sine. The unit of the input
argument is radian.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value (unit: radian) from which to obtain the trigonometric function
sine.

Output (Note 2) Outputs the value of sine of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the value of the trigonometric function sine obtained from
the input variable “input1” to the output variable ”output1”.

LD program

ST program

3.6 Numerical Operation Instructions

WUME-GM1PGR-10 3-35

3.6.8 COS (Trigonometric Function Cosine)

This is a function that outputs the value of the trigonometric function cosine. The unit of the
input argument is radian.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value (unit: radian) from which to obtain the trigonometric function
cosine.

Output (Note 2) Outputs the value of cosine of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the value of the trigonometric function cosine obtained from
the input variable “input1” to the output variable ”output1”.

LD program

ST program

3.6 Numerical Operation Instructions

3-36 WUME-GM1PGR-10

3.6.9 TAN (Trigonometric Function Tangent)

This is a function that outputs the value of the trigonometric function tangent. The unit of the
input argument is radian.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value (unit: radian) from which to obtain the trigonometric function
tangent.

Output (Note 2) Outputs the value of tangent of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the value of the trigonometric function tangent obtained from
the input variable “input1” to the output variable ”output1”.

LD program

ST program

3.6 Numerical Operation Instructions

WUME-GM1PGR-10 3-37

3.6.10 ASIN (Trigonometric Function Arc Sine)

This is a function that outputs the value of the trigonometric function arc sine. The unit of the
input argument is radian.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value (unit: radian) from which to obtain the trigonometric function arc
sine.

Output (Note 2) Outputs the value of arc sine of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the value of the trigonometric function arc sine obtained
from the input variable “input1” to the output variable ”output1”.

LD program

ST program

3.6 Numerical Operation Instructions

3-38 WUME-GM1PGR-10

3.6.11 ACOS (Trigonometric Function Arc Cosine)

This is a function that outputs the value of the trigonometric function arc cosine. The unit of the
input argument is radian.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value (unit: radian) from which to obtain the trigonometric function arc
cosine.

Output (Note 2) Outputs the value of arc cosine of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the value of the trigonometric function arc cosine obtained
from the input variable “input1” to the output variable ”output1”.

LD program

ST program

3.6 Numerical Operation Instructions

WUME-GM1PGR-10 3-39

3.6.12 ATAN (Trigonometric Function Arc Tangent)

This is a function that outputs the value of the trigonometric function arc tangent. The unit of the
input argument is radian.

■ Icon

■ Parameter

Scope Type Description

Input (Note 1) Specifies the value (unit: radian) from which to obtain the trigonometric function arc
tangent.

Output (Note 2) Outputs the value of arc tangent of the input argument.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT, REAL,
LREAL

(Note 2) Usable data type
REAL (if the input is REAL), LREAL

■ Program example
This program is designed to output the value of the trigonometric function arc tangent obtained
from the input variable “input1” to the output variable ”output1”.

LD program

ST program

3.6.13 Triangular function operator constant

GM Programmer allows the use of the following constants.

Name Value Type Description

SMC_PI 3.14159265358979 LREA
L

Circumference ratio

SMC_FACTOR_DEG_T
O_RAD

(SMC_PI/180) LREA
L

Convert angle (deg) to angle (rad)

SMC_FACTOR_RAD_T
O_DEG

(180/SMC_PI) LREA
L

Convert angle (rad) to angle (deg)

3.6 Numerical Operation Instructions

3-40 WUME-GM1PGR-10

3.7 Data Type Conversion Instructions

Data type conversion instructions can be used to convert the data type of a variable.

3.7.1 Type 1_TO_Type 2 (Type 1>Type 2 Conversion)

This is a function that converts the data type of the input argument "Type 1" to another data
type "Type 2". Conversion from a larger size data type to a smaller size data type is not
performed automatically. It is necessary to convert the data type using this instruction.

Parameter

Value BOOL/BYTE/WORD/DWORD/LWORD/SINT/USINT
INT/UINT/DINT/UDINT/LINT/ULINT/REAL/LREAL

Time TIME/LTIME/TIME_OF_DAY/DATE/DATE_AND_TIME

Character string STRING/WSTRING

Input ("Type 1”)
Specifies the variable required to be converted

Output ("Type 2")
Outputs the converted variable

■ Numerical value to numerical value type conversion

Main conversion examples

Numerical
value ⇒
Numerical
value

Conversion example Description

Input Output

INT_TO_BOO
L

5 TRUE If other than 0, outputs TRUE.

UINT_TO_SI
NT

300(16#012C) 44(16#2C) Outputs lower eight bits out of the 16 bits of UINT.

REAL_TO_IN
T

3.5 4 Outputs data after rounding decimals to the nearest whole
number.

■ Program example
INT_TO_BOOL

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-41

UINT_TO_SINT

LD program

ST program

REAL_TO_INT

LD program

ST program

■ Numerical value to time / Time to numerical value type conversion

Main conversion examples

Numerical
value ⇒
Time

Conversion example Description

Input Output

UDINT_TO
_TIME

16#098D 11B2 T#1d20h30m40s50ms Outputs the TIME constant in the UDINT
type.

UDINT_TO
_TOD

16#0466 B774 TOD#20:30:40.500 Outputs the TOD constant in the UDINT
type.

UDINT_TO
_DATE

16#386D 4380 D#2000-1-1 Outputs the DATE constant in the
UDINT type.

UDINT_TO
_DT

16#386E 63F0 DT#2000-1-1-20:30:40 Outputs the DT constant in the UDINT
type.

ULINT_TO_
LTIME

16#0000 91BC CB43
3B26

LTIME#1d20h30m40s50m
s60us70ns

Outputs the LTIME constant in the
LTIME type.

Time ⇒
Numerical
value

Conversion example Description

Input Output

TIME_TO_
UDINT

T#1d20h30m40s50ms 16#098D 11B2 Outputs the milliseconds from
0d0h0m0s.

TOD_TO_U
DINT

TOD#20:30:40.500 16#0466 B774 Outputs the milliseconds from 00:00:00.

3.7 Data Type Conversion Instructions

3-42 WUME-GM1PGR-10

Time ⇒
Numerical
value

Conversion example Description

Input Output

DATE_TO_
UDINT

D#2000-1-1 16#386D 4380 Outputs the seconds from 1970-1-1.

DT_TO_UD
INT

DT#2000-1-1-20:30:40 16#386E 63F0 Outputs the seconds from
1970-1-1-0:0:0.

LTIME_TO_
ULINT

LTIME#1d20h30m40s50m
s60us70ns

16#0000 91BC CB43
3B26

Outputs the nanoseconds from
0d0h0m0s0ms0us.

■ Program example
UDINT_TO_TIME/TIME_TO_UDINT

LD program

ST program

UDINT_TO_TOD/TOD_TO_UDINT

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-43

UDINT_TO_DATE/DATE_TO_UDINT

LD program

ST program

UDINT_TO_DT/DT_TO_UDINT

LD program

ST program

ULINT_TO_LTIME/LTIME_TO_ULINT

LD program

3.7 Data Type Conversion Instructions

3-44 WUME-GM1PGR-10

ST program

■ Numerical value to character string / Character string to numerical value type
conversion

Main conversion examples

Numerical
value ⇒
Character
string

Conversion example Description

Input Output

BOOL_TO_S
TRING

TRUE 'TRUE’ Outputs 'TRUE' converted from TRUE / Outputs 'FALSE'
converted from FALSE.

WORD_TO_S
TRING

16#3039(10#
12345)

'12345' Outputs the character string '12345’ converted from the input
value.

INT_TO_WST
RING

16#3039(10#
12345)

"12345" Outputs the character string "12345" converted from the input
value.

Character
string ⇒
Numerical
value

Conversion example Description

Input Output

STRING_TO_
BOOL

'TRUE' TRUE Outputs TRUE only when the character string 'TRUE’ is input.

STRING_TO_
WORD

'12345' 16#3039(10#
12345)

Outputs a numerical value converted from the character string
of the numerical value.

WSTRING_T
O_INT

"12345" 16#3039(10#
12345)

Outputs a numerical value converted from the character string
of the numerical value.

■ Program example
BOOL_TO_STRING/STRING_TO_BOOL

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-45

WORD_TO_STRING/STRING_TO_WORD

LD program

ST program

INT_TO_WSTRING/WSTRING_TO_INT

LD program

ST program

■ Time to character string / Character string to time type conversion

Main conversion examples

Time ⇒
Character
string

Conversion example Description

Input Output

DT_TO_ST
RING

DT#2000-1-1-20:30:40 'DT#2000-01-01-20:30:40' Outputs the DT constant in the STRING
type.

TOD_TO_
WSTRING

TOD#20:30:40.500 "TOD#20:30:40.500" Outputs the TOD constant in the
WSTRING type.

3.7 Data Type Conversion Instructions

3-46 WUME-GM1PGR-10

Character
string ⇒
Time

Conversion example Description

Input Output

STRING_T
O_DT

’DT#2000-01-01-20:30:40' DT#2000-1-1-20:30:40 Outputs time converted from the
character string of the time.

WSTRING_
TO_TOD

"TOD#20:30:40.500" TOD#20:30:40.500 Outputs time converted from the
character string of the time.

■ Program example
DT_TO_STRING/STRING_TO_DT

LD program

ST program

TOD_TO_WSTRING/WSTRING_TO_TOD

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-47

3.7.2 TRUNC (Real Number to DINT Conversion)

This is a function that converts a real number type input to a DINT type.

■ Icon

■ Parameter

Scope Type Description

Input REAL,
LREAL

Real number type value

Output DINT Outputs the value converted to the DINT type from the input argument.

■ Program example
This program is designed to convert the LREAL type input variable “input1” to the DINT type
output variable “output1” and output the converted data.
Input1 := 1.7976931348623157E+307;

LD program

ST program

3.7 Data Type Conversion Instructions

3-48 WUME-GM1PGR-10

3.7.3 TRUNC_INT (Real Number to INT Conversion)

This is a function that converts a real number type input to an INT type.

■ Icon

■ Parameter

Scope Type Description

Input REAL,
LREAL

Real number type value

Output INT Outputs the value converted to the INT type from the input argument.

■ Program example
This program is designed to convert the LREAL type input variable “input1” to the INT type
output variable “output1” and output the converted data.
Input1 := 1.7976931348623157E+307;

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-49

3.7.4 BCD_TO_** (BCD to Binary Conversion)

This is a function that converts an input in BCD format to a binary code of BYTE type, INT type,
WORD type, or DWORD type.

■ Icon

■ Parameter

BCD_TO_BYTE

Scope Name Type Description

Input B BYTE The BCD code value to be converted

Output BCD_TO_BYTE BYTE Outputs the value converted to a binary code from the
input argument.

BCD_TO_INT

Scope Name Type Description

Input B BYTE The BCD code value to be converted

Output BCD_TO_INT INT Outputs the value converted to a binary code from the
input argument.
Outputs 10#-1 when a value outside the effective
range is input to the input B.

BCD_TO_WORD

Scope Name Type Description

Input W WORD The BCD code value to be converted

Output BCD_TO_WORD WORD Outputs the value converted to a binary code from the
input argument.

BCD_TO_DWORD

Scope Name Type Description

Input X DWORD The BCD code value to be converted

Output BCD_TO_DWORD DWORD Outputs the value converted to a binary code from the
input argument.

■ Program example
This program is designed to convert the BYTE type input variable “input1” to the BYTE type
output variable “output1” and output the converted data.

3.7 Data Type Conversion Instructions

3-50 WUME-GM1PGR-10

This program is designed to convert the BYTE type input variable “input2” to the INT type
output variable “output2” and output the converted data.
This program is designed to convert the WORD type input variable “input3” to the WORD type
output variable “output3” and output the converted data.
This program is designed to convert the DWORD type input variable “input4” to the DWORD
type output variable “output4” and output the converted data.

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-51

● Do not input a value that is not a BCD array (including A, B, C, D, E, or F in hexadecimal
notation).

3.7 Data Type Conversion Instructions

3-52 WUME-GM1PGR-10

3.7.5 **_TO_BCD (Binary to BCD Conversion)

This is a function that converts a binary code input of BYTE type, INT type, WORD type, or
DWORD type to a BCD format value.

■ Icon

■ Parameter

BYTE_TO_BCD

Scope Name Type Description

Input B BYTE The binary code value to be converted. Effective range:
10#0 to 99

Output BYTE_TO_BCD BYTE Outputs the value converted to the BCD code from the input
argument.

INT_TO_BCD

Scope Name Type Description

Input I INT The binary code value to be converted. Effective range:
10#0 to 99

Output INT_TO_BCD BYTE Outputs the value converted to the BCD code from the input
argument.
Outputs 16#FF when a value outside the effective range is
input to the input I.

WORD_TO_BCD

Scope Name Type Description

Input W WORD The binary code value to be converted. Effective range:
10#0 to 9999

Output WORD_TO_BCD WORD Outputs the value converted to the BCD code from the input
argument.

DWORD_TO_BCD

Scope Name Type Description

Input X DWOR
D

The binary code value to be converted. Effective range:
10#0 to 99999999

Output DWORD_TO_BCD DWOR
D

Outputs the value converted to the BCD code from the input
argument.

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-53

■ Program example
This program is designed to convert the BYTE type input variable “input1” to the BYTE type
output variable “output1” and output the converted data.
This program is designed to convert the BYTE type input variable “input2” to the INT type
output variable “output2” and output the converted data.
This program is designed to convert the WORD type input variable “input3” to the WORD type
output variable “output3” and output the converted data.
This program is designed to convert the DWORD type input variable “input4” to the DWORD
type output variable “output4” and output the converted data.

LD program

ST program

3.7 Data Type Conversion Instructions

3-54 WUME-GM1PGR-10

3.7.6 GRAY_TO_** (Gray Code to Binary Conversion)

This is a function that converts a Gray code input to a binary code of BYTE type, WORD type,
or DWORD type.

■ Icon

■ Parameter

GRAY_TO_BYTE

Scope Name Type Description

Input B BYTE The BYTE type Gray code value to be converted

Output GRAY_TO_BYTE BYTE A value converted to a BYTE type binary code from
the input argument

GRAY_TO_WORD

Scope Name Type Description

Input W WORD The WORD-type Gray code value to be converted

Output GRAY_TO_WORD WORD A value converted to a WORD-type binary code from
the input argument

GRAY_TO_DWORD

Scope Name Type Description

Input X DWORD The DWORD type Gray code value to be converted

Output GRAY_TO_DWORD DWORD A value converted to a DWORD type binary code from
the input argument

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-55

■ Program example
This program is designed to convert the BYTE type Gray code input variable “input1” to the
BYTE type binary code output variable “output1” and output the converted data.
This program is designed to convert the DWORD type Gray code input variable “input2” to the
DWORD type binary code output variable “output2” and output the converted data.
This program is designed to convert the WORD type Gray code input variable “input3” to the
WORD type binary code output variable “output3” and output the converted data.

LD program

ST program

3.7 Data Type Conversion Instructions

3-56 WUME-GM1PGR-10

3.7.7 **_TO_GRAY (Binary to Gray Code Conversion)

This is a function that converts a binary code input of BYTE type, WORD type, or DWORD type
to a Gray code.

■ Icon

■ Parameter

BYTE_TO_GRAY

Scope Name Type Description

Input B BYTE The BYTE type binary code value to be converted

Output BYTE_TO_GRAY BYTE A value converted to a BYTE type Gray code from the
input argument

WORD_TO_GRAY

Scope Name Type Description

Input W WORD The WORD type binary code value to be converted

Output WORD_TO_GRAY WORD A value converted to a WORD type Gray code from
the input argument

DWORD_TO_GRAY

Scope Name Type Description

Input X DWORD The DWORD type binary code value to be converted

Output DWORD_TO_GRAY DWORD A value converted to a DWORD type Gray code from
the input argument

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-57

■ Program example
This program is designed to convert the BYTE type binary code input variable “input1” to the
BYTE type Gray code output variable “output1” and output the converted data.
This program is designed to convert the DWORD type binary code input variable “input2” to the
DWORD type Gray code output variable “output2” and output the converted data.
This program is designed to convert the WORD type binary code input variable “input3” to the
WORD type Gray code output variable “output3” and output the converted data.

LD program

ST program

3.7 Data Type Conversion Instructions

3-58 WUME-GM1PGR-10

3.7.8 BYTE_TO_HEXinASCII (Binary to ASCII Conversion)

This is a function that converts a one-byte hexadecimal binary-coded value to a one-word
ASCII code.

■ Icon

■ Parameter

BYTE_TO_HEXinASCII

Scope Name Type Description

Input B BYTE The binary code value to be converted.

Output BYTE_TO_HEXinASCII WORD A value converted to an ASCII code from the input
argument

■ Program example
This program is designed to convert the BYTE type input variable “input1” to the WORD type
output variable “output1” and output the converted data.
input1 := 16#5D

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-59

● Convertible ASCII codes

ASCII Hexadecimal

0 0x30

1 0x31

2 0x32

3 0x33

4 0x34

5 0x35

6 0x36

7 0x37

8 0x38

9 0x39

A 0x41

B 0x42

C 0x43

D 0x44

E 0x45

F 0x46

3.7 Data Type Conversion Instructions

3-60 WUME-GM1PGR-10

3.7.9 HEXinASCII_TO_BYTE (ASCII to Binary Conversion)

This is a function that converts a one-word ASCII code to a one-byte hexadecimal binary-coded
value.

■ Icon

■ Parameter

HEXinASCII_TO_BYTE

Scope Name Type Description

Input W WORD The ASCII code value to be converted

Output HEXinASCII_TO_BYTE BYTE A value converted to a binary code from the input
argument

■ Program example
This program is designed to convert the WORD type input variable “input1” to the BYTE type
output variable “output1” and output the converted data.
input1 := 16#3544

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-61

● Convertible ASCII codes
Inputs other than those shown below cause 0 to be output.

Hexadecimal ASCII

0x30 0

0x31 1

0x32 2

0x33 3

0x34 4

0x35 5

0x36 6

0x37 7

0x38 8

0x39 9

0x41 A

0x42 B

0x43 C

0x44 D

0x45 E

0x46 F

3.7 Data Type Conversion Instructions

3-62 WUME-GM1PGR-10

3.7.10 MEM.Decode (4BYTE to DWORD Conversion)

This is a function that decodes data in units of byte to data in units of DWORD. The number of
bytes that can be decoded is a multiple of 4 within the effective range 10#4 to 10#65532.

■ Icon

■ Parameter

Scope Name Type Description

Input pSource POINTER TO BYTE Start pointer to data in units of byte

Input pDestination POINTER TO DWORD Start pointer to data in units of DWORD

Input uiNumberOfBytes UINT Number of bytes to decode Effective range: 10#4
to 10#65532

Output Decode BOOL Always outputs FALSE

■ Program example
This program is designed to decode four-byte (uiNumberOfBytes) data of an input variable
(SourceData[16#78,16#56,16#34,16#12]) into one-dword data
(DestinationData[16#12345678]).
SourceData : ARRAY [0..3] OF BYTE := [16#78,16#56,16#34,16#12] (decode source data)
uiNumberOfBytes := 10#4 (16#4)

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-63

● Use a multiple of 4 for the number of bytes to decode (uiNumberOfBytes). The bytes of data
other than a multiple of 4 cannot be decoded and 0 is output.

● Do not set 0 (NULL) in the start pointer to decode source data (pSource) and the start pointer
to decode destination data (pDestination). If set to NULL, an exception error occurs.

3.7.11 MEM.Encode (DWORD to 4BYTE Conversion)

This is a function that encodes data in units of DWORD into data in units of bytes. The number
of bytes that can be encoded is a multiple of 4 within the effective range 10#4 to 10#65532.

■ Icon

■ Parameter

Scope Name Type Description

Input pSource POINTER TO DWORD Start pointer of data in units of DWORD

Input pDestination POINTER TO BYTE Start pointer to data in units of byte

Input uiNumberOfBytes UINT Number of bytes to encode Effective range: 10#4
to 10#65532

Output Encode BOOL Number of bytes to encode Effective range: 10#4
to 10#65532

■ Program example
This program is designed to encode four-byte (uiNumberOfBytes) data of an input variable
(SourceData[16#12345678]) into four-byte data (DestinationData[16#78,16#56,16#34,16#12]).
SourceData := 16#12345678
uiNumberOfBytes := 10#4 (16#4)

LD program

3.7 Data Type Conversion Instructions

3-64 WUME-GM1PGR-10

ST program

● Use a multiple of 4 for the number of bytes to encode (uiNumberOfBytes). The bytes of data
other than a multiple of 4 cannot be encoded and 0 is output.

● Do not set 0 (NULL) in the start pointer to encode source data (pSource) and the start pointer
to encode destination data (pDestination). If set to NULL, an exception error occurs.

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-65

3.7.12 MEM.PackArrayOfBoolToArrayOfByte (BOOL Array to BYTE
Conversion)

This is a function that packs a BOOL type array into an array in bytes and copies a specified bit
size data. The function returns the number of bytes required for coping. The maximum copyable
size is 65535 bits (approx. 8192 bytes).

■ Icon

■ Parameter

Scope Name Type Description

Input paxSource POINTER TO
BYTE

Starting address of BOOL type array data

Input pabyDestination POINTER TO
BYTE

Starting address of Byte type data

Input uiNumberOfBits UINT Number of bits to copy Effective range: 10#1 to
65535

Output PackArrayOfBoolToArrayOfB
yte

UINT Outputs the number of bytes required for coping

■ Program example
This program is designed to pack a 24-bit amount (uiNumberOfBits) of BOOL type copy source
data (xbit) in bytes and copy the packed data to the copy destination (ArrayBlock).
The program returns the number of bytes required for coping.
ArrayBlock : ARRAY [0..4] OF BYTE := [5(0)]　(copy destination data: default value)
xbit[7:0] = 2#00010010[16#12]
xbit[15:8] = 2#00110100[16#34]
xbit[23:16] = 2#01010110[16#56]
uiNumberOfBits := 10#24

LD program

3.7 Data Type Conversion Instructions

3-66 WUME-GM1PGR-10

ST program

● If the number of bits to be copied uiNumberOfBits = 0, the copying will not be carried out and
the return value of the function will be PackArrayOfBoolToArrayOfByte = 0.

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-67

3.7.13 MEM.PackBitsTo**(Bit Data to BYTE/WORD/DWORD Conversion)

This is a function that packs input BOOL type data and outputs a BYTE, a WORD, or a
DWORD.

■ Icon

■ Parameter

MEM.PackBitsToByte

Scope Name Type Description

Input xBit0 to xBit7 BOOL Bits to be packed Bit0 to Bit7

Output PackBitsToByte BYTE A value of the packed input

MEM.PackBitsToWord

Scope Name Type Description

Input xBit0~xBit15 BOOL Bits to be packed Bit0 to Bit15

Output PackBitsToWord WORD A value of the packed input

MEM.PackBitsToDword

Scope Name Type Description

Input xBit0~xBit31 BOOL Bits to be packed Bit0 to Bit31

Output PackBitsToDword DWORD A value of the packed input

■ Program example 1
This program is designed to pack the BOOL type input variables xBit and output the packed
data to the BYTE type output variable PackBitsToByte.
xBit4,xBit1 :=TRUE
Others :=FALSE

3.7 Data Type Conversion Instructions

3-68 WUME-GM1PGR-10

LD program

ST program

■ Program example 2
This program is designed to pack the BOOL type input variables xBit and output the packed
data to the WORD type output variable PackBitsToWord.
xBit12,xBit9,xBit5,xBit4,xBit2 :=TRUE
Others :=FALSE

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-69

LD program

ST program

3.7 Data Type Conversion Instructions

3-70 WUME-GM1PGR-10

■ Program example 3
This program is designed to pack the BOOL type input variables xBit and output the packed
data to the DWORD type output variable PackBitsToDword.
xBit24,xBit17,xBit9,xBit8,xBit2 :=TRUE
Others :=FALSE

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-71

LD program

3.7 Data Type Conversion Instructions

3-72 WUME-GM1PGR-10

ST program

3.7.14 MEM.PackBytesTo**(BYTE to WORD/DWORD Conversion)

This is a function that packs input BYTE type data and outputs one-word or one-dword data.

■ Icon

■ Parameter

PackBytesToWord

Scope Name Type Description

Input byHighByte BYTE PackBytesToWord

Input byLowByte BYTE Low byte to be packed

Output PackBytesToWord WORD A value of the packed input

PackBytesToDword

Scope Name Type Description

Input byHHByte BYTE HH byte to be packed

Input byHLByte BYTE HL byte to be packed

Input byLHByte BYTE LH byte to be packed

Input byLLByte BYTE LL byte to be packed

Output PackBytesToDword DWORD A value of the packed input

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-73

■ Program example
● PackBytesToDword

This program is designed to pack the byHHByte, byHLByte, byLHByte, and byLLByte input
variables of the BYTE type and output the packed data to the PackBytesToDword output
variable of the DWORD type.
byHHByte := 16#01 、byHLByte : = 16#02 、byLHByte := 16#03 、byLLByte := 16#04

● PackBytesToWord
This program is designed to pack the byHighByte and byLowByte input variables of the
BYTE type and output the packed data to the PackBytesToWord output variable of the
WORD type.
byHighByte := 16#12
byLowByte := 16#34

LD program

ST program

3.7 Data Type Conversion Instructions

3-74 WUME-GM1PGR-10

3.7.15 MEM.PackWordsToDword (WORD to DWORD Conversion)

This is a function that packs input WORD type data and outputs a DWORD.

■ Icon

■ Parameter

Scope Name Type Description

Input wHighWord WORD High WORD to be packed

Input wLowWord WORD Low WORD to be packed

Output PackWordsToDword DWORD A value of the packed input

■ Program example
This program is designed to pack the wHighWord and wLowWord input variables of the WORD
type and output the packed data to the PackWordsToDword output variable of the DWORD
type.
wHighWord := 16#0102
wLowWord := 16#0304

LD program

ST program

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-75

3.7.16 MEM.UnpackArrayOfByte (BYTE to BOOL Array Conversion)

This is a function that unpacks a BYTE type array to data in units of bits and copies a specified
bit size of the data to a destination BOOL array. The function returns the number of bytes
required for coping. The maximum copyable size is 65535 bits (approx. 8192 bytes).

■ Icon

■ Parameter

Scope Name Type Description

Input pabySource POINTER TO
BYTE

Starting address of Byte type data

Input paxDestination POINTER TO
BYTE

Starting address of BOOL type array data

Input uiNumberOfBits UINT Number of bits to copy Effective range: 10#1 to
65535

Output UnpackArrayOfByte UINT Outputs the number of bytes required for coping

■ Program example
This program is designed to unpack BYTE type copy source data (ArrayBlock) to a 24-bit
amount (uiNumberOfBits) in bits and copy the unpacked data to the copy destination (xbit).
The program returns the number of bytes required for coping.
ArrayBlock[0] := 16#12
ArrayBlock[1] := 16#34
ArrayBlock[2] := 16#56
uiNumberOfBits := 10#24 (16#18)

LD program

3.7 Data Type Conversion Instructions

3-76 WUME-GM1PGR-10

ST program

● If the number of bits to be copied uiNumberOfBits = 0, the copying will not be carried out and
the return value of the function will be UnpackArrayOfByte = 0.

3.7 Data Type Conversion Instructions

WUME-GM1PGR-10 3-77

3.8 Bit operation instructions

3.8.1 EXTRACT (Bit Extraction)

This is a function that outputs the bit number N value (BOOL) of input value X (DWORD).

■ Icon

■ Parameter

Scope Name Type Description

Input X DWORD Input value

Input N BYTE Number of the bit to be extracted. Effective range:
10#0 to 31

Output EXTRACT BOOL The Nth bit value of the input value X

■ Program example
This program is designed to output the inputNth bit value of the inputX input variable of the
DWORD type to the BOOL type output variable “output1”.
inputX := 16#AA (2#10101010)
inputN := 16#5

LD program

ST program

● The allowable range of the input value N (bit number) is 0 to 31 (bits).

3.8 Bit operation instructions

3-78 WUME-GM1PGR-10

3.8.2 PUTBIT (Bit Change)

This is a function that changes the value at bit number N of input value X (DWORD) to the B
value and outputs a DWORD with the changed value at the bit number.

■ Icon

■ Parameter

Scope Name Type Description

Input X DWORD Input value

Input N BYTE Number of the bit to be changed. Effective range: 10#0
to 31

Input B BOOL Value of specified bit

Output PUTBIT DWORD Value with the Nth bit of the input value X changed to
the B value

■ Program example
This program is designed to output a value with the inputNth bit value of the DWORD type
inputX input variable changed to the inputB value to the DWORD type output variable “output1”.
inputX := 16#AA (2#10101010)
inputN := 16#6
inputB := TRUE

LD program

ST program

● The allowable range of the input value N (bit number) is 0 to 31 (bits).

3.8 Bit operation instructions

WUME-GM1PGR-10 3-79

3.8.3 SWITCHBIT (Bit Inversion)

This is a function that inverts the bit number N value (0 to 1/1 to 0) of input value X (DWORD)
and outputs the DWORD with the inverted value at the bit number.

■ Icon

■ Parameter

Scope Name Type Description

Input X DWORD Input value

Input N BYTE Number of the bit to invert. Effective range: 10#0 to 31

Output SWITCHBIT DWORD Value with the Nth bit value of the input value X
inverted

■ Program example
This program is designed to invert the inputNth bit value of the DWORD type inputX input
variable and output a value with the inverted bit value to the DWORD type output variable
“output1”.
inputX := 16#AA (2#10101010)
inputN := 10#6

LD program

LD program

● The allowable range of the input value N (bit number) is 0 to 31 (bits).

3.8 Bit operation instructions

3-80 WUME-GM1PGR-10

3.8.4 MEMUtils.BitCpy (Bit Copying)

This is a function that copies a specified size of bit data from copy source data.The maximum
copyable size is 65535 bits (approx. 8191 bytes).

■ Icon

■ Parameter

Scope Name Type Description

Input pDest POINTER TO BYTE Start pointer to copy destination data

Input wDstStartBit WORD Start bit position in copy destination data

Input pSource POINTER TO BYTE Start pointer to copy source data

Input wSrcStartBit WORD Start bit position in copy source data

Input wSize WORD Bit size to copy. Effective range: 10#1 to 65535

Output BitCpy BOOL Always outputs FALSE

■ Program example
This program is designed to copy 40 bits (wSize) in copy source data (SourceData) onto copy
destination data (DestinationData).
SourceData : ARRAY [0..4] OF BYTE := [1,2,3,4,5] (Copy source data)
DestinationData : ARRAY [0..4] OF BYTE := [5(0)] (Copy destination data)
wDstStartBit := 0 , wSrcStartBit := 0
wSize := 40

3.8 Bit operation instructions

WUME-GM1PGR-10 3-81

LD program

ST program

● If the wSize value is 0, the copying will not be carried out.
● If copying in units of byte is required, use the function in ”3.12.10 MEM.MemMove”.
● If any of the start bit positions are set to a value other than 0, the parameters need to be

configured such that both the conditions below are satisfied.
• wSize ≤ 65536 – wDstStartBit
• wSize ≤ 65536 – wSrcStartBit

3.8 Bit operation instructions

3-82 WUME-GM1PGR-10

3.8.5 MEM.ReverseBitsIn** (Bit Order Change)

This is a function that reverses the order of the bits of input BYTE- , WORD-, or DWORD-type
data and outputs the data of the bits in reverse order.

■ Icon

■ Parameter

ReverseBitsInBYTE

Scope Name Type Description

Input byInput BYTE Input value, BYTE type data

Output ReverseBitsInBYTE BYTE Value in reverse bit order

ReverseBitsInWORD

Scope Name Type Description

Input wInput WORD Input value, WORD type data

Output ReverseBitsInWORD WORD Value in reverse bit order

ReverseBitsInDWORD

Scope Name Type Description

Input dwInput DWORD Input value, DWORD type data

Output ReverseBitsInDWORD DWORD Value in reverse bit order

■ Program example
● ReverseBitsInBYTE

3.8 Bit operation instructions

WUME-GM1PGR-10 3-83

This program is designed to reverse the order of bits of the byInput input variable of the
BYTE type and outputs the data of the bits in reverse order to the ReverseBitsInBYTE output
variable of the BYTE type.
byInput := 16#12

● ReverseBitsInDWORD
This program is designed to reverse the order of bits of the dwInput input variable of the
DWORD type and outputs the data of the bits in reverse order to the ReverseBitsInDWORD
output variable of the DWORD type.
dwInput := 16#01020304

● ReverseBitsInWORD
This program is designed to reverse the order of bits of the wInput input variable of the
WORD type and outputs the data of the bits in reverse order to the ReverseBitsInWORD
output variable of the WORD type.
wInput := 16#1234

LD program

ST program

3.8 Bit operation instructions

3-84 WUME-GM1PGR-10

3.9 Memory operation instructions

3.9.1 SEL (Binary Selector)

This is a function that outputs the value of the input argument IN0 or IN1 depending on whether
the input argument G is true or false.

■ Icon

■ Parameter

Scope Name Type Description

Input G BOOL Conditions for selecting the contents to be output

IN0 All Specifies the variable to be output if G is FALSE.

IN1 All Specifies the variable to be output if G is TRUE.

Output - All Outputs the value of IN0 or IN1 depending on the value of G.

■ Program example
This program is designed to output the value of the input variable “input2” or “input3” to the
output variable “output1” depending on the value of the input variable “input1”.

LD program
This program is designed to output the value of “input2” (IN0) because the value of “input1” is
FALSE.

ST program
This program is designed to output the value of “input3” (IN1) to the "output1" because the
value of “input1” is TRUE.

3.9 Memory operation instructions

WUME-GM1PGR-10 3-85

3.9.2 MUX (Multiplexer)

This is a function that selectively outputs the input arguments depending on the value of the
input argument K.

■ Icon

■ Parameter

Scope Name Type Description

Input K (Note 1) Specifies the value (K = 0, 1, 2...) to select the value to output.

- All Specifies the value to be output depending on K.

Output - All Outputs one of the input arguments depending on the value of K.

(Note 1) Usable data type
BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

■ Program example
This program is designed to output the value of the input variable “input2” or “input3” to the
output variable “output1” depending on the value of the input variable “input1”.

LD program
This program is designed to output the value of “input3” to “output1” depending on the value (1)
of “input1”.

ST program
This program is designed to output the value of “input 2” to the “output 1” depending on the
value (0) of “input 1”.

3.9 Memory operation instructions

3-86 WUME-GM1PGR-10

3.9.3 LIMIT (Limiter)

This is a function that limits the input value with the lower and upper limit values and outputs a
restricted value.

■ Icon

■ Parameter

Scope Name Type Description

Input MN All Specifies the lower limit of the value to be output.

IN All Specifies the input values to be restricted.

MX All Specifies the upper limit of the value to be output.

Output - All Outputs values according to the following conditions.
IN ≤ MN: Outputs "MN".
MN ≤ IN ≤ MX: Outputs "IN".
MX ≤ IN: Outputs "MX".

■ Program example
This program is designed to limit the value range of the input variable “input2” with the input
variable “input1” (lower limit) and the input variable “input3” (upper limit) and to output the
limited value to the output variable “output1”.

LD program
This program is designed to output “3” to “output1” because the value (1) of “input2” (IN) is less
than or equal to the lower limit (3) specified in “input1” (MN).

ST program
This program is designed to output “5” to “output1” because the value (8) of “input2” is greater
than or equal to the upper limit (5) specified in “input3”.

3.9 Memory operation instructions

WUME-GM1PGR-10 3-87

3.9.4 MAX (Maximum Value)

This is a function that outputs the maximum value of the input arguments.

■ Icon

■ Parameter

Scope Type Description

Input All Specifies the values from which to obtain the maximum value.

Output All Outputs the maximum value of the input values.

■ Program example
This program is designed to output the maximum value of the input variables to the output
variable “output1”.

LD program

ST program

● If you want to increase input arguments in the LD program, right-click on the MAX function,
and, on the displayed menu, select "Add Input".

3.9 Memory operation instructions

3-88 WUME-GM1PGR-10

3.9.5 MIN (Minimum Value)

This is a function that outputs the minimum value of the input arguments.

■ Icon

■ Parameter

Scope Type Description

Input All Specifies the values from which to obtain the minimum value.

Output All Outputs the minimum value of the input values.

■ Program example
This program is designed to output the minimum value of the input variables to the output
variable “output1”.

LD program

ST program

● If you want to increase input arguments in the LD program, right-click on the MIN function, and,
on the displayed menu, select "Add Input".

3.9 Memory operation instructions

WUME-GM1PGR-10 3-89

3.9.6 MEMUtils.Swap (Byte Swapping)

This is a function that swaps specified bytes in order at a specified pointer to data in units of
byte. The numbers of bytes that can be swapped are 2 bytes, 4 bytes, and 8 bytes.

■ Icon

■ Parameter

Scope Name Type Description

Input puc POINTER TO BYTE Start pointer at which byte swapping starts

Input iSize INT The number of bytes to swap. Allowable inputs:
10#2/10#4/10#8

Output Swap INT Status Successfully complete = 1　Error = -1

■ Program example
This program is designed to swap 2 bytes (iSize) in order in source data (pucData) in units of
byte.
pucData := 16#1234 (Data to swap)
iSize := 2

LD program

Execution result

ST program

3.9 Memory operation instructions

3-90 WUME-GM1PGR-10

Execution result

● If iSize is set to a value other than 2/4/8, byte swapping will not be carried out and the return
value (Swap) of the function will be -1.

3.9.7 MEM.Compare (Memory Comparison)

This is a function that compares two specified memory block data pieces. When the memory
block data pieces match each other, the function outputs 0. If they do not match, the function
outputs the first location at which they differ.

■ Icon

■ Parameter

Scope Name Type Description

Input pMemoryBlockA POINTER TO
BYTE

Start pointer to data A to compare

Input pMemoryBlockB POINTER TO
BYTE

Start pointer to data B to compare

Input uiNumberOfBytes UINT Number of data bytes to compare Effective range:
10#1 to 10#65534

Output Compare UINT 0 = Data pieces match / Other = First location (BYTE)
at which data pieces differ

■ Program example
This program is designed to compare two specified pieces of BYTE type data (MemoryBlockA/
MemoryBlockB).
MemoryBlockA : ARRAY[0..9] OF BYTE := 0,1,2,3,4,5,6,7,8,9
MemoryBlockB : ARRAY[0..9] OF BYTE := 0,1,2,0,4,5,0,7,8,9
uiNumberOfBytes := 10

3.9 Memory operation instructions

WUME-GM1PGR-10 3-91

LD program

ST program

● If the number of data bytes to compare (uiNumberOfBytes) is 0, the function does not compare
the two data pieces and returns 0.

● The function does not operate properly if the number of data bytes to compare
(uiNumberOfBytes) is set to 65535 bytes. Thus, do not use that byte size.

3.9.8 MEM.FindBlock(Memory block search)

This is a function that searches memory block data A for memory block data B. If the target
data is found, the function outputs the location at which the target data starts. If the target data
is not found, the function outputs 0.

■ Icon

■ Parameter

Scope Name Type Description

Input pMemoryBlockA POINTER TO
BYTE

Start pointer to the data to search

Input uiLengthBlockA UINT Number of bytes of the data to search Effective range:
10#1 to 10#65535

3.9 Memory operation instructions

3-92 WUME-GM1PGR-10

Scope Name Type Description

Input pMemoryBlockB POINTER TO
BYTE

Start pointer to the data to find

Input uiLengthBlockB UINT Number of bytes of the data to find Effective range:
10#1 to 10#65535

Output FindBlock UINT 0 = Data not found / Other = Location (BYTE) at which
the found data starts

■ Program example
This program is designed to search specified BYTE type data (MemoryBlockA) for specified
BYTE type data (MemoryBlockB).
pMemoryBlockA : ARRAY[0..9] OF BYTE := 1,2,3,4,5,1,2,3,4,5
pMemoryBlockB : ARRAY[0..2] OF BYTE := 3,4,5
uiLengthBlockA := 10
uiLengthBlockB := 3

LD program

ST program

● Do not use this function with 0 set in the number of bytes of the data to find (uiLengthBlockB). If
uiLengthBlockB = 0, the return value of the function is 16#FFFF.

3.9 Memory operation instructions

WUME-GM1PGR-10 3-93

3.9.9 MEM.FindByte (Find Byte Data)

This is a function that searches specified memory block data for specified one-byte data. If the
target data is found, the function outputs the location at which the target data starts. If the target
data is not found, the function outputs 0.

■ Icon

■ Parameter

Param
eter

Name Type Description

Input pMemoryBlock POINTER TO
BYTE

Start pointer to the data to search

Input uiLength UINT Number of bytes of the data to search Effective range:
10#1 to 10#65534

Input byValue BYTE Data to find Effective range: 10#0 to 10#255

Output FindByte UINT 0 = Data not found / Other = Location (BYTE) at which
the found data starts

■ Program example
This program is designed to search specified BYTE type data (MemoryBlock) for BYTE type
data (byValue).
pMemoryBlock : ARRAY[0..9] OF BYTE := 1,2,3,4,5,1,2,3,4,5
byValue := 3
uiLength := 10

LD program

ST program

3.9 Memory operation instructions

3-94 WUME-GM1PGR-10

● If the number of bytes of the data to search (uiLength) is 0, the function does not search the
data and returns 0.

● The function does not operate properly if the number of bytes of the data to search (uiLength)
is set to 65535 bytes. Thus, do not use that byte size.

3.9 Memory operation instructions

WUME-GM1PGR-10 3-95

3.9.10 MEM.MemFill (Memory Fill)

This is a function that fills a specified size in data memory with a specified data value.

■ Icon

■ Parameter

MemFill

Scope Name Type Description

Input pMemoryBlock POINTER TO
BYTE

Starting address of data to fill

Input uiLength UINT Number of bytes to fill Effective range: 10#1 to 65534

Input byFillValue BYTE Data value with which to fill the data Effective range:
10#0 to 255

Output MemFill BOOL TRUE = Filling completed

■ Program example
This program is designed to fill a three-byte size (uiLength) in data to fill (ArrayBlock) with the
16#AA data value (byFillValue).
ArrayBlock : ARRAY [0..4] OF BYTE := [5(0)] (data to fill: default value)
uiLength := 10#3
byFillValue := 16#AA (data value with which to fill the data)

LD program

3.9 Memory operation instructions

3-96 WUME-GM1PGR-10

ST program

● The function does not operate properly if the number of bytes to fill (uiLength) is set to the
maximum 65535 bytes. Thus, do not use that byte size.

● If the number of bytes to fill (uiLength) is 0, the data filling will not be carried out.
● If the start pointer to data to fill (pMemoryBlock) is set to 0 (NULL), the function returns FALSE.

3.9.11 MEM.MemMove (Memory Copying)

This is a function that copies a specified size in data memory onto copy destination data
memory.

■ Icon

■ Parameter

MemMove

Scope Name Type Description

Input pSource POINTER TO
BYTE

Copy source data starting address

Input pDestination POINTER TO
BYTE

Copy destination data starting address

Input uiNumberOfBytes UINT Number of bytes to copy Effective range: 10#1 to
65534

Output MemMove BOOL TRUE = Copying completed

■ Program example
This program is designed to copy 3 bytes (uiNumberOfBytes) in copy source data (SourceData)
onto copy destination data (DestinationData).
SourceData : ARRAY [0..4] OF BYTE := [1,2,3,4,5] (Copy source data)
DestinationData : ARRAY [0..4] OF BYTE := [5(0)] (Copy destination data: default value)

3.9 Memory operation instructions

WUME-GM1PGR-10 3-97

uiNumberOfBytes := 3

LD program

ST program

● The function does not operate properly if the number of bytes to copy (uiNumberOfBytes) is set
to the maximum 65535 bytes. Thus, do not use that byte size.

● If the number of bytes to copy (uiNumberOfBytes) is 0, the copying will not be carried out.
● If any of the start pointer to copy source data (pSource) and the start pointer to copy

destination data (pDestination) are set to 0 (NULL), the function returns FALSE.
● If copying in units of bit is required, use the function in ”3.12.4 MEMUtils.BitCpy”.

3.9 Memory operation instructions

3-98 WUME-GM1PGR-10

3.9.12 MEM.High** (High Byte/High WORD Extraction)

This is a function that outputs high byte / high WORD of the input value.

■ Icon

■ Parameter

HighByte

Scope Name Type Description

Input wValue WORD Input value of WORD type

Output HighByte BYTE Outputs high byte of the input value

HighWord

Scope Name Type Description

Input dwValue DWORD Input value of DWORD type

Output HighWord WORD Outputs high WORD of the input value

■ Program example
This program is designed to output the high byte (16#12) of the wValue input variable
(16#1234) of the WORD type to the HighByte output variable of the BYTE type.
This program is designed to output the high WORD (16#1234) of the dwValue input variable
(16#12345678) of the DWORD type to the HighWord output variable of the WORD type.

3.9 Memory operation instructions

WUME-GM1PGR-10 3-99

LD program

ST program

3.9.13 MEM.Low** (Low Byte/Low WORD Extraction)

This is a function that outputs low byte / low WORD of the input value.

■ Icon

■ Parameter

LowByte

Scope Name Type Description

Input wValue WORD Input value of WORD type

Output LowByte BYTE Outputs low byte of the input value

3.9 Memory operation instructions

3-100 WUME-GM1PGR-10

LowWord

Scope Name Type Description

Input dwValue DWORD Input value of DWORD type

Output LowWord WORD Outputs low WORD of the input value

■ Program example
This program is designed to output the low byte (16#34) of the wValue input variable (16#1234)
of the WORD type to the LowByte output variable of the BYTE type.
This program is designed to output the low WORD (16#5678) of the dwValue input variable
(16#12345678) of the DWORD type to the LowWord output variable of the WORD type.

LD program

ST program

3.9.14 MEM.ReverseBYTEsIn** (Byte Order Change)

This is a function that reverses the order of the bytes of input WORD-, or DWORD-type data
and outputs the data of the bytes in reverse order.

■ Icon

3.9 Memory operation instructions

WUME-GM1PGR-10 3-101

■ Parameter

ReverseBYTEsInWORD

Scope Name Type Description

Input wInput WORD Input value, WORD type data

Output ReverseBYTEsInWORD WORD Value in reverse byte order

ReverseBYTEsInDWORD

Scope Name Type Description

Input dwInput DWORD Input value, DWORD type data

Output ReverseBYTEsInDWORD DWORD Value in reverse byte order

■ Program example
● ReverseBYTEsInDWORD

This program is designed to reverse the order of bytes of the dwInput input variable of the
DWORD type and outputs the data of the bytes in reverse order to the
ReverseBYTEsInDWORD output variable of the DWORD type.
dwInput := 16#01020304

● ReverseBYTEsInWORD
This program is designed to reverse the order of bytes of the wInput input variable of the
WORD type and outputs the data of the bytes in reverse order to the
ReverseBYTEsInWORD output variable of the WORD type.
wInput := 16#1234

LD program

ST program

3.9 Memory operation instructions

3-102 WUME-GM1PGR-10

3.9.15 MEM.ReverseWORDsInDWORD (WORD Order Change)

This is a function that reverses the order of the WORDs of input DWORD-type data and outputs
the data of the WORDs in reverse order.

■ Icon

■ Parameter

Scope Name Type Description

Input dwInput DWORD Input value, DWORD type data

Output ReverseWORDsInDWORD DWORD Value in reverse WORD order

■ Program example
This program is designed to reverse the order of WORDs of the dwInput input variable of the
DWORD type and outputs the data of the WORDs in reverse order to the
ReverseWORDsInDWORD output variable of the DWORD type.
dwInput := 16#01020304

LD program

ST program

3.9 Memory operation instructions

WUME-GM1PGR-10 3-103

3.10 Character string instructions

Character string instructions can be used to perform various operations on character strings.
There is no limit to the length of a STRING type string, but the string functions described in this
chapter only process lengths of 1 to 255 characters.
Do not use a string longer than 256 characters in the function input.

3.10.1 LEN/WLEN (string length)

This is a function that outputs the length of a character string.

■ Icon

■ Parameter

Scope Name Type Description

Input STR STRING(25
5)/
WSTRING(
255)

Specifies the character string from which to obtain the length.

Output LEN/WLEN INT Outputs the character string length of the input argument.

■ Program example
This program is designed to output the character string length of the input variable “input1” to
the output variable ”output1”.
This is a program example for the function LEN.

LD program

ST program

This is a program example for the function WLEN.

LD program

3.10 Character string instructions

3-104 WUME-GM1PGR-10

ST program

3.10.2 LEFT/WLEFT (extract text from left edge)

This is a function that extracts a character string consisting of the specified number of
characters from the left end of the character string and outputs the extracted data.

■ Icon

■ Parameter

Scope Name Type Description

Input STR STRING(25
5)/
WSTRING(
255)

Specifies the character string from which a character string is to be
extracted.

SIZE INT Specifies the number of characters to be extracted from the left.

Output LEFT/
WLEFT

STRING(25
5)/
WSTRING(
255)

Extracts a character string consisting of the number of characters
specified in SIZE from STR and outputs the extracted data.

■ Program example
This program extracts the character string of the number of characters (3 characters) specified
by input2 from the character string of the input variable input1 from the left end and outputs it to
the output variable output1.
This is a program example for the function LEFT.

LD program

ST program

This is a program example for the function WLEFT.

3.10 Character string instructions

WUME-GM1PGR-10 3-105

LD program

ST program

3.10.3 RIGHT/WRIGHT (Extract text from the right end)

This is a function that extracts a character string consisting of the specified number of
characters from the right end of the character string and outputs the extracted data.

■ Icon

■ Parameter

Scope Name Type Description

Input STR STRING(25
5)/
WSTRING(
255)

Specifies the character string from which a character string is to be
extracted.

SIZE INT Specifies the number of characters to be extracted from the right.

Output RIGHT/
WRIGHT

STRING(25
5)/
WSTRING(
255)

Extracts a character string consisting of the number of characters
specified in SIZE from STR and outputs the extracted data.

■ Program example
This program is designed to extract a character string consisting of the number of characters (3
characters) specified in “input2” from the right end of the character string of the input variable
“input1” and to output the extracted character string to the output variable ”output1”.
This is a program example for the function RIGHT.

LD program

3.10 Character string instructions

3-106 WUME-GM1PGR-10

ST program

This is a program example for the function WRIGHT.

LD program

ST program

3.10.4 MID/WMID (extract string from specified position)

This function extracts a specified number of characters from the right end of a character string
and outputs it.

■ Icon

■ Parameter

Scope Name Type Description

Input STR STRING(25
5)/
WSTRING(
255)

Specifies the character string from which a character string is to be
extracted.

LEN INT Specifies the number of characters to be extracted.

POS INT Specified the position from which extraction is to be started.

Output MID/WMID STRING(25
5)/
WSTRING(
255)

Extracts a character string consisting of the number of characters
specified in LEN from STR starting from the position specified in
POS and outputs the extracted data.

■ Program example
This program is designed to extract a character string consisting of the number of characters (3
characters) specified in “input2” from the character string of the input variable “input1”, starting
from the position (2nd character from the left end) specified in “input3”, and to output the
extracted data to the output variable ”output1”.
This is a program example for the function MID.

3.10 Character string instructions

WUME-GM1PGR-10 3-107

LD program

ST program

This is a program example for the function WMID.

LD program

ST program

If POS = 0, it is not extracted.

3.10.5 CONCAT/WCONCAT (string concatenation)

This is a function that concatenates the character strings.

■ Icon

■ Parameter

Scope Name Type Description

Input STR1 STRING(25
5)/
WSTRING(
255)

Specifies the character string to be concatenated.

STR2 STRING(25
5)/
WSTRING(
255)

Specifies the character string to be concatenated.

3.10 Character string instructions

3-108 WUME-GM1PGR-10

Scope Name Type Description

Output CONCAT/
WCONCAT

STRING(25
5)/
WSTRING(
255)

Concatenate the STR2 character string to the right of the STR1
character string and output the concatenated data.

■ Program example
This program is designed to concatenate the character string of “input2” to the character string
of the input variable “input1” and to output the concatenated data to the output
variable ”output1”.
This is a program example for the function CONCAT.

LD program

ST program

This is a program example for the function WCONCAT.

LD program

ST program

3.10.6 INSERT/WINSERT (Inserting a Character String)

This is a function that inserts a character string in the specified position and outputs the inserted
data.

■ Icon

3.10 Character string instructions

WUME-GM1PGR-10 3-109

■ Parameter

Scope Name Type Description

Input STR1 STRING(25
5)/
WSTRING(
255)

Specifies the character string in which a character string is to be
inserted.

STR2 STRING(25
5)/
WSTRING(
255)

Specifies the character string to be inserted.

POS INT Specifies the position to be inserted.
n-th character from the left

Output INSERT/
WINSERT

STRING(25
5)/
WSTRING(
255)

Insert the string of STR2 into the position of POS in the string of
STR1 and output

■ Program example
This program is designed to insert the character string of “input2” in the position (3rd character
from the left end) specified in “input3” from the left of the the character string of the input
variable “input1” and to output the inserted data to the output variable ”output1”.
This is a program example for the function INSERT.

LD program

ST program

This is a program example for the function WINSERT.

LD program

ST program

3.10 Character string instructions

3-110 WUME-GM1PGR-10

3.10.7 DELETE/WDELETE (delete string)

This is a function that deletes a character string from the specified position and outputs the
deleted data.

■ Icon

■ Parameter

Scope Name Type Description

Input STR STRING(25
5)/
WSTRING(
255)

Specifies the character string from which a character string is to be
deleted.

LEN INT Specifies the length of the character string to be deleted.

POS INT Specified the position from which deletion is to be started.
n-th character from the left

Output DELETE/
WDELETE

STRING(25
5)/
WSTRING(
255)

Deletes a character string consisting of the number of characters
specified in LEN from the left end of the STR character string starting
from the position specified in POS and outputs the deleted data.

■ Program example
This program is designed to delete a character string consisting of the number of characters (2
characters) specified in “input2” from the character string of the input variable “input1” starting
from the position (3rd character from the left) specified in “input3” and to output the deleted data
to the output variable “output1”.
This is a program example for the function DELETE.

LD program

ST program

This is a program example for the function WDELETE.

3.10 Character string instructions

WUME-GM1PGR-10 3-111

LD program

ST program

If POS = 0, LEN is used with a setting of -1.

3.10.8 REPLACE/WREPLACE (replace string)

This is a function that replaces the character strings and outputs the replaced character strings.

■ Icon

■ Parameter

Scope Name Type Description

Input STR1 STRING(25
5)/
WSTRING(
255)

Specifies the character string to be replaced.

STR2 STRING(25
5)/
WSTRING(
255)

Specifies the character string to be added by replacement.

L INT Specifies the number of characters to be deleted by replacement.

P INT Specify where to add STR2 text by substitution

Output REPLACE/
WREPLAC
E

STRING(25
5)/
WSTRING(
255)

Replaces the number of characters specified in L with the character
string specified in STR2 from the left end of the character string
specified in STR1 starting from the position specified in P and
outputs the replaced data.

■ Program example
This program is designed to replace a character string consisting of the number of characters
specified in “input3” with the character string specified in “input2” from the position specified in
“input4” in the character string of the input variable “input1” and to output the replaced data to
the output variable “output1”.

3.10 Character string instructions

3-112 WUME-GM1PGR-10

This is a program example for the function REPLACE.

LD program

ST program

This is a program example for the function WREPLACE.

LD program

ST program

If P = 0, L is used with a setting of -1.

3.10 Character string instructions

WUME-GM1PGR-10 3-113

3.10.9 FIND/WFIND (find text)

This is a function that searches for a specified character string and outputs the searched
position.

■ Icon

■ Parameter

Scope Name Type Description

Input STR1 STRING(25
5)/
WSTRING(
255)

Specify text to extract

STR2 STRING(25
5)/
WSTRING(
255)

Specifies the number of characters to extract

Output FIND/
WFIND

INT Searches for the character string specified in STR2 in the character
string specified in STR1 and outputs the position from the left end.

■ Program example
This program is designed to search for the character string specified in “input2” in the character
string of the input variable “input1” and to output the position from the left to the output
variable ”output1”.
This is a program example for the function FIND.

LD program

ST program

This is a program example for the function WFIND.

LD program

3.10 Character string instructions

3-114 WUME-GM1PGR-10

ST program

● Outputs 0 if the character string is not found.
● If the character string is found in multiple places, the position found first (the leftmost position)

is output.

3.10.10 ConvertUTF16toUTF8 (UTF-16 → UTF-8)

This is a function that converts a UTF-16 character string into a UTF-8 character string. Input a
target storage size (dwTargetBufferSize) based on [(input WORD type data volume x 3) + 1(end
code)].

■ Icon

■ Parameter

ConvertUTF16toUTF8

Scope Name Type Description

Input sourceStart POINTER TO
WORD

Start pointer to the UTF16 character string to be
converted

Input targetStart POINTER TO
BYTE

Start pointer to the converted UTF8 character string

Input dwTargetBufferSize DWORD Target storage size (unit byte)

Input bStrictConversion BOOL TRUE = An error is output when data that is not
convertible is present
TRUE = An error is output when data that is not
convertible is present

Output ConvertUTF16toUTF8 UDINT Error identification (refer to ConvertUTF16toUTF8
return values)

ConvertUTF16toUTF8 return values

Return
value

Name Description

16#0000 ERR_OK No error

16#0002 ERR_PARAMETER Parameter error

16#40A1 ERR_TARGET_EXHAUSTED Error in stored data buffer size

16#40A2 ERR_SOURCE_ILLEGAL Data that is not convertible is present

3.10 Character string instructions

WUME-GM1PGR-10 3-115

■ Program example
This program is designed to convert a UTF16 input variable of the WORD type to a UTF8
character string.

UTF16 := 16#3042 (UTF16 that represents “あ”)

BufferSize := 4 (input WORD type data volume 1 WORD x 3) + 1 = 4

Strictconversion := TRUE

LD program

ST program

● Take care of input in the Unicode disuse / not used areas. (Otherwise, data may not be output
properly.)

● Always set the error detection function for data that cannot be input (bStrictConversion) to
TRUE.

● If the target storage buffer size (dwTargetBuffer) is not proper, return value = 16#40A1 is
output.

● In the UTF16 data to be converted, 16#0000 serves as end-of-file (EOF). Thus, the UTF16
string from the start pointer (sourceStart) data to 16#0000 is converted.

3.10 Character string instructions

3-116 WUME-GM1PGR-10

3.10.11 ConvertUTF8toUTF16(UTF-8 → UTF-16)

This is a function that converts a UTF-8 character string into a UTF-16 character string. Input a
target storage size (dwTargetBufferSize) based on [(input BYTE type data volume x 2) + 2(end
code)].

■ Icon

■ Parameter

ConvertUTF8toUTF16

Scope Name Type Description

Input sourceStart POINTER TO
BYTE

Start pointer of the UTF8 character string to be
converted

Input targetStart POINTER TO
WORD

Start pointer of the converted UTF16 character string

Input dwTargetBufferSize DWORD Target storage size (unit byte)

Input bStrictConversion BOOL TRUE = An error is output when data that is not
convertible is present
FALSE = An error is not output even if data that is not
convertible is present

Output ConvertUTF8toUTF16 UDINT Error identification (refer to ConvertUTF8toUTF16
return values)

ConvertUTF8toUTF16 return values

Return
value

Name Description

16#0000 ERR_OK No error

16#0002 ERR_PARAMETER Parameter error

16#40A1 ERR_TARGET_EXHAUSTED Error in stored data buffer size

16#40A2 ERR_SOURCE_ILLEGAL Data that is not convertible is present

■ Program example
This program is designed to convert a UTF8 input variable of the BYTE type to a UTF16
character string.

3.10 Character string instructions

WUME-GM1PGR-10 3-117

LD program

ST program

● Take care of input in the Unicode disuse / not used areas. (Otherwise, data may not be output
properly.)

● Always set the error detection function for data that cannot be input (bStrictConversion) to
TRUE.

● If a UTF8 character string that is not convertible is input, the 16#FFFD data is stored in the
converted UTF16 data.

● With bStrictConversion = TRUE, an error (return value: 16#40A2) will occur in response to
input of data that cannot be represented.

● If the target storage buffer size (dwTargetBuffer) is not proper, return value = 16#40A1 is
output.

● In the UTF8 data to be converted, 16#00 serves as end-of-file (EOF). Thus, the UTF8 string
from the start pointer (sourceStart) data to 16#00 is converted.

3.10 Character string instructions

3-118 WUME-GM1PGR-10

3.11 SD Memory Card Slot Instruction

3.11.1 SYS_GetSDCoverState (Get SD Card Cover Open / Close State)

This is a function that gets an open / close state of the card cover for the SD memory card slot.

■ Icon

■ Parameter

Scope Name Type Description

Output SYS_GetS
DCoverStat
e

BOOL TRUE: The card cover is closed.
FALSE: The card cover is open.

3.11.2 SYS_GetSDAccessRdy (Get SD Card Access Ready State)

This is a function block that gets the state whether an access to the SD memory card is
allowed.

■ Icon

■ Parameter

Scope Name Type Description

Output SYS_GestS
DAccessRd
y

BOOL TRUE: Access to the SD memory card is enabled.
FALSE: Access to the SD memory card is disabled.

3.11 SD Memory Card Slot Instruction

WUME-GM1PGR-10 3-119

3.12 CRC operation instructions

3.12.1 MEM.CRC16_standard (CRC16)

This is a function that calculates the CRC16 checksum.

■ Icon

■ Parameter

CRC16_standard

Scope Name Type Description

Input pMemoryBlock POINTER TO
BYTE

Start pointer to the memory block to calculate the
checksum

Input uiLength UINT Number of bytes to be calculated Effective range:
10#1 to 10#65534

Output CRC16_standard WORD Calculated CRC16 result

■ Program example
This program is designed to calculate the CRC16 checksum of 9 bytes (uiLength) in memory
block data (MemoryBlock) and output the result (16#BB3D) to CRC16_standard.

ArrayBlock := ARRAY [0..8] OF BYTE : = [16#31,16#32,16#33,16#34,16#35,16#36,16#37,16#38,16#39]

（= [STRING(10) := '123456789']）

uiLength :=9

LD program

ST program

3.12 CRC operation instructions

3-120 WUME-GM1PGR-10

● The function does not operate properly if the number of bytes to calculate (uiLength) is set to
65535 bytes or more. Thus, do not use that byte size.

3.12 CRC operation instructions

WUME-GM1PGR-10 3-121

3.12.2 MEM.CRC32(CRC32)

This is a function that calculates the CRC32 checksum.

■ Icon

■ Parameter

CRC32

Scope Name Type Description

Input pMemoryBlock POINTER TO
BYTE

Start pointer to the memory block to calculate the
checksum

Input uiLength UINT Number of bytes to be calculated Effective range:
10#1 to 10#65534

Output CRC32 DWORD Calculated CRC32 result

■ Program example
This program is designed to calculate the CRC32 checksum of 9 bytes (uiLength) in memory
block data (MemoryBlock) and output the result (16#CBF43926) to CRC32.

ArrayBlock := ARRAY [0..8] OF BYTE : = [16#31,16#32,16#33,16#34,16#35,16#36,16#37,16#38,16#39]

（= [STRING(10) := '123456789']）

uiLength :=9

LD program

ST program

● The function does not operate properly if the number of bytes to calculate (uiLength) is set to
65535 bytes or more. Thus, do not use that byte size.

3.12 CRC operation instructions

3-122 WUME-GM1PGR-10

3.13 System Time Instructions

A length of time that has been elapsed since the start of the GM1 controller can be acquired.

3.13.1 SysTimeGetMs(Get System Time in units of milliseconds)

This is a function used to output a length of time that has been elapsed since the start of the
GM1 controller in units of milliseconds. The power of the GM1 controller can be turned OFF to
reset the value.

■ Icon

■ Parameter

Scope Name Type Default value Description

Output SysTimeGetMs UDINT 0 System time (unit: ms)

3.13.2 SysTimeGetUs(Get System Time in units of microseconds)

This is a function used to output a length of time that has been elapsed since the start of the
GM1 controller in units of microseconds. The power of the GM1 controller can be turned OFF to
reset the value.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

pUsTime SYSTIME(=ULIN
T)

0 System time (unit: μs)

Output SysTimeGetUs SysTimeCore.RT
S_IEC_RESULT

0 An error ID is output.

● For pUsTime, elapsed time of ULINT type is acquired.

3.13 System Time Instructions

WUME-GM1PGR-10 3-123

3.13.3 SysTimeGetNs(Get System Time in units of nanoseconds)

This is a function used to output a length of time that has been elapsed since the start of the
GM1 controller in units of nanoseconds. The power of the GM1 controller can be turned OFF to
reset the value.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

pUsTime SYSTIME(=ULIN
T)

0 System time (unit: ns)

Output SysTimeGetNs SysTimeCore.RT
S_IEC_RESULT

0 An error ID is output.

● For pUsTime, elapsed time of ULINT type is acquired.

3.13 System Time Instructions

3-124 WUME-GM1PGR-10

4 Function Blocks (Basic
Instructions)

4.1 Timer Instructions ...4-2
4.1.1 TON (Timer ON)... 4-2
4.1.2 TOF (Timer OFF) ... 4-3
4.1.3 TP (Timer Pulse) .. 4-4
4.1.4 RTC (Realtime Clock) .. 4-6

4.2 Counter Instructions..4-7
4.2.1 CTU (Up Counter) .. 4-7
4.2.2 CTD (Down Counter) ... 4-8
4.2.3 CTUD (Up-down Counter) ... 4-9

4.3 Edge Detection Instructions..4-11
4.3.1 R_TRIG (Rising Edge Detection) ... 4-11
4.3.2 F_TRIG (Falling Edge Detection)... 4-12

4.4 Bistable Circuit Instructions...4-13
4.4.1 SR (Set-priority Bistable Circuit) .. 4-13
4.4.2 RS (Reset-priority Bistable Circuit) .. 4-14

4.5 Data Type Conversion Instructions...4-16
4.5.1 MEM.Unpack** (BYTE/WORD/DWORD to Bit Data Conversion) ... 4-16

4.6 Data manipulation instructions..4-22
4.6.1 LIN_TRAFO (linear conversion)... 4-22
4.6.2 STATISTICS_REAL (maximum, minimum, and average input

values) .. 4-23
4.6.3 LIMITALARM (Monitoring of input values) 4-24

4.7 Other instructions..4-25
4.7.1 BLINK (output of blinking signal).. 4-25

WUME-GM1PGR-10 4-1

4.1 Timer Instructions

Timer instructions can be used to perform timer operations.

4.1.1 TON (Timer ON)

This is a function block (FB) that starts the timer when the input becomes TRUE. After a
specified time elapses, the output becomes TRUE.

■ Icon

■ Parameter

Scope Name Type Description

Input IN BOOL Starts the timer when FALSE becomes TRUE and the timer continues
counting while it remains TRUE.
Resets the timer when it becomes FALSE.

PT TIME Specifies the timer time.

Output Q BOOL Outputs TRUE when the time specified in the input argument PT
elapses.

ET TIME Specifies the elapsed time of the timer.

■ Program example
This program is designed to start the timer when the input variable “input1” becomes TRUE
and, after an elapse of 10 seconds, to cause the output variable “output1” to become TRUE.
The instance name is TON_0.

LD program

ST program

4.1 Timer Instructions

4-2 WUME-GM1PGR-10

■ Time-sequence diagram

4.1.2 TOF (Timer OFF)

This is a function block (FB) that starts the timer when the input becomes FALSE. After a
specified time elapses, the output becomes FALSE.

■ Icon

■ Parameter

Scope Name Type Description

Input IN BOOL Starts the timer when TRUE becomes FALSE and the timer continues
counting while it remains FALSE.
Resets the timer when it becomes TRUE.

PT TIME Specifies the timer time.

Output Q BOOL Outputs FALSE when the time specified in the input argument PT
elapses.

ET TIME Specifies the elapsed time of the timer.

■ Program example
This program is designed to start the timer when the input variable “input1” changes from TRUE
to FALSE and, after an elapse of 10 seconds, to cause the output variable “output1” to become
FALSE. The instance name is TOF_0.

4.1 Timer Instructions

WUME-GM1PGR-10 4-3

LD program

ST program

■ Time-sequence diagram

4.1.3 TP (Timer Pulse)

This is a function block that starts the timer at the rising edge. The output remains TRUE while
the timer keeps counting. After a specified time elapses, the output becomes FALSE.

■ Icon

■ Parameter

Scope Name Type Description

Input IN BOOL Starts the timer when FALSE changes to TRUE (rising edge).

4.1 Timer Instructions

4-4 WUME-GM1PGR-10

Scope Name Type Description
Resets the timer when the timer expires and TRUE changes to
FALSE .

PT TIME Specifies the timer time.

Output Q BOOL Outputs TRUE from when the timer is started until when the time
specified in the input argument PT elapses.
Outputs FALSE after the specified time elapses.

ET TIME Specifies the elapsed time of the timer.

■ Program example
This program is designed to start the timer when the input variable “input1” changes from
FALSE to TRUE and, during the time from when the timer is started to when the timer expires
(for 10 seconds), to cause the output variable “output1” to remain TRUE.
The instance name is TP_0.

LD program

ST program

■ Time-sequence diagram

4.1 Timer Instructions

WUME-GM1PGR-10 4-5

4.1.4 RTC (Realtime Clock)

This is a function block that starts counting time at the rising edge starting from the specified
date and time. The output remains TRUE while the time counting continues. After a specified
time elapses, the output becomes FALSE.

■ Icon

■ Parameter

Scope Name Type Description

Input EN BOOL Starts counting time from the date and time specified in the input
argument PDT when FALSE changes to TRUE (rising edge).
When TRUE changes to FALSE, DT#1970-01-01-00:00:00 is set in the
output argument CDT.

PDT DATE_AND
_TIME

Date and time when time counting starts

Output Q BOOL Outputs TRUE while time counting continues.

CDT DATE_AND
_TIME

Outputs the time count time from the date and time specified in the
input argument PDT.

■ Program example
This program is designed to start counting time, starting from 0 o'clock of March 29, 2020, when
the input variable “input1” changes from FALSE to TRUE, and, to cause the output variable
“output1” to remain TRUE while time counting continues.
The instance name is RTC_0.

LD program

ST program

4.1 Timer Instructions

4-6 WUME-GM1PGR-10

4.2 Counter Instructions

Counter instructions can be used to perform counter operations.

4.2.1 CTU (Up Counter)

This is a function block that increments the counter value by 1 every time the rising edge
occurs.

■ Icon

■ Parameter

Scope Name Type Description

Input CU BOOL Increments the value of the output argument CV by 1 when FALSE
changes to TRUE (rising edge).

RESET BOOL If TRUE, 0 is set in the output argument CV.

PV WORD Target value of CV

Output Q BOOL Outputs TRUE when the CV value reaches the PV value.

CV WORD Outputs the current counter value.

■ Program example
This program is designed to increment the value of the output variable “output2” by 1 every time
the input variable “input1” changes from FALSE to TRUE. The program is designed to cause
the output variable “output1” to change to TRUE when the value (100) of the input variable
“input2” is counted up.
The instance name is CTU_0.

LD program

4.2 Counter Instructions

WUME-GM1PGR-10 4-7

ST program

4.2.2 CTD (Down Counter)

This is a function block that decrements the counter value by 1 every time the rising edge
occurs.

■ Icon

■ Parameter

Scope Name Type Description

Input CD BOOL Decrements the value of the output argument CV by 1 when FALSE
changes to TRUE (rising edge).

LOAD BOOL If TRUE, the value specified in PV is set in the output argument CV.

PV WORD Initial value of the counter value

Output Q BOOL Outputs TRUE when the CV value becomes 0.

CV WORD Outputs the current counter value.

■ Program example
This program is designed to decrement the value of the output variable “output2” by 1 every
time the input variable “input1” changes from FALSE to TRUE, and to cause the output variable
“output1” to change to TRUE when the value becomes 0. The initial value (100) to count down
from is specified in the input variable “input3”.
The instance name is CTD_0.

4.2 Counter Instructions

4-8 WUME-GM1PGR-10

LD program

ST program

4.2.3 CTUD (Up-down Counter)

This is a function block that increments or decrements the counter value by 1 every time the
rising edge occurs.

■ Icon

■ Parameter

Scope Name Type Description

Input CU BOOL Increments the value of the output argument CV by 1 when FALSE
changes to TRUE (rising edge).

CD BOOL Decrements the value of the output argument CV by 1 when FALSE
changes to TRUE (rising edge).

RESET BOOL If TRUE, 0 is set in the output argument CV.

LOAD BOOL If TRUE, the value specified in PV is set in the output argument CV.

PV WORD Initial value of the counter value

Output QU BOOL Outputs TRUE when the CV value reaches the PV value.

4.2 Counter Instructions

WUME-GM1PGR-10 4-9

Scope Name Type Description

QD BOOL Outputs TRUE when the CV value becomes 0.

CV WORD Outputs the current counter value.

■ Program example
Every time the input variable “input1” changes from FALSE to TRUE, the value of the output
variable “output3” is incremented by 1.
Every time the input variable “input2” changes from FALSE to TRUE, the value of the output
variable “output3” is decremented by 1

When the output variable “output3” becomes greater than or equal to the input variable
“input5”, the output variable “output1” becomes TRUE.
When the output variable “output3” becomes 0, the output variable “output2” becomes TRUE.

When the input variable “input3” becomes TRUE, the output variable “output3” becomes 0.
When the input variable “input4” becomes TRUE, the value (100) of the input variable “input5”
is set in the output variable “output3”.
The instance name is CTUD_0.

LD program

ST program

4.2 Counter Instructions

4-10 WUME-GM1PGR-10

4.3 Edge Detection Instructions

Edge detection instructions can be used to perform edge detection.

4.3.1 R_TRIG (Rising Edge Detection)

This is a function block that detects a rising edge.

■ Icon

■ Parameter

Scope Name Type Description

Input CLK BOOL Input that detects a rising edge

Output Q BOOL Outputs TRUE for one cycle only when a rising edge is detected in the
input argument CLK.

■ Program example
When the input variable “input1” changes from FALSE to TRUE, the output variable “output1”
becomes TRUE for one cycle only.
The instance name is R_TRIG_0.

LD program

ST program

4.3 Edge Detection Instructions

WUME-GM1PGR-10 4-11

4.3.2 F_TRIG (Falling Edge Detection)

This is a function block that detects a falling edge.

■ Icon

■ Parameter

Scope Name Type Description

Input CLK BOOL Input that detects a falling edge

Output Q BOOL Outputs TRUE for one cycle only when a falling edge is detected in the
input argument CLK.

■ Program example
When the input variable “input1” changes from TRUE to FALSE, the output variable “output1”
becomes TRUE for one cycle only.
The instance name is F_TRIG_0.

LD program

ST program

4.3 Edge Detection Instructions

4-12 WUME-GM1PGR-10

4.4 Bistable Circuit Instructions

Bistable circuit instructions can be used to perform edge detection.

4.4.1 SR (Set-priority Bistable Circuit)

This is a function block that realizes a bistable (flip-flop) circuit. The priority is given to the set
input.

■ Icon

■ Parameter

Scope Name Type Description

Input SET1 BOOL Specifies the set input for a bistable circuit.

RESET BOOL Specifies the reset input for a bistable circuit.

Output Q1 BOOL When the input argument SET1 becomes TRUE, outputs and holds
TRUE.
When the input argument RESET becomes TRUE, outputs and holds
FALSE.
When both SET1 and RESET1 are TRUE, outputs and holds TRUE.

■ Program example
When the input variable “input1” becomes TRUE, the output variable “output1” becomes TRUE.
Even if the input variable “input1” becomes FALSE, “output1” remains TRUE.

When the input variable “input1” is FALSE and if input variable “input2” becomes TRUE, the
output variable “output1” becomes FALSE.

The instance name is SR_0.

LD program

ST program

4.4 Bistable Circuit Instructions

WUME-GM1PGR-10 4-13

■ Time-sequence diagram

4.4.2 RS (Reset-priority Bistable Circuit)

This is a function block that realizes a bistable (flip-flop) circuit. The priority is given to the reset
input.

■ Icon

■ Parameter

Scope Name Type Description

Input SET1 BOOL Specifies the set input for a bistable circuit.

RESET BOOL Specifies the reset input for a bistable circuit.

Output Q1 BOOL When the input argument SET1 becomes TRUE, outputs and holds
TRUE.
When the input argument RESET becomes TRUE, outputs and holds
FALSE.
When both SET1 and RESET1 are TRUE, outputs and holds FALSE.

■ Program example
When the input variable “input1” becomes TRUE, the output variable “output1” becomes TRUE.
Even if the input variable “input1” becomes FALSE, “output1” remains TRUE.

When the input variable “input1” is FALSE and if the input variable “input2” becomes TRUE,
the output variable “output1” becomes FALSE.

The instance name is RS_0.

LD program

4.4 Bistable Circuit Instructions

4-14 WUME-GM1PGR-10

ST program

■ Time-sequence diagram

4.4 Bistable Circuit Instructions

WUME-GM1PGR-10 4-15

4.5 Data Type Conversion Instructions

4.5.1 MEM.Unpack** (BYTE/WORD/DWORD to Bit Data Conversion)

This is a function that unpacks input BYTE-, WORD-, or DWORD-type data to data in bits and
outputs the data.

■ Icon

■ Parameter

UnpackByte

Scope Name Type Description

Input byValue BYTE BYTE type data to be unpacked

Output xBit0 to xBit7 BOOL A value representing the input value unpacked
in bits

UnpackWord

Scope Name Type Description

Input wValue BYTE WORD type data to be unpacked

Output byHighByte BYTE High byte unpacked from the input value

4.5 Data Type Conversion Instructions

4-16 WUME-GM1PGR-10

Scope Name Type Description

Output byLowByte BYTE Low byte unpacked from the input value

Output xBit0 to xBit15 BYTE A value representing the input value unpacked
in bits

UnpackDWord

Scope Name Type Description

Input dwValue DWORD DWORD type data to be unpacked

Output wHighWord WORD High WORD unpacked from the input value

Output wLowWord WORD Low WORD unpacked from the input value

Output byHHByte BYTE HH byte unpacked from the input value

Output byHLByte BYTE HL byte unpacked from the input value

Output byLHByte BYTE LH byte unpacked from the input value

Output byLLByte BYTE LL byte unpacked from the input value

Output xBit0 to xBit31 BOOL A value representing the input value unpacked
in bits

■ Program example 1
This program is designed to unpack the byValue input variable of the BYTE type to pieces of
data of the BOOL type and outputs them to the xBit0 to xBit7 output variables of the BOOL
type.
byValue := 16#12

LD program

4.5 Data Type Conversion Instructions

WUME-GM1PGR-10 4-17

ST program

■ Program example 2
This program is designed to unpack the wValue input variable of the WORD type to pieces of
data of the BOOL and BYTE types and outputs them to the xBit0 to xBit15 output variables of
the BOOL type and the byHighByte and byLowByte output variables of the BYTE type.
wValue := 16#1234

LD program

4.5 Data Type Conversion Instructions

4-18 WUME-GM1PGR-10

ST program

■ Program example 3
This program is designed to unpack the dwValue input variable of the DWORD type to pieces of
data of the BOOL, BYTE and WORD types and outputs them to the xBit0 to xBit31 output
variables of the BOOL type, the wHighWord and wLowWord output variables of the WORD
type, and the byHHByte, byHLByte, byLHByte, and byLLByte output variables of the BYTE
type.
dwValue := 16#01020304

4.5 Data Type Conversion Instructions

WUME-GM1PGR-10 4-19

LD program

4.5 Data Type Conversion Instructions

4-20 WUME-GM1PGR-10

ST program

4.5 Data Type Conversion Instructions

WUME-GM1PGR-10 4-21

4.6 Data manipulation instructions

You can process the data using data manipulation instructions.

4.6.1 LIN_TRAFO (linear conversion)

Convert one range of numbers to another linearly.

It is calculated by the following formula.
OUT = OUT_MIN ＋((IN－IN_MIN)×(OUT_MAX-OUT_MIN)/(IN_MAX-IN_MIN))
Set the setting value to IN_MIN ≤ IN ≤ IN_MAX, and set the maximum input value (IN_MAX) to
be not equal to the minimum input value (IN_MIN).

■ Icon

■ Parameter

Scop
e

Name Type Default value Description

Input IN REAL 0 Input value

IN_MIN REAL 0 Minimum input range

IN_MAX REAL 0 Maximum input range

OUT_MIN REAL 0 Minimum output range

OUT_MAX REAL 0 Maximum output range

Outpu
t

OUT REAL 0 Converted output value

ERROR BOOL FALSE TRUE：IN_MIN=IN_MAX
Or IN is outside of the input range (IN<IN_MIN or IN
>_IN_MAX)

● Do not set the input range (IN_MAX-IN_MIN) ≥ REAL maximum value (3.402823E+38)
● Do not set the output range (OUT_MAX-OUT_MIN) ≥ REAL maximum value (3.402823E+38).
● Do not set the same range (IN_MIN = OUT_MIN and IN_MAX = OUT_MAX).
● The REAL type is divided into the mantissa and an exponent, so if you increase the input range

and the output range, an error will occur.

4.6 Data manipulation instructions

4-22 WUME-GM1PGR-10

4.6.2 STATISTICS_REAL (maximum, minimum, and average input values)

Acquire the maximum, minimum, and average values of the input data (REAL type). The input
value is added and updated for each execution timing. Resetting will return the maximum,
minimum, and average values to their default values.

■ Icon

■ Parameter

Scop
e

Name Type Default value Description

Input IN REAL 0 Input value

RESET BOOL FALSE TRUE: Reset
Set MN, MX, AVG to the default values

Outpu
t

MN REAL -3.402823466
E+38

Minimum value

MX REAL 3.402823466
E+38

Maximum value

AVG REAL 0 Average Value

4.6 Data manipulation instructions

WUME-GM1PGR-10 4-23

4.6.3 LIMITALARM (Monitoring of input values)

Monitor whether the input value is between LOW (lower limit) and HIGH (upper limit)

■ Icon

■ Parameter

Scop
e

Name Type Default value Description

Input IN INT 0 Input value

HIGH INT 0 Upper limit value(Note 1)

LOW INT 0 Lower limit value(Note 1)

Outpu
t

O BOOL FALSE TRUE: Input value (IN) is greater than HIGH, FALSE:
IN is equal to or less than HIGH

U BOOL FALSE TRUE: Input value (IN) is less than LOW, FALSE: IN is
equal to or greater than LOW

IL BOOL FALSE TRUE: Input value (IN) is within the range of LOW to
HIGH
FALSE: If either the output argument O or U is TRUE

(Note 1) Set LOW < HIGH to use.

4.6 Data manipulation instructions

4-24 WUME-GM1PGR-10

4.7 Other instructions

You can use other instructions

4.7.1 BLINK (output of blinking signal)

Switch the output argument OUT to TRUE or FALSE according to the setting time.

■ Icon

■ Parameter

Scop
e

Name Type Default value Description

Input ENABLE BOOL FALSE TRUE: Start the pulse output.
FALSE: The pulse output is stopped and the output
OUT is maintained.(Note 1)

TIMELOW TIME T#0ms Time that is FALSE(Note 2)

TIMEHIGH TIME T#0ms Time that is TRUE(Note 2)

Outpu
t

OUT BOOL FALSE Switch between TRUE and FALSE at the specified
time.
If the output at the start of the pulse is FALSE, it starts
with TRUE, and if it is TRUE, it starts with FALSE.

(Note 1) When pulse is stopped (ENABLE = FALSE), the value of the output value OUT at that time is
maintained.

(Note 2) When executing with the default value (T#0ms), the timing at which the pulse signal OUT switches is 1
scan.

4.7 Other instructions

WUME-GM1PGR-10 4-25

(MEMO)

4-26 WUME-GM1PGR-10

5 Motion Control Function
Blocks (Single Axis Control)

This section describes motion control function blocks for the single axis.

5.1 Servo ON ..5-3
5.1.1 MC_Power (motion readiness) .. 5-3

5.2 Home Return...5-5
5.2.1 PMC_Home (Home Return)... 5-5
5.2.2 MC_Home (Home Return) ... 5-8

5.3 Control Switch...5-9
5.3.1 SMC_SetControllerMode (Control Mode Setting) 5-9

5.4 Stop...5-11
5.4.1 MC_Stop (Forced Stop) ... 5-11
5.4.2 MC_Halt (Halt) ... 5-13
5.4.3 Example: Stop.. 5-15

5.5 JOG / Inching..5-17
5.5.1 MC_Jog (Jogging).. 5-17
5.5.2 SMC_Inch (Inching) ... 5-19
5.5.3 Example: JOG Operation... 5-22

5.6 Position Control...5-23
5.6.1 MC_MoveAbsolute (Absolute Value Positioning)............................. 5-23
5.6.2 MC_MoveRelative (Relative Value Positioning)............................... 5-27
5.6.3 MC_MoveAdditive (Target Position Change) 5-31
5.6.4 MC_MoveSuperImposed (Superimposed positioning) 5-34
5.6.5 MC_PositionProfile (Position Profile Move) 5-38
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure.... 5-41
5.6.7 SMC_MoveContinuousAbsolute (Absolute Value Position Velocity

Move) .. 5-43
5.6.8 SMC_MoveContinuousRelative (Relative Value Position Velocity

Move) .. 5-47
5.6.9 Example: Absolute Positioning, Relative Positioning....................... 5-51
5.6.10 Example: Target Position Change.. 5-52

5.7 Velocity Control ...5-54
5.7.1 MC_MoveVelocity (Velocity Control) .. 5-54
5.7.2 MC_VelocityProfile (Velocity Profile Movement) 5-57
5.7.3 MC_AccelerationProfile (Acceleration Profile Movement) 5-60
5.7.4 Example: Speed Control .. 5-63

5.8 Torque Control ..5-65
5.8.1 PMC_SetTorque (Torque Control).. 5-65
5.8.2 SMC_SetTorque (Torque Control).. 5-67
5.8.3 Example: Torque Control ... 5-69

WUME-GM1PGR-10 5-1

5.9 Direct commands..5-71
5.9.1 SMC_FollowPosition (Target Position Command at Every Interval) 5-71
5.9.2 SMC_FollowVelocity (Target Velocity Command at Every Interval) . 5-73

5.10 Buffer Mode ..5-76
5.10.1 Buffer Mode Execution Rules... 5-76
5.10.2 MC_BUFFER_MODE (Enumeration type)..................................... 5-79
5.10.3 Usage Example of Buffer Mode ... 5-85

5.11 Axis Structure..5-92

5 Motion Control Function Blocks (Single Axis Control)

5-2 WUME-GM1PGR-10

5.1 Servo ON

5.1.1 MC_Power (motion readiness)

This is a function block (FB) that controls the axis readiness for motion.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE TRUE: Execution of the FB is
enabled.

bRegulatorOn BOOL FALSE TRUE: Switches power to the axis
to On.
FALSE: Switches power to the axis
to Off.

bDriveStart BOOL FALSE TRUE: Quick stop is disabled.
For the GM1 Controller, fix to
TRUE.

Output Status BOOL FALSE TRUE: The axis is ready to move.

bRegulatorRealState BOOL FALSE TRUE: Power to the axis has been
switched to On.

bDriveStartRealState BOOL FALSE TRUE: Operation is not stopped by
quick stop.

Busy BOOL FALSE TRUE: The FB is in operation.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• This FB controls the axis readiness for motion.
• Use this FB with bDriveStart fixed to TRUE.

● Operation start

5.1 Servo ON

WUME-GM1PGR-10 5-3

• The inputs Enable, bRegulatorOn, and bDriveStart are set to TRUE. After that, when the
Status goes TRUE, the axis is ready to move.

● Operation stop
• After the start of operation, when the Enable is TRUE and the bRegulatorOn is set to

FALSE, the Status goes FALSE and the motion ready state is canceled. However, if an FB
is controlling the same axis, an error occurs in the FB in operation and the FB stops
because the nAxisState of the axis is set to errorstop.

• After the start of operation, even when only the Enable is changed to FALSE, the
nAxisState of the axis remains unchanged. Thus, an FB in operation on the same axis
does not stop.

■ Timing chart
● When the Enable is set to TRUE, the Busy goes TRUE.
● The bRegulatorOn, bDriveStart, and Enable are set to TRUE. After that, when the Status

goes TRUE, the axis is ready for motion.

JogForward

JogBackward

Busy

CommandAborted

Error

nAxisState power_off errorstop

Enable

bRegulatorOn

bDriveStart

Status

bRegulatorRealState

bDriveStartRealState

Busy

Error

standstill continuous_motion

MC_Power

MC_Jog

Axis

power_off standstill

● If the Enable, bRegulatorOn, and bDriveStart are TRUE but the Status remains FALSE without
the occurrence of any error, a possible reason is a hardware problem with the motor.

5.1 Servo ON

5-4 WUME-GM1PGR-10

5.2 Home Return

5.2.1 PMC_Home (Home Return)

This is a function block (FB) that performs home return of the axis. The home return function of
the servo amplifier is used.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_RTE
X_Panasonic

- Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.
FALSE: Stops processing.

Output Done BOOL FALSE TRUE: Execution is completed and
transitioned to the Standstill state.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

■ Execution operation
● Execute = TRUE: Starts the home return mode. Execute = FALSE: Ends the home return

mode.
● When PMC_Home is successfully completed (when Done changes to TRUE), the home

return mode is automatically ended.
● When PMC_Home is abnormally terminated (when Error changes to TRUE), end the home

return mode by setting Execute = FALSE and making a call.

5.2 Home Return

WUME-GM1PGR-10 5-5

■ Execution errors
The PMC_Home function block outputs the following

Error Description

SMC_WRONG_CONTROLLER_MODE

Executed in a mode other than the position control
mode.
Change to SMC_position using
SMC_SetControllerMode.

SMC_DI_HOMING_ERROR

The version of the amplifier paired with an absolute
encoder is lower than V1.24.

Trigger setting is incorrect.

Amplifier parameters (Pr4.00 to Pr4.07) are incorrect.

Abnormal state in HOME, POT, or NOT is detected.

The home return cannot be completed even if POT
and NOT settings were inverted three times or more.

The home return was completed at an incorrect
position.

SMC_MS_DIRECTION_NOT_APPLICABLE The return direction setting is incorrect.

SMC_AXIS_NOT_READY_FOR_MOTION The axis is in a state (Stopping, Disabled, or Errorstop)
where PMC_Home cannot be executed.

SMC_REGULATOR_OR_START_NOT_SET The servo was turns OFF and the brake was applied.

SMC_3SH_INVALID_VELACC_VALUES The input target velocity, home return creep speed,
acceleration, or deceleration is incorrect.

SMC_AXIS_REF_CHANGED_DURING_OPERATION The Axis was changed during operation.

■ Execution conditions
● As the PMC_Home function block uses the RTEX home return command, it cannot be

executed together with PMC_ReadLatchPosition or PMC_StopLatchPosition.
● If PMC_Home is executed while PMC_ReadLatchPosition or PMC_StopLatchPosition is

being executed, the CommandAborted parameter becomes TRUE. Furthermore, if
PMC_Home of another instance is executed while one PMC_Home is being executed, the
CommandAborted parameter of the PMC_Home executed later becomes TRUE.

5.2 Home Return

5-6 WUME-GM1PGR-10

■ Amplifier parameter conditions
When using PMC_Home, set amplifier parameters as shown in the following table.

Parameter Parameter name Setting A Setting B

Pr4.00 SI1 input selection SI-MON5 SI-MON5

Pr4.01 SI2 input selection POT

Pr4.02 SI3 input selection NOT

Pr4.03 SI4 input selection SI-MON1 SI-MON1

Pr4.04 SI5 input selection HOME HOME

Pr4.05 SI6 input selection EXT2 POT

Pr4.06 SI7 input selection EXT3 NOT

Pr4.07 SI8 input selection SI-MON4 SI-MON4

Return methods that can be executed for the settings A and B are as shown in the following
table.

Return method Setting A Setting B

DOG method 1 〇 〇(Note 2)

DOG method 2 ×(Note 1) 〇

DOG method 3 〇 〇(Note 2)

Limit method 1 〇 〇(Note 2)

Limit method 2 ×(Note 1) 〇

Home return method 〇 〇(Note 2)

Stop-on-contact method 1 〇 〇(Note 2)

Stop-on-contact method 2 〇 〇

Data setting method 〇 〇

High-speed home return method 〇 〇

(Note 1) When using POT, NOT, or HOME as a home reference trigger, assign them as follows.
HOME: SI5 input selection
POT: SI6 input selection
NOT: SI7 input selection

(Note 2) When EXT2 or EXT3 is used as a home reference trigger, it can be used only for the above setting A.

● Reference manual
GM1 Controller RTEX User's Manual (Operation Edition)

5.2 Home Return

WUME-GM1PGR-10 5-7

5.2.2 MC_Home (Home Return)

This is a function block (FB) that performs home return.

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input

Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

Position LREAL 0 Set value of the absolute position
when the reference signal is
detected

Output

Done BOOL FALSE TRUE: Stopping is completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

5.2 Home Return

5-8 WUME-GM1PGR-10

5.3 Control Switch

5.3.1 SMC_SetControllerMode (Control Mode Setting)

This is a function block (FB) that sets the control mode. The default control mode value is
position control mode.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.

nControllerMode SMC_CONTRO
LLER_MODE

SMC_position Specifies the control mode.

Output bDone BOOL FALSE TRUE: Control mode setting is
completed.

bBusy BOOL FALSE TRUE: The FB is in operation.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

nErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ SMC_CONTROLLER_MODE (Enumeration type)

Name Value Description

SMC_nocontrol 0 Usage prohibited

SMC_torque 1 Torque control mode

SMC_velocity 2 Velocity control mode

SMC_position 3 Position control mode, default value

SMC_current 4 Usage prohibited

5.3 Control Switch

WUME-GM1PGR-10 5-9

■ Detail of function
● Description of functions

• The table below shows a list of FBs that correspond to each control mode. The default
value of the control mode is position control mode. MC_MoveVelocity, MC_VelocityProfile,
and MC_AccelerationProfile also operate in the position control mode.

Control mode Compatible FBs

Torque control mode PMC_SetTorque, SMC_SetTorque

Velocity control
mode

MC_MoveVelocity, MC_VelocityProfile, MC_AccelerationProfile

Position control
mode

MC_MoveAbsolute, MC_MoveRelative, MC_MoveAdditive, MC_MoveSuperImposed,
MC_PositionProfile, SMC_MoveContinuousAbsolute, SMC_MoveContinuousRelative,
MC_MoveVelocity, MC_VelocityProfile, MC_AccelerationProfile

● Operation start
• At the rising edge of Execute, the control mode is set according to the nControllerMode

value.
● Operation stop

• When the control mode setting is completed, the operation stops.

■ Timing chart
● At the rising edge of the bExecute, Busy changes to TRUE.
● When the control mode setting is completed, bDone changes to TRUE and immediately

FALSE.

nControllerMode

SMC_torque SMC_position

bExecute

bDone

bBusy

bError

Time

● If the control mode is changed from torque control mode to velocity control mode, an error
occurs. Therefore, change it through the position control mode.

● Whether or not the control mode can be changed for an axis in motion depends on the
specifications of the servo amplifier. We recommend that you once stop the axis motion when
changing the control mode.

5.3 Control Switch

5-10 WUME-GM1PGR-10

5.4 Stop

5.4.1 MC_Stop (Forced Stop)

This is a function block (FB) that causes the axis to make a deceleration stop. While the axis is
being decelerated or while it is stopped, another FB cannot be executed. Use this FB for
emergency stop or exception handling.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.
While it is TRUE, other FB cannot
be executed.

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

Output Done BOOL FALSE TRUE: The axis velocity has
reached 0.

Busy BOOL FALSE TRUE: The FB is in operation.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• This FB causes the axis in motion to make a deceleration stop according to the
Deceleration and Jerk values.

• Use this FB for emergency stop or exception handling.
• As long as either the Busy or Execute is TRUE, an FB that controls the same axis cannot

be executed. If an FB that controls the same axis is called, an error occurs in the FB and
the ErrorID is set to SMC_AXIS_NOT_READY_FOR_MOTION. Even if the Done output is
TRUE, as long as the Execute is TRUE, an FB that controls the same axis cannot be
executed.

● Operation start
• At the launch of the Execute, the axis starts making a deceleration stop according to the

Deceleration and Jerk values.
● Operation stop

5.4 Stop

WUME-GM1PGR-10 5-11

• When the axis completes the deceleration stop and the axis velocity reaches 0, the axis
operation stops.

• When the axis operation stops, the Done goes TRUE and the Busy goes FALSE.
● Re-execution

• Set the Execute to FALSE. Next, specify input values again. When the Execute is
launched again, the FB is executed with the new input values.

● Interruption of operation
• Operation of this FB cannot be interrupted by another FB.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the process is completed, the Busy goes FALSE and the Done goes TRUE. The Done

in the TRUE state goes FALSE when the Execute goes FALSE.

Execute

Busy

Done

Error
ErrorID

0

JogForward

JogBackward

Busy

CommandAborted

Error

nAxisState standstill continuous_motion standstill

MC_Jog

MC_Stop

Axis

Time

stopping

Velocity Profile

5.4 Stop

5-12 WUME-GM1PGR-10

● In the torque control mode (SMC_torque), the axis cannot be stopped using MC_Stop. For
stopping methods, refer to PMC_SetTorque or SMC_SetTorque.

 REFERENCE
5.8.1 PMC_SetTorque (Torque Control)

5.4.2 MC_Halt (Halt)

This is a function block (FB) that causes the axis to make a deceleration stop. While the axis is
being decelerated or while it is stopped, another FB can be executed.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

Output Done BOOL FALSE TRUE: The axis velocity has
reached 0.

Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from another
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• This FB causes the axis in motion to make a deceleration stop according to the
Deceleration and Jerk values.

• Use this FB to stop the axis in normal operation other than emergency stop and exception
handling.

● Operation start

5.4 Stop

WUME-GM1PGR-10 5-13

• At the launch of the Execute, the axis starts making a deceleration stop according to the
Deceleration and Jerk values.

● Operation stop
• When the axis completes the deceleration stop and the axis velocity reaches 0, the axis

operation stops.
● Re-execution

• Set the Execute to FALSE. Next, specify input values again. When the Execute is
launched again, the FB is executed with the new input values.

● Interruption of operation
• If, during operation of this FB, another FB that controls the same axis is called, the

operation of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the operation is completed, the Busy goes FALSE and the Done goes TRUE. The

Done in the TRUE state goes FALSE when the Execute is set to FALSE.
● When an FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE.

JogForward

JogBackward

Busy

CommandAborted

Execute

Busy

Done

CommandAborted

Error
ErrorID

0

MC_Jog

MC_Halt

Velocity

Time

Profile

● In the torque control mode (SMC_torque), the axis cannot be stopped using MC_Halt. For
stopping methods, refer to PMC_SetTorque or SMC_SetTorque.

5.4 Stop

5-14 WUME-GM1PGR-10

5.4.3 Example: Stop

Here is an example of stopping the motor during axis movement.

■ Program examples
The following is an ST program example.
● Implementation Section

CASE Process OF
 0: // Servo ON
 MC_Power_0(
 Axis := Axisl ,
 Enable := TRUE ,
 bRegulatorOn := TRUE,
 bDriveStart := TRUE
);
 IF MC_Power_0.Status = TRUE THEN
 Process := 1;
 END_IF
 1: // Execute the MC_MoveVelocity
 MC_MoveVelocity_0(
 Axis := Axisl,
 Execute := TRUE,
 Velocity := 360,
 Acceleration := 3600,
 Deceleration := 3600,
 Direction := positive
);
 IF MC_MoveVelocity_0.InVelocity = TRUE THEN
 MC_MoveVelocity_0(
 Axis := Axisl,
 Execute := FALSE,
);
 Process := 2;
 END_IF
 2: // Execute the MC_stop
 MC_Stop_0(
 Axis := Axisl,
 Execute := TRUE,
 Deceleration := 1800
);
 IF MC_Stop_0.Done THEN
 MC_Stop_0(
 Axis := Axisl,
 Execute := FALSE
);
 Process := 3;
 END_IF
END_CASE

In the program example, stop operation is started at the rising edge of the "Execute" flag of
"MC_Stop".
The "Busy" flag is set to TRUE during execution. While the "Busy" flag is set to TRUE,
"MC_Stop_0" must be called every cycle. Otherwise, the operation will terminate with an error.

5.4 Stop

WUME-GM1PGR-10 5-15

When the stop operation is completed, the "Done" flag is set to TRUE.

5.4 Stop

5-16 WUME-GM1PGR-10

5.5 JOG / Inching

5.5.1 MC_Jog (Jogging)

This is a function block (FB) that causes the axis to keep traveling in a forward or reverse
direction at a constant velocity.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input JogForward BOOL FALSE While JogForward is TRUE, the
axis travels in a forward direction.
If JogBackaward is TRUE at the
same time, the axis does not
operate.

JogBackward BOOL FALSE While JogBackward is TRUE, the
axis travels in a reverse direction.
If JogForward is TRUE at the same
time, the axis does not operate.

Velocity LREAL 0 Specifies the velocity (u/s).

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

Output Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from another
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of behavior

• This FB causes the axis to make a jogged movement at a specified Velocity value.

5.5 JOG / Inching

WUME-GM1PGR-10 5-17

• To make the axis travel in a forward direction, set the JogForward to TRUE. To make the
axis travel in a reverse direction, set the JogBackward to TRUE.

● Operation start
• When the JogForward or JogBackward is set to TRUE, the axis starts acceleration

according to the Acceleration and Jerk values. The axis velocity gets constant when it
reaches the specified Velocity value.

• The Velocity, Acceleration, and Jerk inputs are set to specified values at the launch of the
JogForward or JogBackward. Thus, a change made to any of the Velocity, Acceleration,
and Jerk values while the JogForward or JogBackward is TRUE does not take effect.

● Operation stop
• When either the JogForward or JogBackward in the TRUE state is set to FALSE, the axis

starts deceleration according to the Deceleration and Jerk values and stops.
• When both the JogForward and JogBackward are set to TRUE, the axis starts

deceleration according to the Deceleration and Jerk values and stops.
• The Deceleration and Jerk inputs are set to specified values at the launch of the

JogForward or JogBackward. Thus, a change made to any of the Deceleration and Jerk
values while the JogForward or JogBackward is TRUE does not take effect.

● Restart operation during stop
• When the JogForward or JogBackward is set to TRUE again during deceleration, the axis

velocity reaches 0 once, and after that, the axis restarts acceleration according to the
Acceleration and Jerk values, and the axis velocity gets constant when it reaches the
specified Velocity value.

● Interruption of operation
• When an FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE and the Busy goes FALSE.

■ Timing chart
● At the launch of the JogForward or JogBackward, the Busy goes TRUE.
● When either the JogForward or JogBackward in the TRUE state is set to FALSE, the axis

starts making a deceleration stop. When the axis velocity reaches 0, the Busy goes FALSE.
● When the CommandAborted goes TRUE, the Busy goes FALSE.

JogForward

JogBackward

Busy

CommandAborted

Velocity

Time

DecelerationAcceleration

Velocity
Profile

5.5 JOG / Inching

5-18 WUME-GM1PGR-10

5.5.2 SMC_Inch (Inching)

This is a function block (FB) that causes the axis to travel in a forward or reverse direction for a
specified relative distance.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input InchForward BOOL FALSE When the input changes from
FALSE to TRUE, the axis starts
traveling in a forward direction for
the distance specified in Distance.
When the input changes to FALSE
before the axis travels the specified
distance, the axis stops traveling.
If InchBackaward is TRUE at the
same time, the axis does not
operate.

InchBackward BOOL FALSE When the input changes from
FALSE to TRUE, the axis starts
traveling in a reverse direction for
the distance specified in Distance.
When the input changes to FALSE
before the axis travels the specified
distance, the axis stops traveling.
If InchForward is TRUE at the same
time, the axis does not operate.

Distance LREAL 0 Specifies the travel distance (u).

Velocity LREAL 0 Specifies the velocity (u/s).

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

Output Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from another
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

5.5 JOG / Inching

WUME-GM1PGR-10 5-19

Scope Name Type Default value Description

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of behavior

• This FB causes the axis to travel from start position for a distance specified in Distance at
a specified Velocity value and stop.

• To make the axis travel in a forward direction, set the InchForward to TRUE. To make the
axis travel in a reverse direction, set the InchBackward to TRUE.

● Operation start
• When the InchForward or InchBackward is set to TRUE, the axis starts acceleration

according to the Acceleration and Jerk values. When the axis reaches the specified
Velocity value, it maintains the reached velocity.

• The Distance, Velocity, Acceleration, and Jerk inputs are set to specified values at the
launch of the InchForward or InchBackward. Thus, a change made to any of the Distance,
Velocity, Acceleration, and Jerk values while the InchForward or InchBackward is TRUE
does not take effect.

● Operation stop
• The motion stops when the axis completes traveling from the start position for the distance

specified in Distance.
• The axis starts deceleration according to the Deceleration and Jerk values when it nearly

travels the Distance value, and the velocity decreases to 0 when the axis reaches the
Distance value.

• When either the InchForward or InchBackward in the TRUE state is set to FALSE before
the axis reaches the Distance value, the axis decelerates according to the Deceleration
and Jerk values and stops.

• When both the InchForward and InchBackward are set to TRUE, the axis decelerates
according to the Deceleration and Jerk values and stops.

● Restart operation during stop
• When the InchForward or InchBackward is set to TRUE again during deceleration, the

axis velocity reaches 0 once, and after that, the axis restarts acceleration according to the
Acceleration and Jerk values, and the axis velocity gets constant at the specified Velocity
value. With the current place taken as a start position, the axis travels a distance specified
in Distance and stops.

● Interruption of operation
• When an FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE and the Busy goes FALSE.

■ Timing chart
● At the launch of the InchForward or InchBackward, the Busy goes TRUE.
● When either the InchForward or InchBackward in the TRUE state is set to FALSE after the

axis reaches the Distance value, the Busy goes FALSE.
● When either the InchForward or InchBackward in the TRUE state is set to FALSE before the

axis reaches the Distance value, the axis starts making a deceleration stop. When the axis
velocity reaches 0, the Busy goes FALSE.

● When the CommandAborted goes TRUE, the Busy goes FALSE.

5.5 JOG / Inching

5-20 WUME-GM1PGR-10

InchForward

InchBackward

Busy

CommandAborted

Error
ErrorID

0

Distance

DecelerationAcceleration

Time

Time

Velocity

Distance

Position

Velocity Profile

Profile Distance

5.5 JOG / Inching

WUME-GM1PGR-10 5-21

5.5.3 Example: JOG Operation

Here is an example of how to execute JOG operation.

■ Program examples
Here is an example of an ST (Structured Text) program.
● Implementation Section

CASE Process OF
 0: // Servo ON
 MC_Power_0(
 Axis := Axisl,
 Enable := TRUE,
 bRegulatorOn := SW_power,
 bDriveStart := TRUE
);
 IF MC_Power_0.Status = TRUE THEN
 Process := 1;
 END_IF
 1: // Execute the MC_
 MC_Jog_0(
 Axis := Axisl,
 JogForward := TRUE,
 JogBackward := FALSE,
 Velocity := 360,
 Acceleration := 3600,
 Deceleration := 3600
);
 MC_ReadActualPosition_0(
 Axis := Axisl,
 Enable := TRUE
);
 IF MC_ReadActualPosition_0.Valid = TRUE THEN
 IF MC_ReadActualPosition_0.Position > 1000 THEN
 Process := 2;
 END_IF
 END_IF
 2: // Execute the MC_MoveRelative
 MC_Jog_0(
 Axis := Axisl,
 JogForward := FALSE,
 JogBackward := TRUE,
 Velocity := 720,
 Acceleration := 3600,
 Deceleration := 3600
);
END_CASE

JOG operation is started at the rising edge of "JogForward" or "JogBackward".
The "Busy" flag is set to TRUE during execution. While the "Busy" flag is set to TRUE,
MC_Jog_0 must be called every cycle. Otherwise, the operation will terminate with an error.

5.5 JOG / Inching

5-22 WUME-GM1PGR-10

5.6 Position Control

5.6.1 MC_MoveAbsolute (Absolute Value Positioning)

This is a function block (FB) that causes the axis to travel to a specified target position.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Position LREAL 0 Specifies the target position (u).

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

Direction MC_Direction shortest Specification is valid only when the
axis is of the modulo type. Specifies
the traveling direction of the axis.

BufferMode MC_BUFFER_M
ODE

Aborting Specifies a buffer mode.
The value is valid when this FB is a
second FB.

Output Done BOOL FALSE TRUE: The target position has been
reached.

Busy BOOL FALSE TRUE: The FB is in operation.

Active BOOL FALSE TRUE: The second FB is being
controlled.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

5.6 Position Control

WUME-GM1PGR-10 5-23

Scope Name Type Initial Description

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_Direction (Enumeration type)

Name Value Description

positive 1 Travels in the positive direction.

negative -1 Travels in the negative direction.

shortest 0 Travels in the direction in which the distance is shortest from the current command
position at the time of the command execution to the target position.

fastest 3 Travels in the direction in which the time is fastest from the current command position at
the time of the command execution to the target position.

current 2 If an FB is controlling the axis, the axis travels by keeping the current direction.
If any FB is not controlling the axis, the axis travels in the direction taken by the
immediately preceding FB that controlled the axis.

■ MC_BUFFER_MODE (Enumeration type)
On condition that this FB is connected as the second FB, the table below gives a description.

Name Value Description

Aborting 0 The operation of the first FB stops, and this FB starts operation instantly.

Buffered 1 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The movement starts at the velocity that the preceding movement has when
the end condition is reached.

BlendingLow 2 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The command velocities of the first FB and this FB are compared, and the
axis passes through the end position of the first FB operation at the lower
command velocity.

BlendingPrevious 3 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of the first FB command.

BlendingNext 4 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of this FB command.

BlendingHigh 5 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The command velocities of the first FB and this FB are compared, and the
axis passes through the end position of the first FB operation at the higher
command velocity.

(Note 1) Refer to Table "Buffer Mode Operation Conditions."

■ Detail of function
● Description of functions

5.6 Position Control

5-24 WUME-GM1PGR-10

• This FB causes the axis to travel to the Position at the specified Velocity.
• The traveling direction of the axis, which is equivalent to the direction of the Velocity, is

determined by the axis type.

Axis type Axis traveling direction

Finite The direction is determined by the positional relationship of the current command position and
the Position input.
If the Position input is larger relative to the current command position, the axis travels in the
positive direction.
If the Position input is smaller relative to the current command position, the axis travels in the
negative direction.

Modulo MC_Direction specification

● Operation start
• At the launch of the Execute, the axis starts traveling according to the Position, Velocity,

Acceleration, Jerk, and Direction values.
● Operation stop

• The motion stops when the axis reaches the Position value.
• Deceleration operation before the axis reaches the Position value behaves according to

the Deceleration and Jerk values, and the Velocity level decreases to 0 when the axis
reaches the Position value.

● Re-execution
• Set the Execute to FALSE. Next, specify input values again. When the Execute is

launched, the FB is executed with the new input values.
● Interruption of operation

• If, during operation of this FB, another FB that controls the same axis is called, the
operation of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the process is completed, the Busy goes FALSE and the Done goes TRUE. The Done

in the TURE state goes FALSE when the Execute is set to FALSE.
● When another FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

5.6 Position Control

WUME-GM1PGR-10 5-25

Position

Execute

Busy

Done

CommandAborted

Error
ErrorID

0

Velocity

DecelerationAcceleration

Velocity

Position

Time

Time

150

50

Profile

Profile

50 100 150 -50

5.6 Position Control

5-26 WUME-GM1PGR-10

5.6.2 MC_MoveRelative (Relative Value Positioning)

This is a function block (FB) that causes the axis to travel to a target position that is a result of
the addition of a travel distance to the current command position.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Distance LREAL 0 Specifies the travel distance (u).
The target position is a position that
is a result of the addition of a
Distance value to the current
command position.

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

BufferMode MC_BUFFER_M
ODE

Aborting Specifies a buffer mode.
The value is valid when this FB is a
second FB.

Output Done BOOL FALSE TRUE: The target position has been
reached.

Busy BOOL FALSE TRUE: FB operation is in progress.

Active BOOL FALSE TRUE: The second FB is being
controlled.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

5.6 Position Control

WUME-GM1PGR-10 5-27

■ MC_BUFFER_MODE (Enumeration type)
On condition that this FB is connected as the second FB, the table below gives a description.

ENUM Value Description

Aborting 0 The operation of the first FB stops, and this FB starts operation instantly.

Buffered 1 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The movement starts at the velocity that the preceding movement has when
the end condition is reached.

BlendingLow 2 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The command velocities of the first FB and this FB are compared, and the
axis passes through the end position of the first FB operation at the lower
command velocity.

BlendingPrevious 3 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of the first FB command.

BlendingNext 4 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of this FB command.

BlendingHigh 5 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The command velocities of the first FB and this FB are compared, and the
axis passes through the end position of the first FB operation at the higher
command velocity.

(Note 1) Refer to Table "Buffer Mode Operation Conditions."

■ Detail of function
● Description of functions

• This FB causes the axis to travel to a target position at the specified Velocity. The target
position is a result of the addition of a Distance value to the current command position.

• The traveling direction of the axis before the target position is reached is determined by
whether the Distance input is positive or negative.
When the Distance input is positive, the axis travels in the positive direction.
When the Distance input is negative, the axis travels in the negative direction.

● Operation start
• At the launch of the Execute, the axis starts traveling according to the Distance, Velocity,

Acceleration, Deceleration, and Jerk values. The target position is a position that is a
result of the addition of a Distance value to the current command position.

● Operation stop
• The motion stops when the axis reaches the target position.
• Deceleration operation before the axis reaches the target position behaves according to

the Deceleration and Jerk values, and the Velocity level decreases to 0 when the axis
reaches the target position.

● Re-execution

5.6 Position Control

5-28 WUME-GM1PGR-10

• Set the Execute to FALSE. Next, specify input values again. When the Execute is
launched, the FB is executed with the new input values.

● Interruption of operation
• If, during operation of this FB, another FB that controls the same axis is called, the

operation of this FB is interrupted.

5.6 Position Control

WUME-GM1PGR-10 5-29

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the process is completed, the Busy goes FALSE and the Done goes TRUE. The Done

in the TURE state goes FALSE when the Execute is set to FALSE.
● When another FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

Distance

Execute

Done

Busy

CommandAborted

Error

Velocity

DecelerationAcceleration

Velocity

Position

Time

Time

50
Distance

Distance150

Profile

Profile

50 100 150 -100

5.6 Position Control

5-30 WUME-GM1PGR-10

5.6.3 MC_MoveAdditive (Target Position Change)

This is a function block (FB) that causes the axis to travel to a new target position that is a
result of the addition of a travel distance to a target position the immediately preceding FB
involving control of the axis has aimed to reach.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Distance LREAL 0 Specifies the travel distance (u).
The target position is a position that
is a result of the addition of a
Distance value to a target position
the immediately preceding FB
involving control of the axis has
aimed to reach.

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

Output Done BOOL FALSE TRUE: The target position has been
reached.

Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• This FB causes the axis to travel to a new target position that is a result of the addition of
a travel distance to a target position the immediately preceding FB involving control of the
axis has aimed to reach. The velocity, acceleration, deceleration, and jerk in operation by

5.6 Position Control

WUME-GM1PGR-10 5-31

the immediately preceding FB are replaced by the Velocity, Acceleration, Deceleration,
and Jerk inputs. Thus, when the Distance is set to 0, the velocity, acceleration,
deceleration, and jerk in operation by the immediately preceding FB can be changed.

• When this FB is launched by the Execute input while another FB is controlling the axis,
control of the axis by the other FB is interrupted.

• When this FB is launched by the Execute input while any FB involving control of the axis is
not executed at all, this FB operates in the same way as the motion of MC_MoveRelative.

● Operation start
• At the launch of the Execute, the axis starts traveling according to the Distance, Velocity,

Acceleration, Deceleration, and Jerk values. The target position is a position that is a
result of the addition of a Distance value to a target position the immediately preceding FB
involving control of the axis has aimed to reach.

● Operation stop
• The motion stops when the axis reaches the target position.
• Deceleration operation before the axis reaches the target position behaves according to

the Deceleration and Jerk values, and the Velocity level decreases to 0 when the axis
reaches the target position.

● Re-execution
• Set the Execute to FALSE. Next, specify input values again. When the Execute is

launched, the FB is executed with the new input values.
● Interruption of operation

• If, during operation of this FB, another FB that controls the same axis is called, the
operation of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the process is completed, the Busy goes FALSE and the Done goes TRUE. The Done

in the TRUE state goes FALSE when the Execute is set to FALSE.
● When another FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

5.6 Position Control

5-32 WUME-GM1PGR-10

Distance

Execute

Busy

Done

CommandAborted

Error

Time

Time

Distance

Execute

Busy

Done

CommandAborted

Error

Acceleration

Velocity

Position

Velocity Acceleration

Velocity

Deceleration overwrite

overwrite

overwrite

100

250

MC_MoveAbsolute

MC_MoveAdditive

Time

Profile

Profile

350

350

250

100

Time

Time

Time

0350 250

Time

Time

Time

5.6 Position Control

WUME-GM1PGR-10 5-33

5.6.4 MC_MoveSuperImposed (Superimposed positioning)

This is a function block (FB) that adds an axis control command to another FB controlling the
axis. Control commands to the target axis are command position, command velocity, command
acceleration, command deceleration, and command jerk.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Abort BOOL FALSE TRUE: The value of the axis control
command added by this FB is set to
0, and the value of the control
command previously executed by
the existing FB returns.

Distance LREAL 0 Specifies the travel distance (u).
The target position is a position that
is a result of the addition of a
Distance value to the current
command position.

VelocityDiff LREAL 0 Specifies the maximum velocity
(u/s) to be added.

Acceleration LREAL 0 Specifies the acceleration (u/s2) to
be added.

Deceleration LREAL 0 Specifies the deceleration (u/s2) to
be added.

Jerk LREAL 0 Specifies the jerk (u/s3) to be
added.

Output Done BOOL FALSE TRUE: The target position has been
reached.

Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

5.6 Position Control

5-34 WUME-GM1PGR-10

■ Detail of function
● Description of functions

• This FB adds an axis control command to another FB controlling the axis. Control
commands to the target axis are command position, command velocity, command
acceleration, command deceleration, and command jerk. Thus, it is assumed that this FB
is used while another FB is controlling the axis. When this FB is launched by the Execute
input while any other FB is not controlling the axis, this FB operates in the same way as
the motion of MC_MoveRelative.

• When this FB is launched by the Execute input while another FB is controlling the axis, the
operation of the other FB continues.

● Operation start
• At the launch of the Execute, this FB adds the VelocityDiff, Acceleration, Deceleration, and

Jerk values to the motion of the axis that is being controlled by another FB. The target
position of this FB is a position that is a result of the addition of a Distance value to the
current command position. The target position of the other FB is a position that is a result
of the addition of the current target position of the other FB to the Distance value.
Target position = Current command position + Distance
Command velocity = Command velocity + VelocityDiff
Command acceleration = Command acceleration + Acceleration
Command deceleration = Command deceleration + Deceleration
Command jerk = Command jerk + Jerk

● Operation stop
• When the target position of this FB is reached, the operation of this FB stops, and the axis

returns to motion commanded only by the other FB.
• Deceleration operation before the axis reaches the target position of this FB behaves

according to the Deceleration and Jerk values, and the Velocity level returns to the
Velocity value of the other FB when the axis reaches the target position of this FB.

● Re-execution
• Set the Execute to FALSE. Next, specify input values again. When the Execute is

launched, the FB is executed with the new input values.
• The number of times at which this FB is allowed to be concurrently executed on the same

axis is once. Thus, this FB cannot be concurrently executed multiple times while another
FB is controlling the axis. If this FB is concurrently executed multiple times, an error
occurs in this FB, and the ErrorID is set to SMC_AXIS_ERROR_DURING_MOTION.

● Interruption of operation
• If, during operation of this FB, another FB that controls the same axis is called, the

operation of this FB is interrupted.

5.6 Position Control

WUME-GM1PGR-10 5-35

Velocity

Position

Profile

Profile
Time

Time

MC_MoveSuperImposed
Motion Control

Position

Distance

Target Target

FBOriginalGREEN
BLUE is

isLINE
LINE

Acceleration
Velocity

Deceleration

This is Called A
This is Called B

.
. .

.●
●

of
Acceleration

Velocity Bof A += VelocityDiff
of Bof A +=
of Bof A +=

Acceleration
Deceleration Deceleration

= Distance of A + Position of BOriginal

5.6 Position Control

5-36 WUME-GM1PGR-10

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the process is completed, the Busy goes FALSE and the Done goes TRUE. The Done

in the TURE state goes FALSE when the Execute is set to FALSE.
● When another FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

Distance

Execute

Busy

Done

CommandAborted

Error

Time

Time

Time

Distance

Execute

Busy

Done

CommandAborted

Error

Acceleration

Velocity

Position

Velocity Acceleration

Velocity

Deceleration
Deceleration

Time

MC_MoveAbsolute

Time

add

add

add

MC_MoveSuperImposed

100

350

100

Profile

Profile

Time Time

Time

Time

100

250 250

250
250

250 100-

● While the Busy of MC_MoveSuperImposed is TRUE, be sure to call MC_MoveSuperImposed
at every interval. If a call is not made, the axis may perform an abnormal operation.

5.6 Position Control

WUME-GM1PGR-10 5-37

5.6.5 MC_PositionProfile (Position Profile Move)

This is a function block (FB) that causes the axis to operate according to a position profile that
consists of a combination of position and time.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

TimePosition MC_TP_REF - Specifies the position profile.

Input Execute BOOL FALSE Starts execution at the rising edge.

ArraySize INT 0 Specifies the number of profile
points to be executed.

PositionScale LREAL 1 Position scaling
Multiplies the position value of the
profile by the specified value.

Offset LREAL 0 Position offset
Adds the specified value to the
position value of the profile.

Output Done BOOL FALSE TRUE: Motion specified by the
position profile has been
completed.

Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_TP_REF (Structure)

Member Type Description

Number_of_pairs INT Not used. Values are ignored.

isAbsolute BOOL Methods of specifying profile positions
TRUE: Absolute coordinate
FALSE: Relative coordinate

MC_TP_Array ARRAY [1..100] OF
SMC_TP

A set of position profile data
(1st point to 100th point)

5.6 Position Control

5-38 WUME-GM1PGR-10

■ SMC_TP (Structure)

Member Type Description

delta_time TIME Time of the profile
Period of time spanned from the time at the last profile position

position LREAL Target position of the profile

■ Detail of function
● Description of functions

• This FB causes the axis to operate according to the position profile.
• Up to 100 points that are each a combination of time and position values can be

registered in the position profile.
• The velocity is calculated by a fifth degree polynomial according to the specified time and

positions.
● Operation start

• At the launch of the Execute, the axis starts traveling according to the TimePosition
description.

● Operation stop
• When the axis has traveled through a trajectory equivalent to the number of profile points

specified in ArraySize, the axis stops.
● Re-execution

• Set the Execute to FALSE. Next, specify input values again. When the Execute is
launched, the FB is executed with the new input values.

● Interruption of operation
• If, during operation of this FB, another FB that controls the same axis is called, the

operation of this FB is interrupted.

5.6 Position Control

WUME-GM1PGR-10 5-39

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the axis has traveled through a trajectory equivalent to the number of profile points

specified in ArraySize, the Busy goes FALSE and the Done goes TRUE. The Done in the
TURE state goes FALSE when the Execute is set to FALSE.

● When another FB that controls the same axis is called while the Busy is TRUE, the
CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

● The timing chart is plotted when MC_TP_Array, a structure member of TimePosition, has
values shown in the table below. In this example, isAbsolute, a structure member of
TimePosition, is set to TRUE.

index delta_time position

1 Time#10s 150

2 Time#20s 0

3 Time#20000ms 50

PositionScale

Offset

Execute

CommandAborted

Error
Velocity

Position

Profile

Profile

1 2 1

0 50 0

Done

Busy

Offset

scale 1

scale

scale

scale 2

Time

Time

x

1x

x

2x

index1 index2 index3 index1 index2 index3

● While the axis keeps driving, do not set delta_time to 0 ms. Otherwise, operation cannot be
properly executed in the section for which 0 ms is specified and subsequent sections.

5.6 Position Control

5-40 WUME-GM1PGR-10

5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure

To enter the value of the input TimePosition, it is necessary to make default setting for variables
of the MC_TP_REF type structure.

1. When the input variable to TimePosition is declared, "Automatic Declaration" dialog box is

displayed. Click displayed next to the "Initial Value" field.

2. The "Initial Value" dialog box is displayed and, on the dialog box, you can set the default
value for every member of the variable type (MC_TP_REF).

5.6 Position Control

WUME-GM1PGR-10 5-41

5.6 Position Control

5-42 WUME-GM1PGR-10

5.6.7 SMC_MoveContinuousAbsolute (Absolute Value Position Velocity
Move)

This function block (FB) causes the axis to travel to a specified target position. Then, after the
axis reaches the target position, this FB causes the axis to keep moving at a specified velocity.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Position LREAL 0 Specifies the target position (u).

Velocity LREAL 0 Specifies the velocity (u/s) until the
axis reaches the target position.

EndVelocity LREAL 0 Specifies the velocity (u/s) after the
axis reaches the target position.

EndVelocityDirection MC_Direction current Specifies the traveling direction of
the axis after the axis reaches the
target position.
Specifies either “positive”,
“negative”, or “current”.
If “fastest” or “shortest” is specified,
an error occurs.

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

Direction MC_Direction shortest Specification is valid only when the
axis is of the modulo type. Specifies
the traveling direction of the axis.

AdaptEndVelToAvoidO
vershoot

BOOL FALSE Do not use.

5.6 Position Control

WUME-GM1PGR-10 5-43

Scope Name Type Initial Description

Output InEndVelocity BOOL FALSE TRUE: The EndVelocity velocity is
reached after the specified target
position is reached

PositionReached BOOL FALSE TRUE: The target position has been
reached.

Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_Direction (Enumeration type)

Name Value Description

positive 1 Travels in the positive direction.

negative -1 Travels in the negative direction.

shortest 0 Travels in the direction in which the distance is shortest from the current command
position at the time of the command execution to the target position.

fastest 3 Travels in the direction in which the time is fastest from the current command position at
the time of the command execution to the target position.

current 2 If an FB is controlling the axis, the axis travels by keeping the current direction.
If any FB is not controlling the axis, the axis travels in the direction taken by the
immediately preceding FB that controlled the axis.

■ Detail of function
● Description of functions

• This FB causes the axis to travel to the Position at the specified Velocity. After the axis
reaches the Position, this FB then causes the axis to keep moving at the specified
EndVelocity value.

• The traveling direction of the axis before the Position is reached is determined by the axis
type.

• The traveling direction of the axis after the Position is reached is determined by the
specified EndVelocityDirection value.

• The behavior of the axis when the Position is reached is determined by the relationship
between the traveling directions of the axis before and after the position is reached.

Axis
type

Axis traveling direction

Finite The direction is determined by the positional relationship of the current command position and the
Position input.
● If the Position input is larger relative to the current command position, the axis travels in the

positive direction.
● If the Position input is smaller relative to the current command position, the axis travels in the

negative direction.

Modulo MC_Direction specification

5.6 Position Control

5-44 WUME-GM1PGR-10

Traveling
direction of the
axis before the
Position is
reached

Traveling
direction of the
axis after the
Position is
reached

Behavior of the axis when the Position is reached

Positive direction Positive direction Determined by the magnitude relationship between the Velocity and
EndVelocity values
● When Velocity < EndVelocity,

The axis velocity, before the axis reaches the Position, starts
acceleration from the Velocity value toward the EndVelocity value
according to the Acceleration and Jerk values. Before the axis
reaches the Position, the axis velocity reaches and gets constant
at the EndVelocity value.

● When Velocity > EndVelocity,
The axis, before it reaches the Position, starts deceleration from
the Velocity value toward the EndVelocity value according to the
Deceleration and Jerk values. Before the axis reaches the
Position, the axis velocity reaches and gets constant at the
EndVelocity value.

Negative direction Negative direction

Positive direction Negative direction The Velocity level, when the axis comes close to the Position, starts
deceleration according to the Deceleration and Jerk values and
decreases to 0 when the axis reaches the Position. The axis then
restarts traveling in the direction specified in the EndVelocityDirection
input, and when the velocity reaches the specified EndVelocity value,
the axis keeps the velocity value.

Negative direction Positive direction

● Operation start
• At the launch of the Execute, the axis starts traveling according to the Position, Velocity,

Acceleration, Jerk, and Direction values.
● Operation stop

• After the Position is reached, this FB causes the axis to keep moving at the specified
EndVelocity value. Thus, the axis does not stop.

● Re-execution
• While the Busy and InEndVelocity are TRUE, set the Execute to FALSE. Next, specify

input values again. When the Execute is launched, the FB is executed with the new input
values.

• If the Execute is changed from FALSE to TRUE before the Position is reached, the new
input values do not take effect and re-execution is not performed.

● Interruption of operation
• If another FB that controls the same axis is called while the Busy is TRUE, the operation

of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● After the specified target position is reached, InEndVelocity becomes TRUE when the

EndVelocity velocity is reached. InEndVelocity in the TRUE state becomes FALSE at the
start of Execute.

● When another FB that controls the same axis is called while the Busy is TRUE, the
CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

5.6 Position Control

WUME-GM1PGR-10 5-45

Position

50 100

Velocity

10 20

EndVelocity

10 30

EndVelocityDirection

negative positve

Execute

Busy

InEndVelocity

CommandAborted

Error

30
20
10

-10
0

50
100

Velocity

Position

Profile

Profile

5.6 Position Control

5-46 WUME-GM1PGR-10

5.6.8 SMC_MoveContinuousRelative (Relative Value Position Velocity Move)

This function block (FB) causes the axis to travel to a target position that is a result of the
addition of a travel distance to the current command position. Then, after the axis reaches the
target position, this FB causes the axis to keep moving at a specified velocity.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Distance LREAL 0 Specifies the travel distance (u).
The target position is a position that
is a result of the addition of a
Distance value to the current
command position.

Velocity LREAL 0 Specifies the velocity (u/s).

EndVelocity LREAL 0 Specifies the velocity (u/s) after the
axis reaches the target position.

EndVelocityDirection MC_Direction current Specifies the traveling direction
after the axis reaches the target
position.
Specifies either “positive”,
“negative”, or “current”.
If “fastest” or “shortest” is specified,
an error occurs.

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

AdaptEndVelToAvoidO
vershoot

BOOL FALSE Do not use.

Output InEndVelocity BOOL FALSE TRUE: The EndVelocity velocity is
reached after the specified target
position is reached

5.6 Position Control

WUME-GM1PGR-10 5-47

Scope Name Type Initial Description

DistanceTravelled BOOL FALSE TRUE: The target distance has
been traveled.

Busy BOOL FALSE TRUE: FB is operating.

CommandAborted BOOL FALSE TRUE: An interruption from another
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• This FB causes the axis to travel to a target position at the specified Velocity. The target
position is a result of the addition of a Distance value to the current command position.
After the axis reaches the target position, this FB then causes the axis to keep moving at
the specified EndVelocity value.

• The traveling direction of the axis before the target position is reached is determined by
whether the Distance input is positive or negative.
When the Distance input is positive, the axis travels in the positive direction.
When the Distance input is negative, the axis travels in the negative direction.

• The traveling direction of the axis after the target position is reached is determined by the
specified EndVelocityDirection value.

• The behavior of the axis when the target position is reached is determined by the
relationship between the traveling directions of the axis before and after the target position
is reached.

Traveling
direction of the
axis before the
target position is
reached

Traveling
direction of the
axis after the
target position is
reached

Behavior of the axis when the target position is reached

Positive direction Positive direction Determined by the magnitude relationship between the Velocity and
EndVelocity values
● When Velocity < EndVelocity,

The axis velocity, before the axis reaches the target position,
starts acceleration from the Velocity value toward the EndVelocity
value according to the Acceleration and Jerk values. Before the
axis reaches the target position, the axis velocity reaches and
gets constant at the EndVelocity value.

● When Velocity > EndVelocity,
The axis, before it reaches the target position, starts deceleration
from the Velocity value toward the EndVelocity value according to
the Deceleration and Jerk values. Before the axis reaches the
target position, the axis velocity reaches and gets constant at the
EndVelocity value.

Negative direction Negative direction

Positive direction Negative direction The Velocity level, when the axis comes close to the target position,
starts deceleration according to the Deceleration and Jerk values
and decreases to 0 when the axis reaches the target position. The
axis then restarts traveling in the direction specified in the
EndVelocityDirection input, and when the velocity reaches the
specified EndVelocity value, the axis keeps the velocity value.

Negative direction Positive direction

5.6 Position Control

5-48 WUME-GM1PGR-10

● Operation start
• At the launch of the Execute, the axis starts traveling according to the Distance, Velocity,

Acceleration, and Jerk values. The target position is a result of the addition of a Distance
value to the current command position.

● Operation stop
• After the target position is reached, this FB causes the axis to keep moving at the

specified EndVelocity value. Thus, the axis does not stop.
● Re-execution

• Set the Execute to FALSE. Next, specify input values again. When the Execute is
launched, the FB is executed with the new input values.

● Interruption of operation
• If, during operation of this FB, another FB that controls the same axis is called, the

operation of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● After the specified target position is reached, InEndVelocity becomes TRUE when the

EndVelocity velocity is reached. InEndVelocity in the TRUE state becomes FALSE at the
start of Execute.

● While Busy is TRUE, CommandAborted is TRUE if you call any other FB that controls axes
on the same axis. Note that the behavior after CommandAborted is TRUE depends on the
behavior of other FB.

5.6 Position Control

WUME-GM1PGR-10 5-49

Distance

50 100

Velocity

10 20

EndVelocity

10 30

EndVelocityDirection

negative positve

Execute

Busy

InEndVelocity

CommandAborted

Error

30
20
10

-10
0

50
Distance

Velocity

Position

Profile

Profile

Distance

5.6 Position Control

5-50 WUME-GM1PGR-10

5.6.9 Example: Absolute Positioning, Relative Positioning

Here is an example of a program that uses "MC_MoveAbsolute" to move in the positive
direction to position 180, and then uses "MC_MoveRelative" to move a distance of 4000.

■ Program examples
● Implementation Section

CASE Process OF
 0: // Servo ON
 MC_Power_0(
 Axis := Axisl,
 Enable := TRUE,
 bRegulatorOn := TRUE,
 bDriveStart := TRUE
);
 IF MC_Power_0.Status = TRUE THEN
 Process := 1;
 END_IF
 1: // Execute the MC_MoveAbsolute
 MC_MoveAbsolute_0(
 Axis := Axisl,
 Execute := TRUE,
 Position := 180,
 Velocity := 3600,
 Acceleration := 72000,
 Deceleration := 72000,
 Direction := positive
);
 IF MC_MoveAbsolute_0.Done = TRUE THEN
 MC_MoveAbsolute_0(
 Axis := Axisl,
 Execute := FALSE,
);
 Process := 2;
 END_IF
 2: // Execute the MC_MoveRelative
 MC_MoveRelative_0(
 Axis := Axisl,
 Execute := TRUE,
 Distance := 4000,
 Velocity := 3600,
 Acceleration := 72000,
 Deceleration := 72000
);
 IF MC_MoveRelative_0.Done = TRUE THEN
 MC_MoveRelative_0(
 Axis := Axisl,
 Execute := FALSE
);
 Process := 3;
 END_IF
 3: //End

5.6 Position Control

WUME-GM1PGR-10 5-51

 //No operation
END_CASE

"MC_MoveAbsolute" and "MC_MoveRelative" are started at the rising edge of the "Execute"
flag. If processing is completed normally, the "Done" flag will be set to TRUE.
In this program example, the actual position eventually becomes 4180.

The "Busy" flag is set to TRUE during execution. While the "Busy" flag is set to TRUE, an
instance of the function block must be called every cycle. Otherwise, the operation will
terminate with an error.

5.6.10 Example: Target Position Change

Here's an example of changing the Position of "MC_MoveAbsolute" from 90 to 180. It is
possible to switch the parameter while "MC_MoveAbsolute" is in execution (Busy=TRUE).

■ Program example
● Implementation Section

CASE Process OF
 0: // Servo ON
 MC_Power_0(
 Axis := Axisl ,
 Enable := TRUE ,
 bRegulatorOn := TRUE,
 bDriveStart := TRUE
);
 IF MC_Power_0.Status = TRUE THEN
 Process := 1;
 END_IF
 1: // Execute the MC_MoveAbsolute
 MC_MoveAbsolute_0(
 Axis := Axisl,
 Execute := TRUE,

5.6 Position Control

5-52 WUME-GM1PGR-10

 Position := 90,
 Velocity := 360,
 Acceleration := 3600,
 Deceleration := 3600,
 Direction := positive
);
 IF MC_MoveAbsolute_0.Busy = TRUE THEN
 MC_MoveAbsolute_0(
 Axis := Axisl,
 Execute := FALSE,
);
 Process := 2;
 END_IF
 2: // Change the position of the MC_MoveAbsolute_0
 MC_MoveAbsolute_0(
 Axis := Axisl,
 Execute := TRUE,
 Position := 180
);
 IF MC_MoveAbsolute_0.Done = TRUE THEN
 MC_MoveAbsolute_0(
 Axis := Axisl,
 Execute := FALSE,
);
 Process := 3;
 END_IF
 3: //End
 //No operation
END_CASE

● If you need to change parameters such as the target position (position) during operation,
please set Execute to FALSE once. After changing the parameters and setting Execute to
TRUE again, the changes will be reflected.

5.6 Position Control

WUME-GM1PGR-10 5-53

5.7 Velocity Control

5.7.1 MC_MoveVelocity (Velocity Control)

This is a function block (FB) that controls the axis at a specified velocity.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Velocity LREAL 0 Specifies the velocity (u/s).

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Deceleration LREAL 0 Specifies the deceleration (u/s2).

Jerk LREAL 0 Specify the jerk (u/s3)

Direction MC_Direction current Specifies the traveling direction of
the axis.
Specifies either “positive”,
“negative”, or “current”.
If “fastest” or “shortest” is specified,
an error occurs.

BufferMode MC_BUFFER_M
ODE

Aborting Specifies a buffer mode.
The value is valid when this FB is a
second FB.

Output InVelocity BOOL FALSE TRUE: The specified velocity has
been reached for the first time.

Busy BOOL FALSE TRUE: The FB is in operation.

Active BOOL FALSE TRUE: The second FB is being
controlled.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

5.7 Velocity Control

5-54 WUME-GM1PGR-10

Scope Name Type Initial Description

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_Direction (Enumeration type)

Name Value Description

positive 1 Travels in the positive direction.

negative -1 Travels in the negative direction.

shortest 0 Not available. Do not specify this.

fastest 3 Not available. Do not specify this.

current 2 Travels in the positive direction if the axis is stopped.
Travels in the current direction if the axis is in motion.

■ MC_BUFFER_MODE (Enumeration type)
On condition that this FB is connected as the second FB, the table below gives a description.

Name Value Description

Aborting 0 The operation of the first FB stops, and this FB starts operation instantly.

Buffered 1 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The movement starts at the velocity that the preceding movement has when
the end condition is reached.

BlendingLow 2 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The command velocities of the first FB and this FB are compared, and the
axis passes through the end position of the first FB operation at the lower
command velocity.

BlendingPrevious 3 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of the first FB command.

BlendingNext 4 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of this FB command.

BlendingHigh 5 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The command velocities of the first FB and this FB are compared, and the
axis passes through the end position of the first FB operation at the higher
command velocity.

(Note 1) Refer to Table "Buffer Mode Operation Conditions."

■ Detail of function
● Description of functions

• The axis starts acceleration according to the Acceleration and Jerk values, and the axis
velocity gets constant when it reaches the specified Velocity value.

5.7 Velocity Control

WUME-GM1PGR-10 5-55

• The Direction input is specified for the traveling direction of the axis, which is equivalent to
the direction of the Velocity.

• When the axis is in motion and the current traveling direction of the axis is different from
the Direction value during execution of this FB, the axis starts deceleration according to
the Deceleration and Jerk values, and the Velocity level decreases to 0. The axis then
starts acceleration according to the Acceleration and Jerk values, and the axis velocity
gets constant when it reaches the specified Velocity value.

• This FB can be used in position control mode and in speed control mode.
● Operation start

• At the launch of the Execute, the axis starts traveling according to the Velocity,
Acceleration, Jerk, and Direction values.

● Operation stop
• The axis velocity gets constant when it reaches the specified Velocity value. Thus, the axis

does not stop. To stop the axis, set Velocity to 0 and execute again.
● Re-execution

• Set the Execute to FALSE. Next, specify input values again. When the Execute is
launched, the FB is executed with the new input values.

● Interruption of operation
• If, during operation of this FB, another FB that controls the same axis is called, the

operation of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the velocity reaches the Velocity value, the InVelocity goes TRUE. At the launch of the

Execute, the InVelocity in the TRUE state is set to FALSE.
● When another FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE. If the InVelocity is in the TRUE state, it is set to FALSE. The
behavior of this FB after the CommandAborted is TRUE depends on the behavior of other
FBs.

Direction

positive negative positive

Execute

Busy

InVelocity

CommandAborted

Error

Velocity

Position

Profile

Profile

Acceleration

Acceleration Acceleration

Velocity
Deceleration

positive negative

5.7 Velocity Control

5-56 WUME-GM1PGR-10

5.7.2 MC_VelocityProfile (Velocity Profile Movement)

This is a function block (FB) that causes the axis to operate according to a velocity profile that
consists of a combination of time and velocity.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

TimeVelocity MC_TV_REF - Specifies the velocity profile.

Input Execute BOOL FALSE Starts execution at the rising edge.

ArraySize INT 0 Specifies the number of profile
points to be executed.

VelocityScale LREAL 1 Velocity scaling
Multiplies the velocity value of the
profile by the specified value.

Offset LREAL 0 Velocity offset (u/s)
Adds the specified value to the
velocity value of the profile.

Output Done BOOL FALSE TRUE: Motion specified by the
velocity profile has been completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_TV_REF (Structure)

Member Type Description

Number_of_pairs INT Not used. Values are ignored.

isAbsolute BOOL Methods of specifying profile velocities
TRUE: Absolute value
FALSE: Relative value

MC_TV_Array ARRAY [1..100] OF
SMC_TV

A set of velocity profile data

5.7 Velocity Control

WUME-GM1PGR-10 5-57

Member Type Description
(1st point to 100th point)

■ SMC_TV (Structure)

Member Type Description

delta_time TIME Time of the profile
Period of time spanned from the time at the last profile acceleration

velocity LREAL Velocity of profile data

■ Detail of function
● Description of functions

• This FB causes the axis to operate according to the velocity profile.
• Up to 100 points that are each a combination of time and velocity values can be registered

in the velocity profile.
• This FB can be used in position control mode and in speed control mode.

● Start operation
• At the launch of the Execute, the axis starts traveling according to the TimeVelocity

description.
● Operation stop

• When the axis has traveled through a trajectory equivalent to the number of profile points
specified in ArraySize, the axis immediately stops. By specifying 0 for the velocity in the
last section of the profile, the axis can make a deceleration stop.

● Re-execution
• Set the Execute to FALSE. Next, specify input values again. When the Execute is

launched, the FB is executed with the new input values.
● Interruption of operation

• If, during operation of this FB, another FB that controls the same axis is called, the
operation of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the axis has traveled through a trajectory equivalent to the number of profile points

specified in ArraySize, the Busy goes FALSE and the Done goes TRUE. The Done in the
TURE state goes FALSE when the Execute is set to FALSE.

● When another FB that controls the same axis is called while the Busy is TRUE, the
CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

● The timing chart is plotted when MC_TV_Array, a structure member of TimeVelocity, has
values shown in the table below. In this example, isAbsolute, a structure member of
TimeVelocity, is set to TRUE.

index delta_time velocity

1 Time#2s 10

2 Time#2s 20

3 Time#1000ms -10

5.7 Velocity Control

5-58 WUME-GM1PGR-10

VelocityScale

Offset

Execute

Busy

Done

CommandAborted

Error

Velocity

Position

Profile

Profile

Offset
Time

Time
index1 index2 index3 index1 index2 index3

1 2 1

0 20 0

scale 1x

Time

TimeTime

Time
index1 index2 index3

xscale 2

● While the axis keeps driving, do not set delta_time to 0 ms. Otherwise, operation cannot be
properly executed in the section for which 0 ms is specified and subsequent sections.

 REFERENCE
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure

5.7 Velocity Control

WUME-GM1PGR-10 5-59

5.7.3 MC_AccelerationProfile (Acceleration Profile Movement)

This is a function block (FB) that causes the axis to operate according to acceleration profile
data that consists of a combination of time and acceleration.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

TimeAcceleration MC_TA_REF - Specifies the acceleration profile.

Input Execute BOOL FALSE Starts execution at the rising edge.

ArraySize INT 0 Specifies the number of profile
points to be executed.

AccelerationScale LREAL 1 Acceleration scaling
Multiplies the acceleration value of
the profile by the specified value.

Offset LREAL 0 Acceleration offset (u/s2）

Adds the specified value to the
acceleration value of the profile.

Output Done BOOL FALSE TRUE: Motion specified by the
acceleration profile has been
completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_TA_REF (Structure)

Member Type Description

Number_of_pairs INT Not used. Values are ignored.

isAbsolute BOOL Methods of specifying profile accelerations
TRUE: Absolute value
FALSE: Relative value

5.7 Velocity Control

5-60 WUME-GM1PGR-10

Member Type Description

MC_TA_Array ARRAY [1..100] OF
SMC_TA

A set of acceleration profile data
(1st point to 100th point)

■ SMC_TA (Structure)

Member Type Description

delta_time TIME Time of the profile
Period of time spanned from the time at the last profile acceleration

Acceleration LREAL Acceleration of profile data

■ Detail of function
● Description of functions

• This FB causes the axis to operate according to the acceleration profile.
• Up to 100 points that are each a combination of time and acceleration values can be

registered in the acceleration profile.
• This FB can be used in position control mode and in speed control mode.

● Start operation
• At the launch of the Execute, the axis starts traveling according to the TimeAcceleration

description.
● Operation stop

• When the axis has traveled through a trajectory equivalent to the number of profile points
specified in ArraySize, the axis immediately stops.

● Re-execution
• Set the Execute to FALSE. Next, specify input values again. When the Execute is

launched, the FB is executed with the new input values.
● Interruption of operation

• If, during operation of this FB, another FB that controls the same axis is called, the
operation of this FB is interrupted.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the axis has traveled through a trajectory equivalent to the number of profile points

specified in ArraySize, the Busy goes FALSE and the Done goes TRUE. The Done in the
TURE state goes FALSE when the Execute is set to FALSE.

● When another FB that controls the same axis is called while the Busy is TRUE, the
CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

● The timing chart is plotted when MC_TP_Array, a structure member of TimeAcceleration, has
values shown in the table below. In this example, isAbsolute, a structure member of
TimeAcceleration, is set to TRUE.

index delta_time Acceleration

1 Time#1s 1

2 Time#1s -1

3 Time#1000ms 1

5.7 Velocity Control

WUME-GM1PGR-10 5-61

index delta_time Acceleration

4 Time#1000ms -1

AccelerationScale

1 2 1

Offset

0 0 0

Execute

Busy

Done

CommandAborted

Error

Velocity Profile

ProfileAcceleration

index1 index2 index3 index4 index1 index2 index3 index4

5.

index1 index2 index3 index4

Offset

scale 2x
scale 1x

● While the axis keeps driving, do not set delta_time to 0 ms. Otherwise, operation cannot be
properly executed in the section for which 0 ms is specified and subsequent sections.

 REFERENCE
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure

5.7 Velocity Control

5-62 WUME-GM1PGR-10

5.7.4 Example: Speed Control

Here is an example of a program that performs velocity control in the positive direction with a
speed of 360 u/s, acceleration of 3600 u/s2, and deceleration of 3600 u/s2.

■ Program example
● Implementation Section

CASE Process OF
 0: // Servo ON
 MC_Power_0(
 Axis := Axisl ,
 Enable := TRUE ,
 bRegulatorOn := TRUE,
 bDriveStart := TRUE
);
 IF MC_Power_0.Status = TRUE THEN
 Process := 1;
 END_IF
 1: // Change controller mode to SMC_velocity
 SMC_SetControllerMode_0(
 Axis := Axisl,
 bExecute := TRUE,
 nControllerMode := SMC_velocity
);
 IF SMC_SetControllerMode_0.bDone = TRUE THEN
 SMC_SetControllerMode_0(
 Axis := Axisl,
 bExecute := FALSE
);
 Process := 2;
 END_IF
 2: // Execute the PMC_SetTorque
 MC_MoveVelocity_0(
 Axis := Axisl,
 Execute := TRUE,
 Velocity := 360,
 Acceleration := 3600,
 Deceleration := 3600,
 Direction := positive
);
 IF MC_MoveVelocity_0.InVelocity =TRUE THEN
 MC_MoveVelocity_0(
 Axis := Axisl,
 Execute := FALSE
);
 Process := 3;
 END_IF
 3: // Change Torque to 0
 MC_MoveVelocity_0(
 Axis := Axisl,
 Execute := TRUE,
 Velocity := 0,
 Acceleration := 3600,

5.7 Velocity Control

WUME-GM1PGR-10 5-63

 Deceleration := 3600,
 Direction :=positive
);
END_CASE

● To change parameter settings such as target velocity ("Velocity") during operation, temporarily
set the "Execute" flag to FALSE beforehand. After parameter settings have been changed, if
the "Execute" flag is set back to TRUE, the changed parameter settings will be applied.

5.7 Velocity Control

5-64 WUME-GM1PGR-10

5.8 Torque Control

5.8.1 PMC_SetTorque (Torque Control)

This is a function block (FB) that controls torque. Torque is specified as a percentage (%) of the
rated torque value of the servo amplifier. When using this FB, set the control mode to torque
control mode in advance using SMC_SetControllerMode.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: Torque output can be
changed according to fTorque.

fTorque LREAL 0 Specifies torque as a percentage
(%) of the rated torque value of the
servo amplifier.

Output bBusy BOOL FALSE TRUE: The FB is in operation.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

nErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• fTorque is specified as a percentage (%) of the rated torque value of the servo amplifier.
The rated torque value can be checked using the IEC object fFactorTor for the axis.

● Torque command value
• The torque command value is the value of fTorque. The torque command value can be

changed when Enable is set to TRUE. It cannot be changed when Enable is set to FALSE.
The torque command continues with the current fTorque value even when Enable is set to
FALSE.

• When fTorque is specified as 0, the FB operates according to the mechanism and load
application in the operating environment.

● Interruption of operation
• If, during operation of this FB, another FB that controls torque is called for the same axis,

the operation of this FB is interrupted.

5.8 Torque Control

WUME-GM1PGR-10 5-65

■ Timing chart
● When the Enable is set to TRUE, Busy changes to TRUE.
● If the value of fTorque is changed while Enable is TRUE, the value is immediately reflected.
● In the figure below, the motor speed is limited when max motor speed is 1000, causing the

torque output to be limited. Similarly, the torque command value is limited when max troque
is 30, causing the torque output to be limited.

max motor speed

2000 1000 2000

max torque

50 30 50

fTorque

.54. 0 4

bEnable

bBusy

bError

ProfileTorque

Time

53 .54-

torquelimitlimit speedmotor

● When using this FB, set the control mode to torque control mode in advance using
SMC_SetControllerMode.

● The operation of this FB is not stopped by MC_Stop or MC_Halt.
● When performing torque control using the MINAS A5B/A6B, select PDO mapping 2 or 4. In

addition, preset the parameters shown in the table below. With the default value, the axis does
not move because the maximum value is 0.

PDO mapping Parameter Description Default value

2 Max motor speed (16#6080:00) Maximum speed 0

4 Max torque (16#6072:00) Maximum torque 0

Max motor speed (16#6080:00) Maximum speed 0

 REFERENCE
5.3.1 SMC_SetControllerMode (Control Mode Setting)
5.4.1 MC_Stop (Forced Stop)

5.8 Torque Control

5-66 WUME-GM1PGR-10

5.8.2 SMC_SetTorque (Torque Control)

This is a function block (FB) that controls torque. Torque is specified in N-m (Newton-meters).
When using this FB, set the control mode to torque control mode in advance using
SMC_SetControllerMode.

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: Torque output can be
changed according to fTorque.

fTorque LREAL 0 Specifies the torque (N∙m, N)

Output bBusy BOOL FALSE TRUE: The FB is in operation.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

nErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output

■ Detail of function
● Description of functions

• fTorque is specified in N-m (Newton-meters). The rated torque value can be checked
using the IEC object fFactorTor for the axis.

● Torque command value
• The torque command value is the value of fTorque. The torque command value can be

changed when Enable is set to TRUE. It cannot be changed when Enable is set to FALSE.
The torque command continues with the current fTorque value even when Enable is set to
FALSE.

• When fTorque is specified as 0, the FB operates according to the mechanism and load
application in the operating environment.

● Interruption of operation
• If, during operation of this FB, another FB that controls torque is called for the same axis,

the operation of this FB is interrupted.

5.8 Torque Control

WUME-GM1PGR-10 5-67

■ Timing chart
● When the Enable is set to TRUE, Busy changes to TRUE.
● If the value of fTorque is changed while Enable is TRUE, the value is immediately reflected.
● In the figure below, the motor speed is limited when max motor speed is 1000, causing the

torque output to be limited. Similarly, the torque command value is limited when max troque
is 30, causing the torque output to be limited.

max motor speed

2000 1000 2000

max torque

50 30 50

fTorque

0

bEnable

bBusy

bError

ProfileTorque

Time

50 00. 70 00. 60 00. 70 00.

torquelimitlimit speedmotor

-

● When using this FB, set the control mode to torque control mode in advance using
SMC_SetControllerMode.

● The operation of this FB is not stopped by MC_Stop or MC_Halt.
● When performing torque control using the MINAS A5B/A6B, select PDO mapping 2 or 4. In

addition, preset the parameters shown in the table below. With the default value, the axis does
not move because the maximum value is 0.

PDO mapping Parameter Description Default value

2 Max motor speed (16#6080:00) Maximum speed 0

4 Max torque (16#6072:00) Maximum torque 0

Max motor speed (16#6080:00) Maximum speed 0

5.8 Torque Control

5-68 WUME-GM1PGR-10

5.8.3 Example: Torque Control

Here is an example of a program that executes torque control at 30% of the rated torque.

■ Program example
● Implementation Section

CASE Process OF
 0: // Servo ON
 MC_Power_0(
 Axis := Axisl ,
 Enable := TRUE ,
 bRegulatorOn := TRUE,
 bDriveStart := TRUE
);
 IF MC_Power_0.Status = TRUE THEN
 Process := 1;
 END_IF
 1: // Change controller mode to SMC_velocity
 SMC_SetControllerMode_0(
 Axis := Axisl,
 bExecute := TRUE,
 nControllerMode := SMC_torque
);
 IF SMC_SetControllerMode_0.bDone = TRUE THEN
 SMC_SetControllerMode_0(
 Axis := Axisl,
 bExecute := FALSE
);
 Process := 2;
 END_IF
 2: // Execute the PMC_SetTorque
 PMC_SetTorque_0(
 Axis := Axisl,
 bEnable := TRUE,
 fTorque := 30
);
 PMC_ReadActualTorque_0(
 Axis := Axisl,
 Enable := TRUE
);
 IF PMC_ReadActualTorque_0.Valid = TRUE THEN
 IF PMC_ReadActualTorque_0.Torque >= 30 THEN
 PMC_SetTorque_0(
 Axis := Axisl,
 bEnable := FALSE
);
 Process := 3;
 END_IF
 END_IF
 3: // Change Torque to 0
 PMC_SetTorque_0(
 Axis := Axisl,
 bEnable := TRUE,

5.8 Torque Control

WUME-GM1PGR-10 5-69

 fTorque := 0
);
END_CASE

5.8 Torque Control

5-70 WUME-GM1PGR-10

5.9 Direct commands

5.9.1 SMC_FollowPosition (Target Position Command at Every Interval)

This is a function block (FB) that writes the target position at every control period, causing the
axis to travel.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Reference to the axis

Input bExecute BOOL FALSE Starts execution at the rising edge.

fSetPosition LREAL 0 Sets the target position (u).

Output bBusy BOOL FALSE TRUE: FB is in progress.

bCommandAborted BOOL FALSE TRUE: An interruption is caused by
another FB.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

iErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• This FB causes the axis to travel to the specified fSetPosition.
• The traveling direction of the axis before the target position is reached is determined by

whether the fSetPosition input is positive or negative.
When the fSetPosition input is positive, the axis travels in the positive direction.
When the fSetPosition input is negative, the axis travels in the negative direction.
However, in the case of the modulo axis, the direction in which the axis travels from the
current value to the target position in the shortest distance will be used.

• Even if the bExecute input is changed from TRUE to FALSE, the bBusy output remains
TRUE.

• This FB can be used in position control mode and in speed control mode.
● Operation start

• At the launch of the bExecute, the axis starts traveling toward the specified fSetPosition.
● Re-setting

• When the FB is in operation (bBusy is TRUE), set fSetPosition again.
● Interruption of operation

5.9 Direct commands

WUME-GM1PGR-10 5-71

• If, during operation of this FB, another FB that controls the same axis is called, the
operation of this FB is interrupted.

■ Timing chart
● At the launch of the bExecute, the bBusy changes to TRUE.
● While bBusy is TRUE, this FB writes the target position specified by fSetPosition to the axis.
● When another FB that controls the same axis is called while the bBusy is TRUE, the

bCommandAborted changes to TRUE. The behavior of this FB after the bCommandAborted
is TRUE depends on the behavior of other FBs.

fSetPosition

0.5 1 0.5 0 -0.5 -1

bExecute

bBusy

bCommandAborted

bError

-1
-0.5
0
0.5
1Position Profile

Time

● If there is a large difference between the current value and the target command value,
fSetPosition may cause sudden movements since it commands the target position as it is at
every control interval. Set the argument so as to ensure smooth control command movements.

5.9 Direct commands

5-72 WUME-GM1PGR-10

5.9.2 SMC_FollowVelocity (Target Velocity Command at Every Interval)

This is a function block (FB) that writes the target velocity at every control period, causing the
axis to travel.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Axis AXIS_REF_SM3 - Reference to the axis

Input bExecute BOOL FALSE Starts execution at the rising edge.

fSetVelocity LREAL 0 Specifies the target velocity (u/s).

Output bBusy BOOL FALSE TRUE: FB is in progress.

bCommandAborted BOOL FALSE TRUE: An interruption is caused by
another FB.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

iErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Description of functions

• This FB causes the axis to travel at the specified fSetVelocity value.
• The traveling direction of the axis is determined by whether the fSetVelocity input is

positive or negative.
When the fSetVelocity input is positive, the axis travels in the positive direction.
When the fSetVelocity input is negative, the axis travels in the negative direction.

• Even if the bExecute input is changed from TRUE to FALSE, the bBusy output remains
TRUE.

• This FB can be used in position control mode and in speed control mode.
● Operation start

• At the launch of the bExecute, the axis starts traveling according to the specified
fSetVelocity value.

● Operation stop
• The axis velocity gets constant when it reaches the specified fSetVelocity value. Thus, the

axis does not stop. To stop the axis, set fSetVelocity to 0.
● Re-setting

• When the FB is in operation (bBusy is TRUE), set fSetVelocity again.
● Interruption of operation

5.9 Direct commands

WUME-GM1PGR-10 5-73

• If, during operation of this FB, another FB that controls the same axis is called, the
operation of this FB is interrupted.

5.9 Direct commands

5-74 WUME-GM1PGR-10

■ Timing chart
● At the launch of bExecute, the bBusy changes to TRUE.
● While bBusy is TRUE, this FB writes the target velocity specified by fSetVelocity.
● When another FB that controls the same axis is called while the bBusy is TRUE, the

bCommandAborted changes to TRUE. The behavior of this FB after the bCommandAborted
is TRUE depends on the behavior of other FBs.

fSetVelocity

bExecute

bBusy

bCommandAborted

bError

0

20
10

-10
-20

Time

Velocity Profile

10 20 0 -10 -20 -10

● If there is a large difference between the current velocity and the target command value,
fSetVelocity may cause sudden movements since it commands the target velocity as it is at
every control interval. Set the argument so as to ensure smooth control command movements.

5.9 Direct commands

WUME-GM1PGR-10 5-75

5.10 Buffer Mode

The buffer mode is a function that controls the operation start timing when an axis control
function block is executed while another axis control function block (FB) is being executed. For
convenience, the FB executed first is called the first FB and the FB executed later is called the
second FB.

5.10.1 Buffer Mode Execution Rules

The following rules apply to the buffer mode.
● The buffer mode is enabled when the second FB is executed while the first FB is being

executed or before it reaches the end condition.
● The operation start timing of the second FB is specified in MC_BUFFER_MODE described

later.
● If the first FB is provided with an Active signal port, the second FB can be operated in the

buffer mode by connecting the Execute signal port of the second FB.
● When the operation of the first FB is stopped by MC_Halt, the second FB starts operation. To

stop the second FB, use MC_Halt again.
● When the operation of the first FB is stopped by MC_Stop, the second FB stops operation as

well.
● If the buffer mode not usable for the second FB is specified, the second FB does not operate

and an error is output.
● When performing Buffered operation or Blending operation, the first FB and the second FB

need to be executed in the order as described on the POU. If they are executed in a different
order, the second FB does not operate and an error is output.

OK example: Described and executed in the following order: MC_MoveRelative_0 →
MC_MoveRelative_1.

MC_MoveRelative_0(
 Axis:=Axis1,
 Execute:=bExe_mr0,
 Distance:=100,
 Velocity:=20,
 Acceleration:=100,
 Deceleration:=100
);

MC_MoveRelative_1(
 Axis:=Axis1,
 Execute:=bExe_mr1,
 Distance:=150
 Velocity:=5,
 Acceleration:=50,
 Deceleration:=50,
 BufferMode:=MC_BUFFER_MODE.BlendingHigh
);

bExe_mr0:=TRUE;
IF MC_MoveRelative_0.Active = TRUE THEN
 bExe_mr1:=TRUE;
END_IF

5.10 Buffer Mode

5-76 WUME-GM1PGR-10

NG example: Described as follows: MC_MoveRelative_0 → MC_MoveRelative_1, but
executed as follows: MC_MoveRelative_1 → MC_MoveRelative_0

MC_MoveRelative_0(
 Axis:=Axis1,
 Execute:=bExe_mr0,
 Distance:=100,
 Velocity:=20,
 Acceleration:=100,
 Deceleration:=100,
 BufferMode:=MC_BUFFER_MODE.BlendingLow
);

MC_MoveRelative_1(
 Axis:=Axis1,
 Execute:=bExe_mr1,
 Distance:=150
 Velocity:=5,
 Acceleration:=50,
 Deceleration:=50
);

bExe_mr1:=TRUE;
IF MC_MoveRelative_1.Active = TRUE THEN
 bExe_mr0:=TRUE;
END_IF

■ Second FB in buffer mode
The following FBs are supported as the second FB in the buffer mode.

FB name Settable buffer mode (MC_BUFFER_MODE)

MC_MoveAbsolute Aborting, Buffered, BlendingLow, BlendingPrevious, BlendingNext, BlendingHigh

MC_MoveRelative

MC_MoveVelocity

MC_GearIn Aborting, Buffered, BlendingPrevious

MC_GearInPos

5.10 Buffer Mode

WUME-GM1PGR-10 5-77

■ First FB in the buffer mode and the end condition
The following FBs are supported as the first FB in the buffer mode. The table also shows the
output value indicating that the operation of the first FB has ended and the buffer mode for
which the second FB can be set.

FB name Output value indicating that
the operation of the first FB
has ended

Buffer mode for which the second FB
can be set (MC_BUFFER_MODE)

MC_MoveAbsolute Done Aborting, Buffered, BlendingLow,
BlendingPrevious, BlendingNext,
BlendingHighMC_MoveRelative

MC_MoveVelocity InVelocity Aborting, Buffered

MC_GearIn InGear

MC_GearInPos Insync

MC_MoveAdditive Done

SMC_MoveContinuousAbsolute InEndVelocity

SMC_MoveContinuousRelative

MC_PositionProfile Done

MC_VelocityProfile

MC_AccelerationProfile

MC_CamIn EndOfProfile

MC_CamOut Done

MC_GearOut

5.10 Buffer Mode

5-78 WUME-GM1PGR-10

5.10.2 MC_BUFFER_MODE (Enumeration type)

The following table lists the buffer mode that can be set for the second FB. Set a buffer mode in
the BufferMode input of FB.

Name Value Description

Aborting 0 The operation of the first FB stops, and the second FB starts operation
instantly.
Default value

Buffered 1 When the first FB operation satisfies the end condition(Note 1), the second FB
starts operation instantly.
The velocity at which the second FB starts operation is the velocity at which
the first FB has reached the end condition.

BlendingLow 2 When the first FB operation satisfies the end condition(Note 1), the second FB
starts operation instantly.
The command velocities of the first FB and the second FB are compared, and
the axis passes through the end position of the first FB operation at the lower
velocity.

BlendingPrevious 3 When the first FB operation satisfies the end condition(Note 1), the second FB
starts operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of the first FB command.

BlendingNext 4 When the first FB operation satisfies the end condition(Note 1), the second FB
starts operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of the second FB command.

BlendingHigh 5 When the first FB operation satisfies the end condition(Note 1), the second FB
starts operation instantly.
The command velocities of the first FB and the second FB are compared, and
the axis passes through the end position of the first FB operation at the higher
velocity.

(Note 1) Refer to "5.10.1 Buffer Mode Execution Rules".

5.10 Buffer Mode

WUME-GM1PGR-10 5-79

■ Timing chart
The following section shows the timing chart for each buffer mode. Assume that FB1 is
executed as the first FB and FB2 is executed as the second FB.
● Aborting

• The timing chart shows the case where the second FB is executed with BufferMode =
Aborting.

• When the second FB is executed, the first FB is immediately interrupted
(CommandAborted = TRUE) and the operation transitions to the second FB operation as
is.

Execute

Busy

Active

Done

CommandAborted

Error

Execute

Busy

Active

Done

CommandAborted

Error

Position Profile

Velocity Profile

Time

Time

FB2

FB1

● Buffered

5.10 Buffer Mode

5-80 WUME-GM1PGR-10

• The timing chart shows the case where the second FB is executed with BufferMode =
Buffered.

• When the second FB is executed, the function block stays in Busy state (Busy = TRUE)
and waits until the first FB operation ends.

• When the first FB operation ends (Done = TRUE), the second FB starts operation.

Execute

Busy

Active

Done

CommandAborted

Error

Execute

Busy

Active

Done

CommandAborted

Error

Position Profile

Velocity Profile

Time

Time

FB2

FB1

● Blending action（BlendingLow、BlendingPrevious、BlendingNext、BlendingHigh）
• The timing chart shows the case where the second FB is executed in Blending operation.
• As in the case with the Buffered mode, the second FB waits in the Busy state until the first

FB operation ends.
• When the operation of the first FB ends, the second FB starts operation instantly.
• The velocity at the end position of the first FB operation (= starting position of the second

FB operation) varies depending on which Blending mode is set.

5.10 Buffer Mode

WUME-GM1PGR-10 5-81

Execute

Busy

Active

Done

CommandAborted

Error

Execute

Busy

Active

Done

CommandAborted

Error

Position Profile

Velocity Profile

Time

Time

FB2

FB1

The velocity (Blending velocity) at the FB transition position in each Blending mode is as
follows. The timing chart below shows the case where the velocities are set as follows:
command velocity of the third FB (=FB3) > command velocity of the first FB (=FB1) >
command velocity of the second FB (=FB2).

5.10 Buffer Mode

5-82 WUME-GM1PGR-10

Active

Done

Active

Done

Active

Done
Velocity Profile

Time

FB3

FB2

FB1
BlendingLow

Active

Done

Active

Done

Active

Done
Velocity Profile

Time

FB3

FB2

FB1
BlendingPrevious

Active

Done

Active

Done

Active

Done
Velocity Profile

Time

FB3

FB2

FB1
BlendingNext

Active

Done

Active

Done

Active

Done
Velocity Profile

Time

FB3

FB2

FB1
BlendingHigh

5.10 Buffer Mode

WUME-GM1PGR-10 5-83

● If the movement direction of the first FB is different from that of the second FB, the Blending
velocity becomes 0.

● If the distance that the subsequent feedback (FB) action needs to travel is shorter than the
blending speed, the blending speed will be automatically adjusted to prevent overshooting of
the subsequent FB movement.

Axis1.fSetPosition

Axis1.fSetVelocity

First FB
MC_MoveAbsolute_0
- Position : 20
- Velocity : 20

Second FB
MC_MoveAbsolute_1
- Position : 30
- Velocity : 50
- BufferMode : BlendingHigh

not reached Velocity = 50

Blending Point

reached Position = 30
without overshoot

5.10 Buffer Mode

5-84 WUME-GM1PGR-10

5.10.3 Usage Example of Buffer Mode

■ Operation example 1: Latch positioning operation (Aborting operation)
● Overview
1. Using MC_MoveVelocity, operate the belt conveyor at a constant velocity to move the target

workpiece.
2. When the target workpiece passes the sensor position, use MC_MoveRelative to perform

the interrupt control to move the workpiece from the sensor position to the processing area.

Sensor

Processing area

Workpiece

1

2

● Implementation section (excerpt)

MC_MoveVelocity_0(
 Axis:=Axis1,
 Execute:=bExe_mv,
 Velocity:=5,
 Acceleration:=50,
 Deceleration:=50
);

MC_MoveRelative_0(
 Axis:=Axis1,
 Execute:=bExe_mr,
 Distance:=30,
 Velocity:=10,
 Acceleration:=100,
 Deceleration:=100,
 BufferMode:=MC_BUFFER_MODE.Aborting
);

bExe_mv:=TRUE;
IF bLatched = TRUE THEN // Workpiece passed sensor
 bExe_mr:=TRUE;
END_IF

● Operation patterns

5.10 Buffer Mode

WUME-GM1PGR-10 5-85

5.10 Buffer Mode

5-86 WUME-GM1PGR-10

■ Operation example 2: Pick and place operation (Blending operation using two
FBs)

● Overview
1. Using the first MC_MoveAbsolute, lower the axis at high speed to the place before the pick

position of the target workpiece.
2. Using BlendingNext, pass the axis through the end position of the first FB at the velocity of

the second MC_MoveAbsolute.
3. Using the second MC_MoveAbsolute, lower the axis to the pick position at low speed.
4. Pick the target workpiece.
5. Using the first MC_MoveAbsolute, raise the axis at low speed until it passes through the

groove where the target workpiece is to be placed.
6. Using BlendingLow, pass the axis through the end position of the first FB at the velocity

(low speed) of the first MC_MoveAbsolute.
7. Using the second MC_MoveAbsolute, raise the axis at high speed.

Workpiece

1

2
3 4 5

6
7

● Implementation section (excerpt)

MC_MoveAbsolute_0(
 Axis:=Axis1,
 Execute:=bExe_ma0,
 Position:=Position0,
 Velocity:=Velocity0,
 Acceleration:=100,
 Deceleration:=100,
 BufferMode:=BufferMode0
);

MC_MoveAbsolute_1(
 Axis:=Axis1,
 Execute:=bExe_ma1,
 Position:=Position1,
 Velocity:=Velocity1,
 Acceleration:=100,
 Deceleration:=100,
 BufferMode:=BufferMode1
);

CASE iStep OF
 0: // Set parameters during descent and execute FBs
 Position0:=10;
 Velocity0:=50;
 Position1:=0;
 Velocity1:=5;
 BufferMode1:=MC_BUFFER_MODE.BlendingNext;

5.10 Buffer Mode

WUME-GM1PGR-10 5-87

 bExe_ma0:=TRUE;
 IF MC_MoveAbsolute_0.Active = TRUE THEN
 bExe_ma1:=TRUE;
 iStep:=1;
 END_IF

 1: // Pick up and reset FBs
 IF MC_MoveAbsolute_1.Done = TRUE THEN
 bChuckClose:=TRUE; // For Pick up flag
 bExe_ma0:=FALSE;
 bExe_ma1:=FALSE;
 END_IF
 IF bCucked = TRUE THEN
 iStep:=2;
 END_IF

 2: // Set parameters when rising and execute FBs
 Position0:=15;
 Velocity0:=5;
 Position1:=50;
 Velocity1:=50;
 BufferMode1:=MC_BUFFER_MODE.BlendingLow;
 bExe_ma0:=TRUE;
 IF MC_MoveAbsolute_0.Active = TRUE THEN
 bExe_ma1:=TRUE;
 END_IF

END_CASE
● Motion waveform

5.10 Buffer Mode

5-88 WUME-GM1PGR-10

■ Operation example 3: Insertion operation (Blending operation using three FBs)
● Overview
1. Using the first MC_MoveAbsolute, move the axis at high speed to the place before the

insertion position of the target workpiece.
2. Using BlendingLow, pass the axis through the end position of the first FB at the velocity

(low speed) of the second MC_MoveAbsolute.
3. Using the second MC_MoveAbsolute, move the axis at low speed to the position where the

workpiece is inserted through.
4. Using BlendingLow, pass the axis through the end position of the second FB at the velocity

(low speed) of the second MC_MoveAbsolute.
5. Using the third MC_MoveAbsolute, move the axis at medium speed to the insertion

completion position.

Workpiece1

2

3

4

5

5.10 Buffer Mode

WUME-GM1PGR-10 5-89

● Implementation section (excerpt)

MC_MoveAbsolute_0(
 Axis:=Axis1,
 Execute:=bExe_ma0,
 Position:=20,
 Velocity:=50,
 Acceleration:=100,
 Deceleration:=100
);

MC_MoveAbsolute_1(
 Axis:=Axis1,
 Execute:=bExe_ma1,
 Position:=40,
 Velocity:=5,
 Acceleration:=100,
 Deceleration:=100,
 BufferMode:=MC_BUFFER_MODE.BlendingLow
);

MC_MoveAbsolute_2(
 Axis:=Axis1,
 Execute:=bExe_ma2,
 Position:=50,
 Velocity:=20,
 Acceleration:=50,
 Deceleration:=50,
 BufferMode:=MC_BUFFER_MODE.BlendingLow
);

bExe_ma0:=TRUE;
IF MC_MoveAbsolute_0.Active = TRUE THEN
 bExe_ma1:=TRUE;
ELSIF MC_MoveAbsolute_0.Done = TRUE AND MC_MoveAbsolute_1.Active = TRUE THE
N
 bExe_ma2:=TRUE;
END_IF

● Motion waveform

5.10 Buffer Mode

5-90 WUME-GM1PGR-10

5.10 Buffer Mode

WUME-GM1PGR-10 5-91

5.11 Axis Structure

This is a function block that controls devices with real axis (AXIS_REF_SM3), virtual axis
(AXIS_REF_VIRTUAL_SM3), or encoder axis (FREE_ENCODER_REF).

(1) Real axis: Used to actually control the servo amplifier.
(2) Encoder axis: Used when high precision control is required.
(3) Virtual axis: Used to create and execute a virtual servo amplifier within the GM1 Controller.

(1)

(2)
(3)

For the detailed setting procedure, refer to the "User’s Manual (Operation Edition)".

■ Axis information

Member Type Default value Description

nAxisState SMC_AXIS_STAT
E

power_off Axis (drive) state
0: power_off
1: errorstop
2: stopping
3: standstill
4: discrete_motion
5: continuous_motion
6: synchronized_motion
7: homing

nDirection MC_DIRECTION positive Rotation direction of the axis (drive)
0:shortest: Travels to the rotation
direction in the shortest distance (only
for the modulo axis).
1:positive: Travels in the positive
direction.
2:current: Maintains the current rotation
direction (only for the modulo axis).
3:fastest: Travels to the fastest direction
up to the target position (only for the
modulo axis).
-1:negative: Travels in the negative
direction.

bRegulatorOn BOOL FALSE Axis (drive) power ON/OFF: Possible to
set using MC_Power(FB).
TRUE:ON
FALSE:OFF

5.11 Axis Structure

5-92 WUME-GM1PGR-10

Member Type Default value Description

bDriveStart BOOL FALSE Axis (drive) quick stop (software) control
ON/OFF: Possible to set using
MC_Power(FB).
TRUE: Quick stop control control is OFF
(possible to operate).
FALSE: Quick stop control is ON
(operation stopped)

byControllerMode BYTE 3 Control mode of the axis (drive):
Possible to set using
SMC_SetControllerMode(FB).
1: SMC_torque: Torque control mode
2: SMC_velocity: Velocity control mode
3: SMC_position: Position control mode

bRegulatorRealState BOOL FALSE Actual axis (drive) power state

bDriveStartRealState BOOL FALSE State of the actual axis (drive) quick stop
(software) control

byRealControllerMode BYTE 3 State of the actual axis (drive) control
mode

bRestarting BOOL FALSE Re-initialization flag of the axis (drive)
TRUE: Initialization in progress

usiSWEndSwitchState USINT 0 Soft limit function state (only for the
finite axis)
0: Soft limit invalid
2: Soft limit valid

strDriver STRING(16) " Driver name is output.

bCommunication BOOL FALSE Do not use.

wCommunicationState WORD 16#FFFF Do not use.

dwDriverVersion DWORD 0 Do not use.

■ Position information

Member Type Default value Description

fSetPosition LREAL 0 Command position [u] on the program

fActPosition LREAL 0 Actual position [u] on the program

fAimPosition LREAL 0 Target position [u] on the program
Target position set in a function block
such as MC_MoveAbsolute(FB)

fScalefactor LREAL 1 Factor used to calculate the command
position (diSetPosition) of the actual axis
(drive)

diSetPosition DINT 0 Command position of the actual axis
(drive)

diActPosition DINT 0 Actual position of the actual axis (drive)

fSetActTimeLagCycles LREAL 3 Time lag (number of cycles) between the
fSetPosition value and the fActPosition
value

fOffsetPosition LREAL 0 Offset position

5.11 Axis Structure

WUME-GM1PGR-10 5-93

Member Type Default value Description
Stores the offset value (difference
between the current position and
changed position) when the command
position is changed using
MC_SetPosition(FB).

■ Velocity information

Member Type Default value Description

fSetVelocity LREAL 0 Command velocity [u/s] on the program

fActVelocity LREAL 0 Actual velocity [u/s] on the program

fFactorVel LREAL 1 Factor used to calculate command
velocity (diSetVelocity) of the actual axis
(drive)

diSetVelocity DINT 0 Command velocity of actual axis (drive)

diActVelocity DINT 0 Actual velocity of actual axis (drive)(Note

1)

bConstantVelocity BOOL FALSE TRUE: The axis is moving at a constant
velocity or is stopped.

(Note 1) Values cannot be obtained using the RTEX.

■ Acceleration / deceleration / jerk

Member Type Default value Description

fSetAcceleration LREAL 0 Command acceleration [u/s2] on the
program

fActAcceleration LREAL 0 Actual acceleration [u/s2] on the
program

fFactorAcc LREAL 1 Factor used to calculate command
acceleration of the actual axis (drive)

bAccelerating BOOL FALSE TRUE: The axis is moving in
acceleration.

bDecelerating BOOL FALSE TRUE: The axis is moving in
deceleration.

fSetJerk LREAL 0 Command jerk [u/s3] on the program

fFactorJerk LREAL 1 Factor used to calculate command jerk
of the actual axis (drive)

fActJerk LREAL 0 Do not use.

diSetAcceleration DINT 0 Do not use.

diActAcceleration DINT 0 Do not use.

■ Torque information

Member Type Default value Description

fSetTorque LREAL 0 Command torque [Nm] on the program

fActTorque LREAL 0 Actual torque [Nm] on the program

5.11 Axis Structure

5-94 WUME-GM1PGR-10

Member Type Default value Description

fFactorTor LREAL 0 Factor used to calculate the command
torque (diSetTorque) of the actual axis
(drive)

diSetTorque DINT 0 Command torque [Nm] of the actual axis
(drive)

diActTorque DINT 0 Actual torque [Nm] of the actual axis
(drive)

■ Tab setting locations

Member Type Default value Description

bVirtual BOOL FALSE TRUE: Virtual mode/Simulation mode
((1) in figure below)

iMovementType INT 1 Axis type: Possible to set using
SMC_ChangeGearingRatio(FB) ((2) in
figure below)
0: Modulo
1: Finite

bSWLimitEnable BOOL FALSE Function (position limit) setting under
“Soft limit” ((3) in figure below): Possible
to set using
SMC_SetSoftwareLimits(FB).
FALSE: Disable
TRUE: Enable

fSWLimitNegative LREAL 0 Position limit value [u] to the negative
direction under “Soft limit” ((4) in figure
below): Possible to set using
SMC_SetSoftwareLimits(FB).

fSWLimitPositive LREAL 0 Position limit value [u] to the positive
direction under “Soft limit” ((5) in figure
below): Possible to set using
SMC_SetSoftwareLimits(FB).

fSWLimitDeceleration LREAL 0 Deceleration [u/s2] under “Software error
reaction” ((6) in figure below): Possible
to set using
SMC_SetSoftwareLimits(FB).

fSWErrorMaxDistance LREAL 0 Maximum distance [u] under “Software
error reaction” ((7) in figure below):
Possible to set using
SMC_SetSoftwareLimits(FB).

fSWMaxVelocity LREAL 0 Maximum velocity on the program [u/s]
under “Dynamic limit” ((8) in figure
below): Possible to set using
SMC_ChangeDynamicLimits(FB).

fSWMaxAcceleration LREAL 0 Maximum acceleration on the program
[u/s2] under “Dynamic limit” ((9) in figure
below): Possible to set using
SMC_ChangeDynamicLimits(FB).

fSWMaxDeceleration LREAL 0 Maximum deceleration on the program
[u/s2] under “Dynamic limit” ((10) in
figure below): Possible to set using
SMC_ChangeDynamicLimits(FB).

5.11 Axis Structure

WUME-GM1PGR-10 5-95

Member Type Default value Description

fSWMaxJerk LREAL 0 Maximum jerk on the program [u/s3]
under “Dynamic limit” ((11) in figure
below): Possible to set using
SMC_ChangeDynamicLimits(FB).

eRampType SMC_RAMPTYPE trapez Function setting under “Velocity ramp
type” ((12) in figure below): Possible to
set using SMC_SetRampType(FB).
0: trapez
1: sinsquare
2: quadratic_ramp
3: quadratic_smooth_ramp

wDriveId WORD 0 ID number of the drive ((13) in figure
below)

fPositionPeriod LREAL 1000 Modulo setting value ((14) in figure
below): Possible to set using
SMC_ChangeGearingRatio(FB)

dwRatioTechUnitsDenom DWORD 1 Gear ratio denominator under internal
variables ((15) in figure below): Possible
to set using
SMC_ChangeGearingRatio(FB)
increments × motor turns × gear output
turns

iRatioTechUnitsNum DINT 1 Gear ratio numerator under internal
variables ((16) in figure below): Possible
to set using
SMC_ChangeGearingRatio(FB)
motor turns × gear output turns × units in
application

eCheckPositionLag SMC3_Check
PositionLagMode

0 Position lag monitoring setting ((17) in
figure below)
0: SMC3_PCL_OFF (deactivating)
1: SMC3_PCL_DESABLE (disabling the
drive)
2: SMC3_PCL_HALT (using quick stop)
3: SMC3_PCL_ENABLE (leave drive
enabled)

fMaxPositionLag LREAL 0 Maximum allowance [u] of position lag
((18) in figure below)

5.11 Axis Structure

5-96 WUME-GM1PGR-10

■ Setting locations

(15) (16)

(17)

(18)

(1)(2) (3) (4)(5) (6)

(7)(8) (9) (10) (11)

(12)

(13)

(14)

■ Error information

Member Type Default value Description

bError BOOL FALSE Presence/absence of error

dwErrorID DWORD 0 Error ID unique to the drive

fbeFBError[0..5] ARRAY OF
SMC_FBERROR

SMC_NO_ERROR FB error: SMC_FBERROR(STRUCT)
wID(SMC_ERROR): Error ID
pbyErrorInstance(POINTER TO BYTE):
Pointer to the FB instance that detected
an error
strErrorInstance(STRING): FB instance
that detected an error
tTimestamp(TIME): Elapsed time from
when the GM1 power is turned on till
when an error has occurred

uiDriveInterfaceError UINT 0 Do not use.

strDriveInterfaceError STRING " Do not use.

bOldError BOOL FALSE Do not use.

bErrorAckn BOOL FALSE Do not use.

bDisableErrorLogging BOOL FALSE Do not use.

diFollowingError DINT 0 Do not use.

fFollowingError LREAL 0 Do not use.

5.11 Axis Structure

WUME-GM1PGR-10 5-97

■ Others

Member Type Default value Description

dwOneTurn DWORD 0 Number of pulses per one modulo
period

bPositionLagActive BOOL FALSE TRUE: Position lag exceeds the
maximum allowance.

iTurn INT 0 Do not use.

bAvoidReversalOnHaltSto
p

BOOL FALSE Do not use.

bConsiderLimitsOfAborted
MotionOnHaltStop

BOOL FALSE Do not use.

bStartReference BOOL FALSE Do not use.

fReference LREAL 0 Do not use.

bStartReferenceRealState BOOL FALSE Do not use.

xWaitForHaltWhenStopInt
erruptsHome

BOOL FALSE Do not use.

iOwner INT 0 Do not use.

iNoOwner INT 0 Do not use.

fCycleTimeSpent LREAL 0 Do not use.

fTaskCycle LREAL 0.005 Do not use.

bHWLimitEnable BOOL TRUE Do not use.

nAbortCounter UDINT 0 Do not use.

iLastSinSquareOwner INT -3 Do not use.

bSetValuesModifiedBy
MoveSuperimposed

BOOL FALSE Do not use.

eBrakeControl SMC3_BrakeSetSt
ate

SMC_BRAKE_AU
TO

Do not use.

bBrakeClosedRealState BOOL FALSE Do not use.

xPersistentDataLoaded BOOL FALSE Do not use.

wAxisStructID WORD 16#FE12 Do not use.

fFactorCur LREAL 0 Do not use.

fMarkPosition LREAL 0 Do not use.

fSavePosition LREAL 0 Do not use.

fMaxVelocity LREAL 0 Do not use.

fMarkVelocity LREAL 0 Do not use.

fSaveVelocity LREAL 0 Do not use.

fMaxAcceleration LREAL 0 Do not use.

fMarkAcceleration LREAL 0 Do not use.

fSaveAcceleration LREAL 0 Do not use.

fMaxDeceleration LREAL 0 Do not use.

fSaveDeceleration LREAL 0 Do not use.

5.11 Axis Structure

5-98 WUME-GM1PGR-10

Member Type Default value Description

fMaxJerk LREAL 0 Do not use.

fRampJerk LREAL 100000 Do not use.

fMarkJerk LREAL 0 Do not use.

fSaveJerk LREAL 0 Do not use.

fSetCurrent LREAL 0 Do not use.

fActCurrent LREAL 0 Do not use.

fMaxCurrent LREAL 100 Do not use.

diSetCurrent DINT 0 Do not use.

diActCurrent DINT 0 Do not use.

fSWMaxCurrent LREAL 0 Do not use.

fMaxTorque LREAL 0 Do not use.

dwPosOffsetForResiduals DWORD 0 Do not use.

dwLastPosition DWORD 0 Do not use.

aCaptDesc ARRAY OF
SMC3_CaptureDe
scription

Do not use.

adatAcyclic ARRAY OF
SMC3_DriveAcycli
cTel

Do not use.

bySwitchingState SMC_SWITCHING
_STATE

SMC_ST_INITIALI
ZING

Do not use.

iRestNumerator DINT 0 Do not use.

dwPosOffsetForResiduals
Homing

DWORD 0 Do not use.

dwActPosition DWORD 0 Do not use.

dwBusBandWidth DWORD 0 Do not use.

dwBusModuloMask DWORD 0 Do not use.

bModuloDoneByDrive BOOL FALSE Do not use.

bLogical BOOL FALSE Do not use.

bUpdateIOsInStop BOOL FALSE Do not use.

vMinRequiredVersion VERSION 0 Do not use.

iRampType1 SMC_TG_IRAMPT
YPE

Do not use.

iRampType2 SMC_TG_IRAMPT
YPE

Do not use.

■ FREE_ENCODER_REF only

Member Type Default value Description

diEncoderPosition DINT 　 Do not use.

5.11 Axis Structure

WUME-GM1PGR-10 5-99

(MEMO)

5-100 WUME-GM1PGR-10

6 Motion Control Function
Blocks (Synchronous
Control)

This section describes motion control function blocks to perform synchronous
processing.

6.1 Gear Operation ...6-2
6.1.1 MC_GearIn (Start Gear Operation).. 6-2
6.1.2 MC_GearInPos (Position Specified Gear Operation) 6-5
6.1.3 MC_GearOut (Cancel Gear Operation) ... 6-10
6.1.4 Example: Gear Synchronization .. 6-11

6.2 Cam Synchronous Control..6-14
6.2.1 Overview of Cam Synchronous Control ... 6-14
6.2.2 MC_CAM_REF (Cam Profile) .. 6-15
6.2.3 MC_CamTableSelect (Select Cam Profile) 6-23
6.2.4 MC_CamIn (Start Cam Synchronization)... 6-27
6.2.5 MC_CamOut (Cancel Cam Synchronization) 6-32
6.2.6 SMC_GetTappetValue (Get Single Tappet Information)................... 6-33
6.2.7 SMC_CamRegister (Get All Tappet Information) 6-35
6.2.8 SMC_CAMBounds (Calculate Maximum/Minimum Parameters of

Slave).. 6-38
6.2.9 SMC_GetCamSlaveSetPosition (Calculate Condition for Slave

Synchronization Start)... 6-40
6.2.10 Sample Example: Allow Different MC_CAM_REF Profiles to

Work.. 6-42
6.2.11 Sample Example: Adjust Phase of Cam Control Using

MC_Phasing ... 6-44
6.2.12 Sample Example: Create MC_CAM_REF by POU........................ 6-47
6.2.13 Sample Example: Create MC_CAM_REF Using Recipe Function 6-55

6.3 Phase Correction ..6-59
6.3.1 MC_Phasing (Master Axis Phase Correction) 6-59

WUME-GM1PGR-10 6-1

6.1 Gear Operation

6.1.1 MC_GearIn (Start Gear Operation)

This is a Function Block (FB) to initiate gear synchronous operation.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Master AXIS_REF_SM3 - Specifies the master axis.

Slave AXIS_REF_SM3 - Specifies the slave axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

RatioNumerator DINT 1 Specifies the gear ratio
(numerator).

RatioDenominator UDINT 1 Specifies the gear ratio
(denominator).

Acceleration LREAL 0 Maximum acceleration (u/s2) until
gear synchronization is completed

Deceleration LREAL 0 Maximum deceleration (u/s2) until
gear synchronization is completed

Jerk LREAL 0 Maximum jerk (u/s3) until gear
synchronization is completed

BufferMode MC_BUFFER_M
ODE

Aborting Specifies a buffer mode.
The value is valid when this FB is a
second FB.

Output InGear BOOL FALSE TRUE: Gear synchronization is
completed.

Busy BOOL FALSE TRUE: The FB is in operation.

Active BOOL FALSE TRUE: The second FB is being
controlled.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

6.1 Gear Operation

6-2 WUME-GM1PGR-10

Scope Name Type Initial Description

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_BUFFER_MODE (Enumeration type)
On condition that this FB is connected as the second FB, the table below gives a description.

Name Value Description

Aborting 0 The operation of the first FB stops, and this FB starts operation instantly.

Buffered 1 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The movement starts at the velocity that the preceding movement has when
the end condition is reached.

BlendingLow 2 Not available. Do not specify this.

BlendingPrevious 3 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of the first FB command.

BlendingNext 4 Not available. Do not specify this.

BlendingHigh 5 Not available. Do not specify this.

(Note 1) Refer to Table "Buffer Mode Operation Conditions."

■ Detail of function
● Description of functions

• The slave axis will have a speed that is the product of the master axis speed and the gear
ratio.
The speed of the slave axis = the speed of the master axis * (RatioNumerator /
RatioDenominator)

• The slave axis will accelerate or decelerate based on the gear ratio towards gear
synchronization. Once the slave axis reaches the speed of the specified gear ratio, gear
synchronization is complete.

• After the gear synchronization is complete, if the speed of the master axis changes, the
slave axis will maintain the gear ratio relationship and follow the speed.

• During gear synchronization operation, this FB (function block) must be called at each
control cycle.

● Gear Synchronization Start
• Upon the rising edge of Execute, following the Acceleration, Deceleration, and Jerk

settings, the slave axis will begin gear synchronization.
● Gear Synchronization Release

• This FB cannot be used to release gear synchronization; use MC_GearOut to release it.
● Re-execution

• Set Execute to FALSE. Then, reconfigure the input values. By raising Execute, you run it
with the new input values.

● Interruption of operation
• If you call an FB to control an axis for the slave axis during operation, the operation of this

FB will be interrupted.

6.1 Gear Operation

WUME-GM1PGR-10 6-3

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.
● When the slave axis reaches the speed of the specified gear ratio, InGear becomes TRUE,

indicating gear synchronization is complete.
● When another FB that controls the same axis is called while the Busy is TRUE, the

CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

RatioNumerator

1 2

RatioDenominator

2 1

Execute

Busy

InGear

CommandAborted

Error
Master

Slave

Position Profile

Position Profile

Time

Time

MC_GearIn

MC_MoveVelocity

Velocity

100 200

Execute

Busy
Master

ProfileVelocity

Time

200

100

6.1 Gear Operation

6-4 WUME-GM1PGR-10

6.1.2 MC_GearInPos (Position Specified Gear Operation)

This is a function block (FB) that starts synchronous operation of the gears from the specified
absolute position.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Master AXIS_REF_SM3 - Specifies the master axis.

Slave AXIS_REF_SM3 - Specifies the slave axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

RatioNumerator DINT 1 Specifies the gear ratio
(numerator).

RatioDenominator DINT 1 Specifies the gear ratio
(denominator).

MasterSyncPosition LREAL 0 Position of the master axis to start
gear synchronization

SlaveSyncPosition LREAL 0 Position of the slave axis to start
gear synchronization

MasterStartDistance LREAL 0 The travel distance from the start of
the movement towards
synchronization of the slave axis
until synchronization is complete.
The starting position for the slave
axis synchronization is specified by
MasterSyncPosition -
MasterStartDistance, based on the
position of the master axis.
If MasterStartDistance is 0, the
slave axis will immediately start
moving towards synchronizatio

BufferMode MC_BUFFER_M
ODE

Aborting Specifies a buffer mode.
The value is valid when this FB is a
second FB.

AvoidReversal BOOL FALSE ● Axis setting: When set to "Finite"
AvoidReversal = TRUE

6.1 Gear Operation

WUME-GM1PGR-10 6-5

Scope Name Type Initial Description
● Axis setting: When set to

"Modulo"
AvoidReversal = FALSE

Output StartSync BOOL FALSE TRUE: Start gear synchronization

InSync BOOL FALSE TRUE: Gear synchronization is
completed.

Busy BOOL FALSE TRUE: The FB is in operation.

Active BOOL FALSE TRUE: The second FB is being
controlled.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ MC_BUFFER_MODE (Enumeration type)
On condition that this FB is connected as the second FB, the table below gives a description.
If Buffered or BlendingPrevious is specified, set MasterStartDistance to 0.

Name Value Description

Aborting 0 The operation of the first FB stops, and this FB starts operation instantly.

Buffered 1 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The movement starts at the velocity that the preceding movement has when
the end condition is reached.

BlendingLow 2 Not available. Do not specify this.

BlendingPrevious 3 When the first FB operation satisfies the end condition(Note 1), this FB starts
operation instantly.
The axis passes through the end position of the first FB operation at the
velocity of the first FB command.

BlendingNext 4 Not available. Do not specify this.

BlendingHigh 5 Not available. Do not specify this.

(Note 1) Refer to Table "Buffer Mode Operation Conditions."

■ Detail of function
● Description of functions

• The slave axis will have a speed that is the product of the master axis speed and the gear
ratio.
The speed of the slave axis = speed of the master axis * (RatioNumerator /
RatioDenominator)

• The position of the master axis to start gear synchronization is specified by
MasterSyncPosition, and the position of the slave axis is specified by SlaveSyncPosition.

• The position at which the slave axis starts moving is specified by MasterSyncPosition -
MasterStartDistance, based on the position of the master axis. The slave axis will stop

6.1 Gear Operation

6-6 WUME-GM1PGR-10

until it is able to start moving. However, if MasterStartDistance is set to 0, the slave axis
will start moving at the rising edge of Execute.

• The slave axis begins its operation towards gear synchronization based on
MasterSyncPosition and MasterStartDistance, and gear synchronization is completed
when the position of the master axis reaches MasterSyncPositiont and the position of the
slave axis reaches SlaveSyncPosition.

• The speed, acceleration, and deceleration of the slave axis from the start to the
completion of gear synchronization are determined automatically.

• After the completion of gear synchronization, if the speed of the master axis changes, the
slave axis will adjust its speed while maintaining the gear ratio relationship.

• During gear synchronization operation, this FB (function block) must be called at each
control cycle.

● Gear Synchronization Start
• At the rising edge of Execute, the slave axis starts synchronization based on

MasterSyncPosition, SlaveSyncPosition, and MasterStartDistance.
● Gear Synchronization Release

• This FB cannot be used to release gear synchronization; use MC_GearOut to release it.
● Re-execution

• Set Execute to FALSE. Then, reconfigure the input values. By raising Execute, you run it
with the new input values.

● Interruption of operation
• If you call an FB to control an axis for the slave axis during operation, the operation of this

FB will be interrupted.

■ Operations when the function block is executed
This example shows the trace when the MC_GearInPos function block is executed with the
following conditions.

Execution condition

Item Dis

Master axis type Modulo (modulo value = 1000)

Slave axis type Modulo (modulo value = 1000)

Gear ratio 1 : 1

Input MasterSyncPostion 900

Input SlaveSyncPositon 900

Input MasterStartDistance 500

When the master axis position reaches 900 and the salve axis position reaches 900, the master
axis starts to synchronize with the slave axis. When the master axis passes the position 400,
which is obtained by deducting 500 (MasterStartDistane) from 900 (synchronization start
position of the master axis), the slave axis starts traveling to synchronize with the master axis.
At this time, velocity, acceleration, and deceleration are automatically determined.

6.1 Gear Operation

WUME-GM1PGR-10 6-7

Position of the master axis

Position of the slave axis

■ AvoidReversal
By setting AvoidReversal, the slave axis can be restricted on reverse rotation. If AvoidReversal
is set to TRUE, an error occurs under the following conditions.
1. Gear ratio is negative.

If the gear ratio is negative (for example, RatioNumerator = -1, RatioDenominator = 1),
when the axis reaches the position set in GearInPos.StartSync while the slave axis is
operating in forward rotation, an error
(SMC_GIP_SLAVE_REVERSAL_CANNOT_BE_AVOIDED) occurs

2. The slave axis is rotating in reverse to the rotation of the master axis before the start of
synchronization
When the axis reaches the gear synchronization start position set in StartSync while the
slave axis is operating in reverse rotation, an error
(SMC_GIP_SLAVE_REVERSAL_CANNOT_BE_AVOIDED) occurs

3. Correction of the slave axis is not completed within five cycles.
Gear synchronization completion (InSync) is not achieved within five cycles after reaching
the gear synchronization start (StartSync), an error occurs.

■ Timing chart
● At the launch of the Execute, the Busy goes TRUE.

6.1 Gear Operation

6-8 WUME-GM1PGR-10

● If the slave axis has started moving towards synchronization, StartSync becomes TRUE.
● When the position of the master axis reaches MasterSyncPositiont, and the position of the

slave axis reaches SlaveSyncPosition, StartSync becomes FALSE, InSync becomes TRUE,
and gear synchronization is completed.

● When another FB that controls the same axis is called while the Busy is TRUE, the
CommandAborted goes TRUE. The behavior of this FB after the CommandAborted is TRUE
depends on the behavior of other FBs.

Velocity

100 50

Execute

Busy
Master

ProfileVelocity
100

50

Time

MC_MoveVelocity

MC_GearInPos

RatioNumerator

1 2

RatioDenominator

2 1

MasterSyncPosition

360540

SlaveSyncPosition

540

MasterStartDistance

360 180

Execute

Busy

StartSync

InSync

CommandAborted

Error
Master

Slave

Position Profile

Position Profile

Time

Time

360

MasterStartDistance

SlaveSyncPostion

MasterSyncPosition

SlaveSyncPostion

MasterSyncPosition

MasterStartDistance

6.1 Gear Operation

WUME-GM1PGR-10 6-9

6.1.3 MC_GearOut (Cancel Gear Operation)

This is a function block (FB) to release gear synchronization. After gear synchronization is
released, the state of the slave axis will become continuous motion. If you want to return the
state of the axis to standstill, please execute MC_Halt or MC_Stop.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Slave AXIS_REF_SM3 - Specifies the slave axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Output Done BOOL FALSE TRUE: Synchronization cancellation
is completed.

Busy BOOL FALSE TRUE: The FB is in operation.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ Detail of function
● Function Description

• Releases the gear synchronization of the slave axis with respect to the master axis.
• After the gear synchronization is released, the state of the slave axis becomes Continuous

Motion (continuous_motion).
Since the axis is in operation during Continuous Motion, it is necessary to call this FB at
every control cycle even after the gear synchronization is complete.

• Since the state of the slave axis continues in Continuous Motion after the gear
synchronization is released, the slave axis continues to control speed at the velocity
command value that was set at the time of gear synchronization release.

• If you wish to stop the slave axis after the gear synchronization is released, please
execute MC_Halt or MC_Stop.

● Operation Start
• The gear synchronization of the slave axis with respect to the master axis is released at

the rising edge of Execute.

■ Timing chart
● After the gear synchronization is released, Done becomes TRUE. If Execute is set to FALSE,

the Done state will become FALSE.

6.1 Gear Operation

6-10 WUME-GM1PGR-10

RatioNumerator

1 1

RatioDenominator

2 2

Execute

Busy

InGear

CommandAborted

Error
Master

Slave

Execute

Busy

Done

Error

Velocity

Execute

Busy
Master

ProfileVelocity

nAxisState

100

100 200 100 200

Position Profile

Position Profile

200

cyclecontroleverycallednotwasaxisslavecontrolsthatFBThe thereleasedwassynchronizationgearwhichspeedtheatoperatetocontinuesaxisslaveThe

MC_MoveVelocity

MC_GearIn

MC_GearOut

standstill synchronaized_motion continuous_motion standstill synchronaized_motion errorstop

Slave Axis

Time Time

Time

Time

Time

Time

6.1.4 Example: Gear Synchronization

Here's an example of a program for gear synchronization control with a gear ratio of 2:1. To
start synchronization, please use "MC_GearIn" or "MC_GearInpos".
To end gear synchronization control, use "MC_GearOut".

■ Program example
● Implementation Section

CASE Process OF
 0: // Servo ON
 MC_Power_0(
 Axis := Master ,
 Enable := TRUE ,
 bRegulatorOn := TRUE,

6.1 Gear Operation

WUME-GM1PGR-10 6-11

 bDriveStart := TRUE
);
 MC_Power_1(
 Axis := Slave ,
 Enable := TRUE ,
 bRegulatorOn:= TRUE,
 bDriveStart:= TRUE
);
 IF MC_POWER_0.Status = TRUE AND MC_Power_1.Status = TRUE THEN
 Process := 1;
 END_IF
 1: // Controll the master axis with MC_MOveVelocity and Control the ala
ve axis aynchhronously
 MC_GearIn_0(
 Master := Master,
 Slave := Slave,
 Execute := TRUE,
 RatioNumerator := 2,
 RatioDenominator :=1,
 Acceleration := 3600,
 Deceleration := 3600
);
 MC_MoveVelocity_0(
 Axis := Master,
 Execute := TRUE,
 Velocity := 360,
 Acceleration := 3600,
 Deceleration := 3600,
 Direction := positive
);
 IF MC_GearIn_0.InGear = TRUE THEN
 // Gear In OK
 MC_GearIn_0(
 Master := Master,
 Slave := Slave,
 Execute := FALSE
);
 MC_MoveVelocity_0(
 Axis := Master,
 Execute := FALSE
);
 END_IF
 IF　Master.fActposition > 100 THEN
 MC_Halt_0(
 Axis := Master,
 Execute := TRUE,
 Deceleration := 1800
);
 IF MC_Halt_0.Done THEN
 Process := 2;
 END_IF
 END_IF
 2: // Call MC GearOut to end aynchronization
 MC_GearOut_0(
 Slave := Slave,
 Execute := TRUE

6.1 Gear Operation

6-12 WUME-GM1PGR-10

);
 IF MC_GearOut_0.Done THEN
 // Gear Out OK
 MC_Halt_1(
 Axis := Slave,
 Execute := TRUE,
 Deceleration := 1800
);
 END_IF
END_CASE

By using "MC_GearOut", synchronization is released, and the slave axis will continue to
operate maintaining its speed at the time of synchronization release. Therefore, it is important
to note that the slave axis needs to be stopped using something like "MC_Halt".
You can safely stop by disengaging the gear synchronization after stopping the master axis.

6.1 Gear Operation

WUME-GM1PGR-10 6-13

6.2 Cam Synchronous Control

Cam Synchronous Control is control executed to get a target axis that constitutes the slave axis
to be synchronized in response to the motion of the master axis in accordance with a cam
profile (time-series waveform information).

6.2.1 Overview of Cam Synchronous Control

Through use of function blocks, you can perform cam synchronous control of the axes using a
cam table created by a tool or a cam profile created by POU.

The following function blocks related to cam synchronous control can be used.
● MC_CAM_REF: A cam profile used for cam control can be created by POU.
● MC_CamTableSelect: This is used to set a cam profile used for cam control, and the master

axis and slave axis.
● MC_CamIn: The slave axis gets synchronized with the master axis through the cam profile.
● MC_CamOut: This cancels cam synchronization of the slave axis.
● SMC_GetTappetValue / SMC_CamRegister: This gets switch information (tappet information)

that causes ON/OFF in response to positional information.
● SMC_CAMBounds: This is used to get the minimum/maximum velocity and acceleration

values of the slave under cam synchronous control in advance.
● SMC_GetCamSlaveSetPosition: This calculates starting position, velocity, and acceleration

values of the slave relative to the position of the master.
A procedure for performing cam synchronous control using a cam profile (MC_CAM_REF)
created by the Cam editor on the GM Programmer is described.

1. Create a cam by the Cam editor
With the Cam editor, specify a cam table and a tappet table used for synchronous
operation.

2. While cam synchronous control is in progress, calculate whether the slave motion is in an
allowable range in advance.
Execute SMC_CAMBounds to calculate the minimum/maximum velocity and acceleration
values that the slave is reaching during motion.

3. Set a cam profile (MC_CAM_REF) used to execute cam control, and the master axis and
slave axis.
Execute MC_CamTableSelect to set a cam profile (MC_CAM_REF) used to execute cam
control, and the master axis and slave axis.

4. Before executing cam synchronization, calculate data about the starting position of the
slave in advance.
Execute SMC_GetCamSlaveSetPosition to calculate position and velocity values of the
slave at the start of cam synchronous operation relative to the current position of the
master.

5. Synchronize the master axis and the slave axis.

6.2 Cam Synchronous Control

6-14 WUME-GM1PGR-10

Execute MC_CamIn so that the slave axis gets synchronized with the master axis through
the cam profile. In accordance with the master position and the cam profile, the slave axis is
controlled to get synchronized with the master axis.

6. Configure setting to read tappet information.
Get tappet information by using SMC_GetTappetValue or SMC_CamRegister.

7. Cancel synchronization between the master axis and slave axis.
After cam synchronization is completed, execute MC_CamOut to cancel synchronization
between the master axis and slave axis.

8. After canceling synchronization, stop the slave axis motion.
Since the slave axis continues to operate at velocity after the cancellation of
synchronization, execute MC_Halt or MC_Stop to stop the slave motion.

● For the procedure for creating MC_CAM_REF using the Cam editor, refer to the GM1 Series
Reference Manual (Operation Edition).

● For an example of the procedure for creating MC_CAM_REF through a program, refer
to"6.2.12 Sample Example: Create MC_CAM_REF by POU".

6.2.2 MC_CAM_REF (Cam Profile)

This is a function block (FB) that specifies a cam table and a tappet table used for cam control
and creates a cam profile (MC_CAM_REF). MC_CAM_REF created by POU can be used in
MC_CamTableSelect and other FBs in the similar way as ones created by the Cam editor.

■ Icon

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-15

■ Parameter

Scope Name Type Default value Description

Input wCamStructID WORD 16#DC34 Fixed to 16#DC34

byType BYTE 0 A parameter that sets the cam
type(Note 1)(Details will be described
later)
● 1: One-dimensional table of

slave positions
● 2: Two-dimensional table of

master and slave positions
● 3: Polynomial array table of

points consisting of master
position, slave position, slave
velocity and slave acceleration
(XYVA)

byVarType BYTE 0 A parameter that defines the type of
variables entered in the cam
table(Note 1)

Only used if byType = 1 or 2
0: used if byType = 3
1: INT
2: UINT
3: DINT
4: UDINT
5: REAL
6: LREAL

xStart LREAL 0 Start position of the master axis on
the cam table(Note 1)

xEnd LREAL 0 End position of the master axis on
the cam table(Note 1)

nElements INT 0 Number of data elements in the
cam table array(Note 1)

nTappets INT 0 Number of data elements in the
tappet table array(Note 2)

pce POINTER TO
BYTE

- Specifies the address of a data
element in the cam table array

pt POINTER TO
SMC_CAMTapp
et

- Specifies the address of a data
element in the tappet table array

dwTappetActiveBits DWORD 0 Do not use.

strCAMName STRING '' Name of the created cam

byInterpolationQuality BYTE 1 Interpolation format parameter for
the cam table array
Only used if byType = 1 or 2
● 1: Linear interpolation
● 3: Cubic interpolation

byCompatibilityMode BYTE 0 1: Periodically executes cam tables
with master cycle(Note 3)

6.2 Cam Synchronous Control

6-16 WUME-GM1PGR-10

Scope Name Type Default value Description

bChangedOnline BOOL - Do not use.

xPartofLM BOOL FALSE Do not use.

(Note 1) Specify a value to suit the format of the cam table array you input. If a value different from input data is
specified, the system does not operate properly.

(Note 2) Specify a value to suit the format of the tappet table array you input. If a value different from input data
is specified, the system does not operate properly.

(Note 3) This periodic operation is similar to that performed when Periodic of MC_CamTableSelect is set to
TRUE.

■ List of data structures of cam tables
● For byType = 1

SMC_CAMTable_***_128_1, SMC_CAMTable_***_256_1 (Structure: *** is LREAL, REAL,
UDINT, or UINT)

MC_CAM_REF with byType = 1 has a one-dimensional cam table of slave positions that are
arranged at equal intervals. In each structure, the following parameters exist.

Name Type Description

Table ARRAY [0..N] OF ***
N: 127,255

Array data storing slave positions
The number of array elements and the variable
type differ depending on the structure. The
available variable types are LREAL, REAL,
UDINT, and UINT.

fEditorMasterMin REAL Parameters representing master and slave motion
scales(Note 1)

fEditorMasterMax REAL

fEditorSlaveMin REAL

fEditorSlaveMax REAL

fTableMasterMin REAL

fTableMasterMax REAL

fTableSlaveMin REAL

fTableSlaveMax REAL

(Note 1) Set each value so as to agree with the actual motion range. The settings must be configured such that
fEditorMasterMin = fTableMasterMin, fEditorMasterMax = fTableMasterMax, fEditorSlaveMin =
fTableSlaveMin, and fEditorSlaveMax = fTableSlaveMax.

In the Table parameter, set slave positions as many as the number of elements in the array
data. These values are equally arranged within the master axis motion range (the range
between the xStart and xEnd inputs of MC_CAM_REF).
In one example, parameters of SMC_CAMTable_LREAL_128_1 that are configured so as to
have the following waveform are shown. A cam is defined with the settings byVarType = 6,
xStart = 0, xEnd = 360, and nElements = 128. At this time, the slave positions are arranged
from the beginning of the Table data array at intervals that are each separated by a master
position width of (360 - 0) / 128 = 2.8125.

CamTable1 : SMC_CAMTable_LREAL_128_1:=(fEditorMasterMin:=0, fEditorMasterMax
:=360, fTableMasterMin:=0, fTableMasterMax:=360, fEditorSlaveMin:=0, fEditorS
laveMax:=360, fTableSlaveMin:=0, fTableSlaveMax:=360, Table:=[0, 0.0092, 0.0
712, ..., 359.9287, 359.9908, 360]);

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-17

Master.fSetPosition

Slave.fSetPosition

● It is possible for you to set a structure that has a desired number of array elements. For details,
refer to "6.2.12 Sample Example: Create MC_CAM_REF by POU".

● For byType = 2
SMC_CAMTable_***_128_2, SMC_CAMTable_***_256_2 (Structure: *** is LREAL, REAL,
UDINT, or UINT)

MC_CAM_REF with byType = 2 has a two-dimensional cam table in which master positions
and corresponding slave positions are specified. In each structure, the following parameters
exist.

Name Type Description

Table ARRAY [0..N] OF
ARRAY [0..1] OF ***

Array data storing master positions and slave
positions

6.2 Cam Synchronous Control

6-18 WUME-GM1PGR-10

Name Type Description
N: 127,255 The number of array elements and the variable

type differ depending on the structure. The
available variable types are LREAL, REAL,
UDINT, and UINT.

fEditorMasterMin REAL Parameters representing master and slave motion
scales(Note 1)

fEditorMasterMax REAL

fEditorSlaveMin REAL

fEditorSlaveMax REAL

fTableMasterMin REAL

fTableMasterMax REAL

fTableSlaveMin REAL

fTableSlaveMax REAL

(Note 1) Set each value so as to agree with the actual motion range. The settings must be configured such that
fEditorMasterMin = fTableMasterMin, fEditorMasterMax = fTableMasterMax, fEditorSlaveMin =
fTableSlaveMin, and fEditorSlaveMax = fTableSlaveMax.

In the Table parameter, set master position and slave positions as many as the number of
elements in the array data.
In one example, parameters of SMC_CAMTable_LREAL_128_2 that are configured so as to
have the following waveform are shown. A cam is defined with the settings byVarType = 6,
xStart = 0, xEnd = 360, and nElements = 128.

CamTable2 : SMC_CAMTable_LREAL_128_2:=(fEditorMasterMin:=0, fEditorMasterMax
:=360, fTableMasterMin:=0, fTableMasterMax:=360, fEditorSlaveMin:=0, fEditorS
laveMax:=360, fTableSlaveMin:=0, fTableSlaveMax:=360, Table:=[[0, 0], [2.834
6, 13.2733], [5.6693, 26.5467], ..., [354.3307, 15.0461], [357.1654, 7.5231],
 [360, 360]]);

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-19

Master.fSetPosition

Slave.fSetPosition

● It is possible for you to set a structure that has a desired number of array elements. For details,
refer to "6.2.12 Sample Example: Create MC_CAM_REF by POU".

● For byType = 3
SMC_CAMXYVA (Structure)

MC_CAM_REF with byType = 3 has a cam table in which master positions (X) and
corresponding slave positions (Y), slave velocity values (V), and slave acceleration values (A)
are specified. In this type, regardless of the byInterpolationQuality setting, cubic interpolation is
applied to the path between adjacent data points along the slave axis. In the structure, the
following parameters exist.

Name Type Description

dX LREAL Master position

dY LREAL Slave position

dV LREAL Slave velocity

dA LREAL Slave acceleration

For byType = 3, the cam table has array data of the SMC_CAMXYVA type.
In one example, parameters that are configured so as to have the following waveform are
shown. A cam is defined with the settings xStart = 0, xEnd = 360, and nElements = 4.

CamTable3 : ARRAY[0..3] OF SMC_CAMXYVA:=[(dX:=0, dY:=0, dV:=0, dA:=0), (dX:=
120, dY:=120, dV:=1, dA:=0), (dX:=240, dY:=240, dV:=1, dA:=0), (dX:=360, dY:=
360, dV:=0, dA:=0)];

6.2 Cam Synchronous Control

6-20 WUME-GM1PGR-10

Master.fSetPosition

Slave.fSetPosition

■ List of data structures of tappet tables
● SMC_CAMTappet (Structure)
This structure describes the tappets of a table referenced by MC_CAM_REF.

Name Type Default value Description

ctt SMC_CAMTAPPE
TTYPE

0 Specifies the direction in which the
tappet point is passed through by the
axis to make tappet action active.

cta SMC_CAMTAPPE
TACTION

0 Specifies what switching action is
executed when the tappet is passed.

dwDelay DWORD 0 Specifies the delay time in µs before the
tappet is switched to ON following the

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-21

Name Type Default value Description
axis having passed through the tappet
point to make tappet action active.
This setting is enabled when cta =
TAPPETACTION_time.

dwDuration DWORD 0 Specifies the time in µs, for which the
tappet is switched to on.(Note 1)

This setting is enabled when cta =
TAPPETACTION_time.

iGroupID INT 0 Tack ID for tappet arrangement

x LREAL 0 Axis position where tappet is switched to
ON.

dwActive DWORD 16#FFFFFFFF This is used as an internal variable. Do
not set this.

(Note 1) When this parameter is set to 0, the tappet does not operate.

● SMC_CAMTAPPETTYPE (Enumeration type)
This determines the direction in which the tappet has to be passed through by the axis to make
tappet action active.

Name Value Description

TAPPET_pos 0 Action of the tappet is made active when the axis
passes through the position of the tappet in
positive direction.

TAPPET_all 1 Action of the tappet is made active when the axis
passes through the position of the tappet in any of
positive and negative directions.

TAPPET_neg 2 Action of the tappet is made active when the axis
passes through the position of the tappet in
negative direction.

● SMC_CAMTAPPETACTION (Enumeration type)
This determines what switching action is executed when tappet action is made active.

Name Value Description

TAPPETACTION_on 0 Switches on tappet.

TAPPETACTION_off 1 Switches off tappet.

TAPPETACTION_inv 2 Inverts tappet switching on and off.

TAPPETACTION_time 3 Enables the dwDelay and dwDuration settings of
SMC_CAMTappet.

● Up to three tappets can be specified for a shared point x irrespective of track ID. When the axis
reaches the shared point for which four or more tappets are specified, FBs output the
SMC_AXIS_NOT_READY_FOR_MOTION error to MC_CamIn and the
SMC_CI_TOO_MANY_TAPPETS_PER_CYCLE error to the slave axis.

● For examples that show the way of creating a tappet table by programing or the way of using
dwDelay and dwDuration, refer to"6.2.12 Sample Example: Create MC_CAM_REF by POU".

6.2 Cam Synchronous Control

6-22 WUME-GM1PGR-10

■ byInterpolationQuality
An interpolation format for slave positions during cam control can be specified through
byInterpolationQuality. This function is activated on cam tables (one-dimensional tables, two-
dimensional tables) with byType = 1 or 2.
● byInterpolationQuality = 1: Linear interpolation
With this interpolation format, linear interpolation is applied to points on the cam table and thus
the position, velocity, and other data about slave axis commands change discretely.
● byInterpolationQuality = 3: Cubic interpolation
With this interpolation format, polynomial interpolation is applied to points on the cam table.
Thus, data about slave axis commands changes smoothly. However, an overshoot is likely to
occur in position and velocity.
Motion curves by the respective interpolation formats are as shown below.

Slave.fSetPosition

Slave.fSetVelocity
byInterpolationQuality = 3

byInterpolationQuality = 1

● For the XYVA table format with byType = 3, interpolation is performed between the tables
regardless of the byInterpolationQuality setting such that the specified velocity and acceleration
are attained.

6.2.3 MC_CamTableSelect (Select Cam Profile)

This is a function block (FB) that specifies a cam profile (MC_CAM_REF) for cam synchronous
operation. When the cam profile to be used is selected, a cam table ID is output. The cam
profile can be created by tools or through a program.

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-23

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Master AXIS_REF_SM3 - Specifies the master axis for cam
synchronous operation.

Slave AXIS_REF_SM3 - Specifies the slave axis for cam
synchronous operation.

CamTable MC_CAM_REF - Specifies the cam
profile."6.2.2 MC_CAM_REF (Cam
Profile)"

Input Execute BOOL FALSE Starts execution at the rising edge.

Periodic BOOL TRUE Sets periodic cam synchronous
operation.
TRUE: Repeat execution
FALSE: 1-period execution

MasterAbsolute BOOL TRUE TRUE: Cam refers to absolute
master position
FALSE: Cam refers to relative
master position

SlaveAbsolute BOOL TRUE TRUE: Cam refers to absolute
slave position
FALSE: Cam refers to relative slave
position

Output Done BOOL FALSE TRUE: Execution of the FB is
completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

CamTableID MC_CAM_ID - Cam table ID
Specify this ID for use by
CamTableID of MC_CamIn.

■ Periodic (Periodic cam control)
● Periodic = TRUE

6.2 Cam Synchronous Control

6-24 WUME-GM1PGR-10

If Periodic of MC_CamTableSelect is set to TRUE, cam synchronous operation is periodically
repeated. Synchronous operation is automatically restarted when the axis position reaches the
end position on the cam table.

Master.fSetPosition

Slave.fSetPosition

MC_CamIn.EndOfProfile

● Periodic = FALSE
If Periodic is set to FALSE, when the axis position reaches the master end position of cam
synchronous operation, EndOfProfile of MC_CamIn changes to TRUE and the slave stops at
the current position. Meanwhile, the master keeps the motion as is.

Master.fSetPosition

Slave.fSetPosition

MC_CamIn.EndOfProfile

■ MasterAbsolute
● MasterAbsolute = TRUE
If MasterAbsolute is set to TRUE, cam synchronous operation starts from the current master
position on the cam table. Any master position within the cam table range can be set as the
starting position. The motion cycle of this operation conforms with the master cycle in the
specified cam table (whenever the master reaches the xEnd input of MC_CAM_REF,
EndOfProfile of MC_CamIn is set to TRUE).
If the master position at the time of start of cam synchronous operation is outside the cam table
range, an error occurs.

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-25

MasterAbsolute = TRUE

Position at the start of

● MasterAbsolute = FALSE
If MasterAbsolute is set to FALSE, cam synchronous operation starts, with the current master
position being as the zero point. This operation can be executed only when the value 0 is
included in the master range in the cam table. The motion cycle of this operation conforms with
the cycle of the specified cam table (width of the cam table) (whenever one cycle of the cam
table is completed, EndOfProfile of MC_CamIn is set to TRUE).

MasterAbsolute = FALSE

Position at the start of

■ SlaveAbsolute
The SlaveAbsolute input affects StartMode at the time of start of cam synchronous operation.
StartMode applied to cam synchronous operation is determined by a combination of the
StartMode input of MC_CamIn and the SlaveAbsolute input of MC_CamTableSelec. Mode
varieties determined by the respective combinations are as shown below.

MC_CamIn.StartMode MC_CamTableSelect.SlaveAbsol
ute

Applied StartMode

absolute TRUE absolute

absolute FALSE relative

relative TRUE relative

relative FALSE relative

ramp_in TRUE ramp_in absolute

ramp_in FALSE ramp_in relative

ramp_in_pos TRUE ramp_in_pos absolute

ramp_in_pos FALSE ramp_in_pos relative

ramp_in_neg TRUE ramp_in_neg absolute

ramp_in_neg FALSE ramp_in_neg relative

6.2 Cam Synchronous Control

6-26 WUME-GM1PGR-10

6.2.4 MC_CamIn (Start Cam Synchronization)

This is a function block (FB) that starts cam synchronous operation. The master axis and the
slave axis in synchronization operate according to the cam table.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Master AXIS_REF_SM3 - Specifies the master axis for cam
synchronous operation.

Slave AXIS_REF_SM3 - Specifies the slave axis for cam
synchronous operation.

Input Execute BOOL FALSE Starts execution at the rising edge.

MasterOffset LREAL 0 Offset on master profile

SlaveOffset LREAL 0 Offset on slave profile

MasterScaling LREAL 1 Scaling factor for master profile

SlaveScaling LREAL 1 Scaling factor for slave profile

StartMode MC_StartMode absolute Specifies operation mode at the
time of start of cam synchronous
operation.

CamTableID MC_CAM_ID - Dynamic cam table ID
Specifies the CamTableID output of
MC_CamTableSelect.

VelocityDiff LREAL 0 Maximum velocity difference (u/s)
for ramp_in mode when StartMode
= ramp_in

Acceleration LREAL 0 Acceleration (u/s2) for ramp_in
mode when StartMode = ramp_in

Deceleration LREAL 0 Deceleration (u/s2) for ramp_in
mode when StartMode = ramp_in

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-27

Scope Name Type Default value Description

Jerk LREAL 0 Jerk (u/s3) for ramp_in mode when
StartMode = ramp_in

TappetHysteresis LREAL 0 Hysteresis value for tappet action in
(u)
Performs action when the value is 0
or higher.

Output InSync BOOL FALSE TRUE: Cam synchronization is
completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption to operation
from another FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

EndOfProfile BOOL FALSE A pulse is output (TRUE) every time
the cam profile period of the slave
ends.

Tappets SMC_TappetDat
a

- Tappet data from the active cam
table
Specified for the Tappets input/
output of SMC_GetTappetValue.

■ Changing the scale and offset in the cam table
● MasterOffset, MasterScaling
The master position is converted by the MasterOffset and MasterScaling inputs. The cam table
operates relative to the converted master position. The conversion formula is as follows.
Cam master position after conversion = Cam master position before conversion ×
MasterScaling + MasterOffset
● SlaveOffset, SlaveScaling
The slave position is converted by the SlaveOffset and SlaveScaling inputs. The conversion
formula is as follows.
Cam slave position after conversion = Cam slave position before conversion × SlaveScaling +
SlaveOffset

■ MC_StartMode (Enumeration type)
● absolute
A command value to the slave is such that the slave position is adjusted to a position relative to
the master position according to the cam profile.
If the slave position is different from the start position on the cam table when MC_CamIn is
executed, the position jumps to agree with the synchronous position on the cam table.

6.2 Cam Synchronous Control

6-28 WUME-GM1PGR-10

Position at the start of execution of MC_CamIn

absolute

● relative
A command value relatively follows the cam profile such that the slave position is adjusted from
the current slave position irrespective of the master position.
When MC_CamIn is executed, cam synchronous operation starts with the current slave position
regarded as the start position. The slave motion position is the slave position at the time of
execution of MC_CamIn + the original cam table value. It must be noted, however, that the
position jumps if the slave start position on the cam table is not 0.

Position at the start of
execution of MC_CamIn

realative

● ramp_in, ramp_in_neg, ramp_in_pos
When MC_CamIn is executed, the slave position goes to the position on the cam table. The
velocity and acceleration during travel are the values on which VelocityDiff, Acceleration,
Deceleration, and Jerk are superimposed for the velocity profile of the slave axis relative to the
current position of the master axis.
When the slave position reaches the position on the cam table, the cam gets into the
synchronized state (InSync = TRUE). If the slave axis is a modulo axis, correction is made only
in the positive direction when the mode is set to ramp_in_pos, while correction is made only in
the negative direction when the mode is set to ramp_in_neg. With the finite axis, ramp_in_pos
and ramp_in_neg are treated as ramp_in.

Position at the start of execution of MC_CamIn

ramp_in

The final StartMode is determined by MC_CamIn.StartMode and
MC_CamTableSelect.SlaveAbsolute. For details, refer to"6.2.3 MC_CamTableSelect (Select Cam
Profile)".

■ Tappet
By setting TappetHysteresis, tappet action chattering can be filtered.

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-29

When the master reaches the tappet position, tappet processing is performed. After that, the
master needs to move away from the tappet by at least the distance specified for
TappetHysteresis before the same tappet processing is performed again. When the distance by
which the master has traveled is smaller than the distance specified for TappetHysteresis, the
tappet processing is not performed even if the master reaches the tappet action position. Even
for the tappet at the same position, if tappet actions differ between positive pass and negative
pass, distances traveled are determined in either of the travel directions. (In other words, this is
the function of filtering an identical array element in the tappet table.)
Examples are shown below.
● TappetHysteresis = 0: Tappet processing consists of invert for both positive pass and

negative pass
Example of tappet table

TappetTable : ARRAY[0..0] OF SMC_CAMTappet:=[(x:=40, ctt:=1, iGroupID:=1, cta
:=2)];

Because of TappetHysteresis = 0, tappet processing is not restricted in travel distance. When
the master reaches the tappet position, processing is performed.

Example of motion curves

● TappetHysteresis = 30: Tappet processing consists of invert for both positive pass and
negative pass

Example of tappet table

TappetTable : ARRAY[0..0] OF SMC_CAMTappet:=[(x:=40, ctt:=1, iGroupID:=1, cta
:=2)];

Because of TappetHysteresis = 30, the same tappet processing is not performed unless the
master travels to 30 or more. In this example, the tappet position is set to 40. The tappet first
performs action (switch invert ON) at the place of 40 and does not perform next switch action
unless the master travels to a place of 40 + 30 = 70 or more or to a place of 40 - 30 = 10 or less
and then reaches the tappet position 40 again.
For the next curve, after the tappet first performs action (switch invert ON) at the place of 40,
the master moves away by 10 and reaches the tappet action position. Since the distance by
which the master has moved away is smaller than the TappetHysteresis value, tappet
processing is not performed. When the master reaches the place of 40 again, tappet processing
(switch invert OFF) is performed because the master has traveled once to 0 (= at a distance of
40) and consequently moved away by the TappetHysteresis value or more.

Example of motion curves

6.2 Cam Synchronous Control

6-30 WUME-GM1PGR-10

● TappetHysteresis = 30: Tappet processing consists of switch ON for positive pass and switch
off for negative pass

Example of tappet table

TappetTable : ARRAY[0..1] OF SMC_CAMTappet:=[(x:=40, ctt:=2, iGroupID:= 1, c
ta:=1), (x:=40, ctt:=0, iGroupID:=1, cta:=0)];

Since contents of the tappet processing differ between the positive pass and negative pass,
whether or not the TappetHysteresis criterion is satisfied is assessed in either of the motion
directions. Thus, since the master has traveled by the TappetHysteresis value or more, the
tappet performs action even at the same position.

Example of motion curves

● SMC_TappetData (Structure)

Name Type Description

pTaps ARRAY [0..2] OF
POINTER TO
SMC_CAMTappet

Used internally for the output of MC_CamIn and
for the input of SMC_GetTappetValue.

dwCycleTime DWORD

byChannels BYTE

bRestart BOOL

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-31

6.2.5 MC_CamOut (Cancel Cam Synchronization)

This is a function block (FB) to release cam synchronization. After cam synchronization is
released, the state of the slave axis will become continuous motion. If you want to return the
state of the axis to standstill, please execute MC_Halt or MC_Stop.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Slave AXIS_REF_SM3 - Specifies the slave axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Output Done BOOL FALSE TRUE: Synchronization cancellation
is completed.

Busy BOOL FALSE TRUE: The FB is in operation.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

● If this FB is executed for a slave axis that is not in cam synchronization state, an error
SMC_AXIS_NOT_READY_FOR_MOTION will occur.

● After cam synchronization is released, the state of the slave axis will continue to be continuous
motion. Since the axis is in an operating state during continuous motion, it is necessary to call
this FB at every control cycle even after cam synchronization is complete.

● After the release of cam synchronization, the state of the slave axis continues to be in
continuous motion, therefore the slave axis continues speed control at the speed command
value at the time of cam synchronization release.

● If you want to stop the slave axis after releasing cam synchronization, please execute MC_Halt
or MC_Stop.

6.2 Cam Synchronous Control

6-32 WUME-GM1PGR-10

6.2.6 SMC_GetTappetValue (Get Single Tappet Information)

This is a function block (FB) that gets the status of the tappet performing switching action
relative to the specified current master position by batch based on tappet information defined by
MC_CAM_REF. Specify the Tappets output of MC_CamIn for the input of
SMC_GetTappetValue to perform tappet output. The tappet that can be output is only one track
for one instance.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Tappets SMC_TappetDat
a

- Specifies the output Tappets of
MC_CamIn.

Input iID INT 0 Track ID of the tappet to be
gotten(Note 1)

bInitValue BOOL FALSE The value of the tappet to be set by
the bSetInitValueAtReset function

bSetInitValueAtReset BOOL FALSE TRUE: Sets the bTappet output to
the initial value of bInitValue and
starts.
FALSE: Starts with the current
tappet value.

Output bTappet BOOL FALSE Tappet switch output

(Note 1) The track ID can be changed during cam synchronous operation, but if you want to monitor multiple
tappet statuses, prepare multiple instances.

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-33

● Call this FB together with MC_CamIn concurrently. If this FB is called while MC_CamIn is in
progress, the system does not operate properly.

● This FB cannot be used concurrently with SMC_CamRegister. Do not call SMC_CamRegister
when SMC_GetTappetValue is used.

● If the same MC_CAM_REF is used to perform more than one cam synchronous operation,
tappet processing is performed only in the first synchronous operation called. To perform tappet
processing with more than one synchronous operation, MC_CamTableSelect must be set as
follows.
Example: Using Cam1 in two synchronous operations to perform tappet processing in each of
them

MC_CAM_REF_0 := Cam1;
MC_CAM_REF_1 := Cam1;
MC_CamTableSelect_0.CamTable := MC_CAM_REF_0;
MC_CamTableSelect_1.CamTable := MC_CAM_REF_1;

Unacceptable example

MC_CamTableSelect_0.CamTable := Cam1;
MC_CamTableSelect_1.CamTable := Cam1;

■ SMC_TappetData (Structure)

Name Type Description

pTaps ARRAY [0..2] OF
POINTER TO
SMC_CAMTappet

Used internally for the output of MC_CamIn and
for the input of SMC_GetTappetValue.

dwCycleTime DWORD

byChannels BYTE

bRestart BOOL

6.2 Cam Synchronous Control

6-34 WUME-GM1PGR-10

6.2.7 SMC_CamRegister (Get All Tappet Information)

This is a function block (FB) that gets the status of any tappet performing switching action
relative to any specified current axis position by batch based on tappet information defined by
MC_CAM_REF.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Master AXIS_REF_SM3 - Reference to master axis

CamTable MC_CAM_REF - Reference to a cam profile that
causes tappet
motion"6.2.2 MC_CAM_REF (Cam
Profile)"

bTappet ARRAY
[1..MAX_NUM_T
APPETS] OF
BOOL

- A bit array storing tappet
information

Input Enable BOOL FALSE TRUE: Starts execution of function
block.

MasterOffset LREAL 0 Offset to master position

MasterScaling LREAL 1 Scaling factor for the master

TappetHysteresis(Note

1)
LREAL 0 Hysteresis value for tappet action in

(u)
Performs action when the value is 0
or higher.

DeadtimeCompensatio
n

LREAL 0 Dead time compensation (s)

Output Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

EndOfProfile BOOL FALSE A pulse is output (TRUE) every time
the cam profile period ends.

(Note 1) For details of TappetHysteresis, refer to "6.2.4 MC_CamIn (Start Cam Synchronization)".

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-35

■ DeadtimeCompensation
By setting a DeadtimeCompensation value, compensation can be provided for tappet dead
time. The compensation is calculated by linear extrapolation. The formula is
DeadtimeCompensation × master velocity.
An example of motion curves is shown below. In this example, when dead time compensation is
not provided, the tappet performs action at a master position of P0. When compensation is
provided using DeadtimeCompensation, the tappet performs action at a master position of P1.
According to the formula above, the equation P1 = P0 - DeadtimeCompensation × V1 is
formulated.

6.2 Cam Synchronous Control

6-36 WUME-GM1PGR-10

P0

P1

・DeadtimeCompensation = 0

・DeadtimeCompensation > 0

Axis.fSetPosition

Axis.fSetVelocity

Tappet bit

DeadtimeCompensation

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-37

● While SMC_GetTappetValue is used to perform tappet processing relative to the master
position specified by MC_CamIn, SMC_CamRegister is used to perform tappet processing
relative to any axis position.
With SMC_GetTappetValue, instances need to be created as many as the number of track IDs
that are required to be monitored. Meanwhile, if input arguments of SMC_CamRegister are set
to parameter values shared with MC_CamIn, you can get ON/OFF changes in all track IDs as
array data by batch.

● This FB cannot be used concurrently with SMC_GetTappetValue. Do not call
SMC_GetTappetValue when SMC_CamRegister is used.

6.2.8 SMC_CAMBounds (Calculate Maximum/Minimum Parameters of Slave)

This is a function block (FB) that calculates minimum/maximum position, velocity, and
acceleration/deceleration values from information on the slave locus. This enables you to
assess whether cam velocity and acceleration/deceleration settings are appropriate before cam
synchronous operation. The cam compile format that is allowed to be used is only XYVA table.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

CAM MC_CAM_REF - Reference to cam cam table(Note 1)

Input bExecute BOOL FALSE Starts execution at the rising edge.

dMasterVelMax LREAL 1 Maximum velocity of the master

dMasterAccMax LREAL 0 Maximum acceleration/deceleration
of the master

dMasterScaling LREAL 1 Scaling factor for the master

dSlaveScaling LREAL 1 Scaling factor for the slave

Output bDone BOOL FALSE TRUE: Execution of the FB is
completed.

bBusy BOOL FALSE TRUE: Execution of the FB is not
completed.

6.2 Cam Synchronous Control

6-38 WUME-GM1PGR-10

Scope Name Type Default value Description

bError BOOL FALSE TRUE: An error has occurred within
the FB.

nErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

dMaxPos LREAL 0 Maximum slave position value
calculated in (u)

dMinPos LREAL 0 Minimum slave position value
calculated in (u)

dMaxVel LREAL 0 Maximum slave velocity value
calculated in (u/s)

dMinVel LREAL 0 Minimum slave velocity value
calculated in (u/s)

dMaxAccDec LREAL 0 Maximum slave acceleration/
deceleration value calculated in
(u/s2)

dMinAccDec LREAL 0 Minimum slave acceleration/
deceleration value calculated in
(u/s2)

(Note 1) Specify MC_CAM_REF with byType = 3 (XYVA table)."6.2.2 MC_CAM_REF (Cam Profile)"

■ Detail of function
● Description of functions

• By specifying the maximum velocity of the master (dMasterVelMax) and the maximum
acceleration of the master (dMasterAccMax) for the cam table (MC_CAM_REF) set by
CAM, this FB calculates the minimum/maximum slave position values (dMinPos/
dMaxPos), minimum/maximum slave velocity values (dMinVel/dMaxVel), and minimum/
maximum slave acceleration/deceleration values (dMinAccDec/dMaxAccDec).

• The minimum/maximum slave position values (dMinPos/dMaxPos) change in proportion to
the dSlaveScaling input.

• The minimum/maximum slave velocity values (dMinVel/dMaxVel) change in proportion to
the dMasterVelMax, dMasterScaling, and dSlaveScaling inputs.

• The minimum/maximum slave acceleration/deceleration values (dMinAccDec/
dMaxAccDec) change in proportion to the dMAsterAccMax and dSlaveScaling inputs and
change in proportion to the square of the dMasterVelMax and dMasterScaling inputs.

● Usage example
• To implement cam synchronous control by controlling the master at a constant velocity

through the MC_MoveVelocity FB, configure the following settings in SMC_CAMBounds. If
any of the dMax/dMinPos, dMax/dMinVel, and dMax/dMinAccDec outputs acquired
through the implementation exceed the slave limitation parameter, take steps such as
changing the motion velocity of the master or changing the slave limitation parameter.

dMasterVelMax = the Velocity setting in MC_MoveVelocity
dMasterAccMax = larger one of the Acceleration and Deceleration settings in
MC_MoveVelocity
dMasterScaling and dSlaveScaling = the MasterScaling and SlaveScaling settings in
MC_CamIn

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-39

6.2.9 SMC_GetCamSlaveSetPosition (Calculate Condition for Slave
Synchronization Start)

This is a function block (FB) that calculates position, velocity, and acceleration values of the
slave axis relative to the current position of the master axis. If you want to start synchronization
of the slave at a desired position of the master axis, this FB can be used to get a command
value for control of the slave at the synchronization start position.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Master AXIS_REF_SM3 - Specifies the master axis for cam
synchronous operation.

Slave AXIS_REF_SM3 - Specifies the slave axis for cam
synchronous operation.

Input Enable BOOL FALSE TRUE: Starts the execution of the
FB.

MasterOffset LREAL 0 Offset on master profile

SlaveOffset LREAL 0 Offset on slave profile

MasterScaling LREAL 1 Scaling factor for master profile

SlaveScaling LREAL 1 Scaling factor for slave profile

CamTableID MC_CAM_ID - Cam table ID
Specifies the CamTableID output of
MC_CamTableSelect.

Output fStartPosition LREAL 0 Slave position set in (u) according
to current master position at the
start of cam operation

fStartVelocity LREAL 0 Slave velocity set in (u/s) according
to current master position at the
start of cam operation

fStartAcceleration LREAL 0 Slave acceleration set in (u/s2)
according to current master position
at the start of cam operation

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

6.2 Cam Synchronous Control

6-40 WUME-GM1PGR-10

Scope Name Type Default value Description

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

● Execute this function when the master axis and slave axis are in the servo ON state.
● Execute this FB together with MC_CamTableSelect. Also, MasterAbsolute of

MC_CamTableSelect must be TRUE.

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-41

6.2.10 Sample Example: Allow Different MC_CAM_REF Profiles to Work

This is an example of a program designed to continue cam control by changing a cam profile
(MC_CAM_REF) used during the cam control to another.

■ [Program example 1]
This program runs cam control by switching Cam1 with which the cam control is in progress to
Cam2 with which the cam control continues.
● Declaration section

// Variables
 iProcess : INT:=0;
 bExe_Movevel : BOOL;
 bExe_Halt1 : BOOL;
 bExe_Tabsel0 : BOOL;
 bExe_Camin0 : BOOL;
 bExe_Tabsel1 : BOOL;
 bExe_Camin1 : BOOL;

// FB instances
 MC_MoveVelocity_1 : MC_MoveVelocity;
 MC_Halt_1 : MC_Halt;
 MC_CamTableSelect_0 : MC_CamTableSelect;
 MC_CamIn_0 : MC_CamIn;
 MC_CamTableSelect_1 : MC_CamTableSelect;
 MC_CamIn_1 : MC_CamIn;
 MC_CAM_REF_0 : MC_CAM_REF;

● Implementation section

// CAM FBs Settings
MC_MoveVelocity_1(
 Axis:=Drive_Master,
 Execute:=bExe_Movevel,
 Velocity:=100,
 Acceleration:=1000,
 Deceleration:=1000,
);

MC_CamTableSelect_0(
 Master:=Drive_Master,
 Slave:=Drive_Slave,
 CamTable:=Cam1,
 Execute:=bExe_Tabsel0,
 Periodic:=FALSE,
 MasterAbsolute:=TRUE,
 SlaveAbsolute:=FALSE,
);

MC_CamIn_0(
 Master:=Drive_Master,
 Slave:=Drive_Slave,
 Execute:=bExe_Camin0,
 MasterOffset:=0,

6.2 Cam Synchronous Control

6-42 WUME-GM1PGR-10

 SlaveOffset:=0,
 MasterScaling:=1,
 SlaveScaling:=1,
 StartMode:=relative,
 CamTableID:=MC_CamTableSelect_0.CamTableID,
 VelocityDiff:=100,
 Acceleration:=1000,
 Deceleration:=1000,
 Jerk:=10000,
 TappetHysteresis:=0,
);

MC_CamTableSelect_1(
 Master:=Drive_Master,
 Slave:=Drive_Slave,
 CamTable:=Cam2,
 Execute:=bExe_Tabsel1,
 Periodic:=FALSE,
 MasterAbsolute:=TRUE,
 SlaveAbsolute:=FALSE,
);

MC_CamIn_1(
 Master:=Drive_Master,
 Slave:=Drive_Slave,
 Execute:=bExe_Camin1,
 MasterOffset:=0,
 SlaveOffset:=0,
 MasterScaling:=1,
 SlaveScaling:=1,
 StartMode:=relative,
 CamTableID:=MC_CamTableSelect_1.CamTableID,
 VelocityDiff:=100,
 Acceleration:=1000,
 Deceleration:=1000,
 Jerk:=10000,
 TappetHysteresis:=0,
);

MC_Halt_1(
 Axis:=Drive_Master,
 Execute:=bExe_Halt1,
 Deceleration:=10000,
 Jerk:=10000,
);

CASE iProcess OF
 0:// Load CamTable
 bExe_Tabsel0:=TRUE;
 IF MC_CamTableSelect_0.Done = TRUE THEN
 iProcess:=1;
 END_IF

 1:// Start Cam Sync and moving
 bExe_Camin0:=TRUE;
 bExe_Movevel:=TRUE;

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-43

 iProcess:=2;

 2:// Start 2nd Cam Loading
 bExe_Tabsel1:=TRUE;
 IF MC_CamTableSelect_1.Done = TRUE THEN
 iProcess:=3;
 END_IF

 3:// Start 2nd Cam sync
 IF Drive_Master.fSetPosition >= 100 THEN
 bExe_Camin1:=TRUE;
 iProcess:=4;
 END_IF

 4:// If finish one cycle, stop Drive_Master
 IF MC_CamIn_1.EndOfProfile = TRUE THEN
 bExe_Halt1:=TRUE;
 END_IF
END_CASE

● Note that if a program is not designed to make a smooth transition between cam profiles, a
sudden change occurs in position or velocity.

6.2.11 Sample Example: Adjust Phase of Cam Control Using MC_Phasing

This is an example of a program designed to adjust the phase of ongoing cam control using
MC_Phasing.

■ Program example
To adjust the phase of ongoing cam control using MC_Phasing, preparing an axis aside from
the cam control is necessary. In this example, the program adjusts the phase of Drive_Slave,
which is the slave axis under cam control, by using Virtual_Master and Virtual_Slave for
MC_Phasing.
● MC_Phasing

Master axis: Virtual_Master
Slave axis: Virtual_Slave

● MC_CamIn
Master axis: Virtual_Master
Slave axis: Drive_Slave

The following program, after the completion of one cycle of cam control, sifts the phase forward
by 10 and continues the cam control. After that, the program shifts the phase backward by 55.5.
● Declaration section

// Variables
 iProcess : INT:=0;
 bExe_Movevel : BOOL;
 bExe_Tabsel0 : BOOL;
 bExe_Camin0 : BOOL;

6.2 Cam Synchronous Control

6-44 WUME-GM1PGR-10

 bExe_Phasing0 : BOOL;
 bExe_Phasing1 : BOOL;

// FB instances
 MC_MoveVelocity_1 : MC_MoveVelocity;
 MC_MoveVelocity_2 : MC_MoveVelocity;
 MC_CamTableSelect_0 : MC_CamTableSelect;
 MC_CamIn_0 : MC_CamIn;
 MC_Phasing_0 : MC_Phasing;
 MC_Phasing_1 : MC_Phasing;

● Implementation section

// CAM FBs Settings
MC_MoveVelocity_1(
 Axis:=Virtual_Master,
 Execute:=bExe_Movevel,
 Velocity:=50,
 Acceleration:=1000,
 Deceleration:=1000,
);
MC_MoveVelocity_2(
 Axis:=Virtual_Slave,
 Execute:=bExe_Movevel,
 Velocity:=50,
 Acceleration:=1000,
 Deceleration:=1000,
);

MC_Phasing_0(
 Master:=Virtual_Master,
 Slave:=Virtual_Slave,
 Execute:=bExe_Phasing0,
 PhaseShift:=10,
 Velocity:=1,
 Acceleration:=1000,
 Deceleration:=1000,
 Jerk:=10000,
);
MC_Phasing_1(
 Master:=Virtual_Master,
 Slave:=Virtual_Slave,
 Execute:=bExe_Phasing1,
 PhaseShift:=-55.5,
 Velocity:=20,
 Acceleration:=10,
 Deceleration:=10,
 Jerk:=10000,
);

MC_CamTableSelect_0(
 Master:=Virtual_Slave,
 Slave:=Drive_Slave,
 CamTable:=Cam2,
 Execute:=bExe_Tabsel0,
 Periodic:=TRUE,

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-45

 MasterAbsolute:=TRUE,
 SlaveAbsolute:=FALSE,
);

MC_CamIn_0(
 Master:=Virtual_Slave,
 Slave:=Drive_Slave,
 Execute:=bExe_Camin0,
 MasterOffset:=0,
 SlaveOffset:=0,
 MasterScaling:=1,
 SlaveScaling:=1,
 StartMode:=relative,
 CamTableID:=MC_CamTableSelect_0.CamTableID,
 VelocityDiff:=5,
 Acceleration:=1000,
 Deceleration:=1000,
 Jerk:=10000,
 TappetHysteresis:=0,
);

CASE iProcess OF
 1:// Load CamTable
 bExe_Tabsel0:=TRUE;
 IF MC_CamTableSelect_0.Done = TRUE THEN
 iProcess:=2;
 END_IF

 2:// Start Virtual Axis moving and Cam
 bExe_Movevel:=TRUE;
 bExe_Camin0:=TRUE;
 iProcess:=3;

 3:// Start Phasing
 IF MC_CamIn_0.EndOfProfile = TRUE THEN
 bExe_Phasing0:=TRUE;
 IF MC_Phasing_0.Done = TRUE THEN
 iProcess:=4;
 END_IF
 END_IF

 4:// re-Phasing
 IF Virtual_Slave.fSetPosition > 200 THEN
 bExe_Phasing1:=TRUE;
 IF MC_Phasing_1.Done = TRUE THEN
 iProcess:=5;
 END_IF
 END_IF
END_CASE

6.2 Cam Synchronous Control

6-46 WUME-GM1PGR-10

● If MC_Phasing is executed on master and slave axes (axes specified for the master axis and
slave axis of MC_CamIn) under cam control, MC_CamIn is aborted. Thus, MC_Phasing can
make a phase correction on cam synchronous control by using two virtual axes as described
above.

6.2.12 Sample Example: Create MC_CAM_REF by POU

■ [Program example 1] One-dimensional table format with byType = 1
This program creates MC_CAM_REF that has a curve as shown below. Execute this program
by UserTask.

● Global variable declaration section

 MC_CAM_REF_1 : MC_CAM_REF;
● Declaration section

bMake : BOOL; i : INT; nTable1 : SMC_CAMTable_LREAL_128_1;
● Implementation section

IF bMake = FALSE THEN // Set Editor and Table parameters nTable1.fEditorMas
terMin:=0.0; nTable1.fEditorMasterMax:=360.0; nTable1.fEditorSlaveMin:=0.0;
 nTable1.fEditorSlaveMax:=360.0; nTable1.fTableMasterMin:=0.0; nTable1.fTab
leMasterMax:=360.0; nTable1.fTableSlaveMin:=0.0; nTable1.fTableSlaveMax:=36
0.0; // Set Cam Table values FOR i:=0 TO 127 DO nTable1.Table[i]:=360.0 * 0
.5 * (1 - COS(SMC_PI * i / 127)); END_FOR MC_CAM_REF_1.byType:=1; MC_CAM_RE
F_1.byVarType:=6; MC_CAM_REF_1.xStart:=0.0; MC_CAM_REF_1.xEnd:=360.0; MC_CA
M_REF_1.nElements:=128; MC_CAM_REF_1.nTappets:=0; MC_CAM_REF_1.pce:=ADR(nTa
ble1); MC_CAM_REF_1.pt:=Math_Globals.NULL; MC_CAM_REF_1.strCAMName:='Camexa
mple01'; MC_CAM_REF_1.byInterpolationQuality:=1; MC_CAM_REF_1.byCompatibili
tyMode:=0; bMake:=TRUE; END_IF

■ [Program example 2] Two-dimensional table format with byType = 2
This program creates MC_CAM_REF that has a tappet table, declares a cam table structure,
and has a curve as shown below. Execute this program by UserTask.

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-47

● Global variable declaration section

 MC_CAM_REF_2 : MC_CAM_REF;
● Structure (TYPE CAMTable_REAL_500_2)

TYPE CAMTable_REAL_500_2 :
STRUCT
 Table : ARRAY[0..499] OF ARRAY[0..1] OF
 REAL;
 fEditorMasterMin, fEditorMasterMax : REAL;
 fEditorSlaveMin, fEditorSlaveMax : REAL;
 fTableMasterMin, fTableMasterMax : REAL;
 fTableSlaveMin, fTableSlaveMax : REAL;
END_STRUCT
END_TYPE

● Declaration section

 bMake : BOOL;
 i : INT;
 nTable2 : CAMTable_REAL_500_2;
 nTappet2 : ARRAY[0..3] OF SMC_CAMTappet:=[
 (ctt:=0, cta:=0, iGroupID:=1, x:=90),
 (ctt:=0, cta:=1, iGroupID:=1, x:=130),
 (ctt:=0, cta:=2, iGroupID:=1, x:=150),
 (ctt:=0, cta:=1, iGroupID:=1, x:=300)
];

● Implementation section

IF bMake = FALSE THEN
// Set Editor and Table parameters
 nTable2.fEditorMasterMin:=0.0;
 nTable2.fEditorMasterMax:=360.0;
 nTable2.fEditorSlaveMin:=0.0;
 nTable2.fEditorSlaveMax:=360.0;
 nTable2.fTableMasterMin:=0.0;
 nTable2.fTableMasterMax:=360.0;
 nTable2.fTableSlaveMin:=0.0;
 nTable2.fTableSlaveMax:=360.0;

// Set Cam Table values
 FOR i:=0 TO 499 DO
 nTable2.Table[i][0]:=360.0 * i / 499;
 nTable2.Table[i][1]:=TO_REAL(360.0 * 0.5 * (1 - COS(SMC_PI * nTable
2.Table[i][0] / 360.0)));
 END_FOR

6.2 Cam Synchronous Control

6-48 WUME-GM1PGR-10

 MC_CAM_REF_2.byType:=2;
 MC_CAM_REF_2.byVarType:=5;
 MC_CAM_REF_2.xStart:=0.0;
 MC_CAM_REF_2.xEnd:=360.0;
 MC_CAM_REF_2.nElements:=512;
 MC_CAM_REF_2.nTappets:=4;
 MC_CAM_REF_2.pce:=ADR(nTable2);
 MC_CAM_REF_2.pt:=ADR(nTappet2);
 MC_CAM_REF_2.strCAMName:='Camexample02';
 MC_CAM_REF_2.byInterpolationQuality:=3;
 MC_CAM_REF_2.byCompatibilityMode:=0;

 bMake:=TRUE;
END_IF

■ [Program example 3] XYVA table format with byType = 3
This program creates MC_CAM_REF that has a tappet table and has a cam table as shown
below. Execute this program by UserTask.

● Global variable declaration section

 MC_CAM_REF_3 : MC_CAM_REF;
● Declaration section

bMake : BOOL; i : INT; nTable3 : ARRAY[0..5] OF SMC_CAMXYVA; nTappet3 : ARR
AY[0..32767] OF SMC_CAMTappet; a_x1 : ARRAY [0..7] OF LREAL:=[10, 50, 70, 1
00, 110, 180, 200, 200]; a_ID1 : ARRAY [0..7] OF INT:=[1, 1, 1, 1, 1, 1, 1,
 1]; a_ctt1 : ARRAY [0..7] OF INT:=[0, 0, 0, 0, 1, 0, 0, 2]; a_cta1 : ARRAY
 [0..7] OF INT:=[0, 1, 2, 2, 3, 3, 0, 3]; a_Delay1 : ARRAY [0..7] OF DWORD:
=[0, 0, 0, 0, 0, 500000, 100000, 100000]; a_Duration1 : ARRAY [0..7] OF DWO
RD:=[0, 0, 0, 0, 500000, 200000, 100000, 100000];

● Implementation section

IF bMake = FALSE THEN // Set Cam Table XY values nTable3[0].dX:=0.0; nTable
3[0].dY:=0.0; nTable3[1].dX:=45.0; nTable3[1].dY:=150.0; nTable3[2].dX:=180
.0; nTable3[2].dY:=210.0; nTable3[3].dX:=270.0; nTable3[3].dY:=360.0; nTabl
e3[4].dX:=300.0; nTable3[4].dY:=300.0; nTable3[5].dX:=360.0; nTable3[5].dY:
=0.0; // Calculate dV nTable3[0].dV:=TO_LREAL((nTable3[5].dY - nTable3[4].d
Y) / (nTable3[5].dX - nTable3[4].dX)); FOR i:=1 TO 4 DO nTable3[i].dV:=TO_L
REAL((nTable3[i].dY - nTable3[i - 1].dY) / (nTable3[i].dX - nTable3[i - 1].
dX)); END_FOR nTable3[5].dV:=nTable3[0].dV; // Calculate dA nTable3[0].dA:=
TO_LREAL((nTable3[5].dV - nTable3[4].dV) / (nTable3[5].dX - nTable3[4].dX))
; FOR i:=1 TO 4 DO nTable3[i].dA:=TO_LREAL((nTable3[i].dV - nTable3[i - 1].
dV) / (nTable3[i].dX - nTable3[i - 1].dX)); END_FOR nTable3[5].dA:=nTable3[
0].dA; // Set Tappet Table FOR i:=0 TO 7 DO nTappet3[i].x:=a_x1[i]; nTappet
3[i].iGroupID:=a_ID1[i]; nTappet3[i].ctt:=a_ctt1[i]; nTappet3[i].cta:=a_cta

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-49

1[i]; nTappet3[i].dwDelay:=a_Delay1[i]; nTappet3[i].dwDuration:=a_Duration
1[i]; END_FOR MC_CAM_REF_3.byType:=3; MC_CAM_REF_3.byVarType:=0; MC_CAM_REF
_3.xStart:=0.0; MC_CAM_REF_3.xEnd:=360.0; MC_CAM_REF_3.nElements:=6; MC_CAM
_REF_3.nTappets:=i; MC_CAM_REF_3.pce:=ADR(nTable3); MC_CAM_REF_3.pt:=ADR(nT
appet3); MC_CAM_REF_3.strCAMName:='Camexample03'; MC_CAM_REF_3.byCompatibil
ityMode:=0; bMake:=TRUE; END_IF

● Programs that create MC_CAM_REF must be executed by UserTask.
● MC_CAM_REF does not output information about errors. Thus, in order to check whether a

proper cam profile is created, monitor it to detect any error at the time of execution of
MC_CamTableSelect.

● In the XYVA format, dV can be calculated by finding the first derivative of dY with respect to dX
(dY/dX) and dA can be calculated by finding the second derivative of dY with respect to dX
(d2Y/dX2) or the first derivative of dV with respect to dX (dV/dX).

■ fEditorMasterMin, fTableMasterMin, fEditorMasterMax, and fTableMasterMax
In the Type2 format, the slave operation start and end positions relative to the master axis are
shifted and scaled by the variables fEditorMasterMin, fTableMasterMin, fEditorMasterMax, and
fTableMasterMax of the cam table strcture and the start and end positions (xStart, xEnd) of
MC_CAM_REF. If the slave motion range after the conversion is smaller than the range
between the start and end positions of MC_CAM_REF, the system does not operate properly.
In the Type1 format, these parameters exist, but such scaling and shift do not work because the
slave positions are equally arranged on the cam table.
The formulas are given as described below.

Scaling factor = (fEdirtorMasterMax - fEditorMasterMin) / (fTableMasterMax -
fTableMasterMin)
Slave operation start position = fEditorMasterMin - fTableMasterMin × Scaling factor
Slave operation end position = Slave operation start position + (xEnd - xStart) × Scaling factor

With MC_CAM_REF in the Type2 format, when xStart = 0 and xEnd = 360, the following
operations are thought.
● Example 1: fEditorMasterMin = 0, fEditorMasterMax = 360, fTableMasterMin = 0, and

fTableMasterMax = 360
According to the formulas, Scaling factor = 1, Slave operation start position = 0, and Slave
operation end position = 360. Since the motion range of MC_CAM_REF is set such that xStart
= 0 and xEnd = 360, the entire created cam table represents a motion range.

6.2 Cam Synchronous Control

6-50 WUME-GM1PGR-10

Master Position

Sl
av

e
Po

sit
io

n

0 360

● Example 2: fEditorMasterMin = -180, fEditorMasterMax = 360, fTableMasterMin = 0, and
fTableMasterMax = 360

According to the formulas, Scaling factor = 1.5, Slave operation start position = -180, and Slave
operation end position = 360. Hence, with the created cam table, the range of the master
position is set from -180 to 360.
However, the motion range of MC_CAM_REF is set such that xStart = 0 and xEnd = 360 and
thus, in the created cam table, only the range of the master position from 0 to 360 is used for
the cam to operate.

Master Position

Slave Position

-180 3600

Out of Range

● Example 3: fEditorMasterMin = 0, fEditorMasterMax = 360, fTableMasterMin = -360, and
fTableMasterMax = 360

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-51

According to the formulas, Scaling factor = 0.5, Slave operation start position = 180, and Slave
operation end position = 360. Hence, with the created cam table, the range of the master
position is set from 180 to 360.
However, the motion range of MC_CAM_REF is set such that xStart = 0 and xEnd = 360 and
thus, when the master position is in the range from 0 to 180, the cam table does not exist. As a
result, for this period, the cam operates with the parameter of the slave axis being indefinite.

Master Position

Sl
av

e
Po

sit
io

n

0 360180

Empty

■ fEditorSlaveMin, fTableSlaveMin, fEditorSlaveMax, and fTableSlaveMax
The home position, maximum value, and minimum value of the slave operation are shifted and
scaled by fEditorSlaveMin, fTableSlaveMin, fEditorSlaveMax, fTableSlaveMax of the variables
of the cam table structure in either of the Type1 format and Type2 format.
The formulas are given as described below.

Scaling factor = (fEdirtorSlaveMax - fEditorSlaveMin) / (fTableSlaveMax - fTableSlaveMin)
Slave operation home position = fEditorSlaveMin - fTableSlaveMin × Scaling factor
Maximum slave operation position = Slave operation home position + Maximum slave position
× Scaling factor
Minimum slave operation position = Slave operation home position + Minimum slave position
× Scaling factor

With MC_CAM_REF in the Type1 format, when xStart = 0 and xEnd = 360 and when the slave
axis value ranges from -360 to 360, the following operations are thought.
● Example 1: fEditorSlaveMin = 0, fEditorSlaveMax = 360, fTableSlaveMin = 0, and

fTableSlaveMax = 360
According to the formulas, Scaling factor = 1, Slave operation home position = 0, Maximum
slave operation position = 360, and Minimum slave operation position = -360.

6.2 Cam Synchronous Control

6-52 WUME-GM1PGR-10

Master Position

Sl
av

e
Po

sit
io

n

0 360

-360

360

● Example 2：fEditorSlaveMin = 0, fEditorSlaveMax = 360, fTableSlaveMin = 180, and
fTableSlaveMax = 360

According to the formulas, Scaling factor = 2, Slave operation home position = -360, Maximum
slave operation position = 360, and Minimum slave operation position = -1080. The slave
operation range has doubled from that in the original cam table.

Master

Slave Position

0 360

-1080

360

-360

● Example 3：fEditorSlaveMin = 180, fEditorSlaveMax = 360, fTableSlaveMin = 0, and
fTableSlaveMax = 360

According to the formulas, Scaling factor = 0.5, Slave operation home position = 180, Maximum
slave operation position = 360, and Minimum slave operation position = 0. The slave operation
range has decreased by half from that in the original cam table.

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-53

Master Position

Sl
av

e
Po

sit
io

n

180

3600

360

■ Tappet table
● Example for use of dwDelay and dwDuration
The tappet structure is set such that x = 100, dwDelay = 1000, and dwDuration = 2000. With
these settings, the tappet switches to ON after the elapse of 1000 μs following the time when
the master passes through a place of 100. The tappet remains ON for a duration of 2000 μs.

● Example in which three tappets with a shared track ID are specified for a shared point
If two or more tappets with the shared track ID are specified for the shared point, processing is
performed starting from the last data element of the tappet table array.

nTappet : ARRAY [0..2] OF SMC_CAMTappet;
a_x : ARRAY [0..2] OF LREAL:=[100, 100, 100];
a_ID : ARRAY [0..2] OF INT:=[1, 1, 1];
a_ctt : ARRAY [0..2] OF INT:=[0, 0, 0];
a_cta : ARRAY [0..2] OF INT:=[0, 2, 1];

With these settings configured, when the master passes through the point x = 100 with the
tappet switch being OFF, the tappets are processed in the order of a_cta[2] → a_cta[1] →
a_cta[0]. In other words, the tappets are processed such that the current switch OFF tappet
changes as follows: OFF(a_cta[2] = 1) → ON(a_cta[1] = 2) → ON(a_cta[0] = 0). Consequently,
the tappet switch changes to ON.

6.2 Cam Synchronous Control

6-54 WUME-GM1PGR-10

6.2.13 Sample Example: Create MC_CAM_REF Using Recipe Function

This is an example of a program for creating a cam profile (MC_CAM_REF) from cam data
created by spreadsheet software through the use of a recipe definition.

■ [Program example 1] Reading cam array data stored in a recipe file to create
MC_CAM_REF

It is assumed that 256 master positions (Rp_Cam_X.txtrecipe) and slave positions
(Rp_Cam_Y.txtrecipe) are written in the recipe file to be read. Execute this program by
UserTask.
● Recipe definition settings

CAM_X (PersistentVars.Cam_dX[0] to [255] are registered)
CAM_Y (PersistentVars.Cam_dY[0] to [255] are registered)

● PersistentVars variable declaration section

 Cam_dX : ARRAY [0..255] OF LREAL;
 Cam_dY : ARRAY [0..255] OF LREAL;

● Global variable declaration section

 MC_CAM_REF_4 : MC_CAM_REF;
● Declaration section

 iProcess : INT:=0;
 bMake : BOOL;
 i : INT;
 nTable4 : SMC_CAMTable_LREAL_256_2;
 RecipeManCommands_0 : RecipeManCommands;
 LoadFromAndWriteRecipe : DWORD;
 CreateRecipe : DWORD;

● Implementation section

IF bMake = FALSE THEN
// Set Editor and Table parameters
 nTable4.fEditorMasterMin:=0.0;
 nTable4.fEditorMasterMax:=360.0;
 nTable4.fEditorSlaveMin:=0.0;
 nTable4.fEditorSlaveMax:=360.0;
 nTable4.fTableMasterMin:=0.0;
 nTable4.fTableMasterMax:=360.0;
 nTable4.fTableSlaveMin:=0.0;
 nTable4.fTableSlaveMax:=360.0;

 // Set Cam Table values
 FOR i:=0 TO 255 DO
 nTable4.Table[i][0]:=PersistentVars.Cam_dX[i];
 nTable4.Table[i][1]:=PersistentVars.Cam_dY[i];
 END_FOR

 MC_CAM_REF_4.byType:=2;
 MC_CAM_REF_4.byVarType:=6;

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-55

 MC_CAM_REF_4.xStart:=0.0;
 MC_CAM_REF_4.xEnd:=360.0;
 MC_CAM_REF_4.nElements:=256;
 MC_CAM_REF_4.nTappets:=0;
 MC_CAM_REF_4.pce:=ADR(nTable4);
 MC_CAM_REF_4.pt:=Math_Globals.NULL;
 MC_CAM_REF_4.strCAMName:='Camexample04';
 MC_CAM_REF_4.byInterpolationQuality:=1;
 MC_CAM_REF_4.byCompatibilityMode:=0;

 bMake:=TRUE;
END_IF

CASE iProcess OF
 0:// Load Master Axis data
 CreateRecipe:=RecipeManCommands_0.CreateRecipe(RecipeDefinitionName
:='CAM_X', RecipeName:='Rp_Cam_X');
 LoadFromAndWriteRecipe:=RecipeManCommands_0.LoadFromAndWriteRecipe(
RecipeDefinitionName:='CAM_X', RecipeName:='Rp_Cam_X', FileName:='Rp_Cam_X'
);
 iProcess:=1;

 1:// Load Slave Axis data
 CreateRecipe:=RecipeManCommands_0.CreateRecipe(RecipeDefinitionName
:='CAM_Y', RecipeName:='Rp_Cam_Y');
 LoadFromAndWriteRecipe:=RecipeManCommands_0.LoadFromAndWriteRecipe(
RecipeDefinitionName:='CAM_Y', RecipeName:='Rp_Cam_Y', FileName:='Rp_Cam_Y'
);
 iProcess:=2;

 2:// Set values to Cam Table
 bMake:=FALSE;
 iProcess:=3;
END_CASE

■ [Program example 2] Save a MC_CAM_REF cam table created by a program in a
recipe file

This program saves a MC_CAM_REF cam table created by a program in a recipe file. Execute
this program by UserTask.
● Recipe definition settings

CAM_X (PersistentVars.Cam_dX[0] to [255] are registered)
CAM_Y (PersistentVars.Cam_dY[0] to [255] are registered)
CAM_V (PersistentVars.Cam_dV[0] to [255] are registered)
CAM_A (PersistentVars.Cam_dA[0] to [255] are registered)

● PersistentVars variable declaration section

 Cam_dX : ARRAY [0..255] OF LREAL;
 Cam_dY : ARRAY [0..255] OF LREAL;
 Cam_dV : ARRAY [0..255] OF LREAL;
 Cam_dA : ARRAY [0..255] OF LREAL;

● Global variable declaration section

6.2 Cam Synchronous Control

6-56 WUME-GM1PGR-10

 MC_CAM_REF_5 : MC_CAM_REF;
● Declaration section

 iProcess : INT:=0;
 bMake : BOOL;
 i : INT;
 nTable5 : ARRAY [0..63] OF SMC_CAMXYVA;
 RecipeManCommands_0 : RecipeManCommands;
 CreateRecipe : DWORD;
 ReadAndSaveRecipe : DWORD;

● Implementation section

IF bMake = FALSE THEN
// Set Cam Table values
 FOR i:=0 TO 63 DO
 nTable5[i].dX:=360.0 * i / 63;
 nTable5[i].dY:=TO_REAL(360.0 * 0.5 * (1 - COS(SMC_PI * nTable5[i].d
X / 360.0)));
 END_FOR

 // Calculate dV
 nTable5[0].dV:=0.0;
 FOR i:=1 TO 62 DO
 nTable5[i].dV:=TO_LREAL((nTable5[i].dY - nTable5[i - 1].dY) / (nTab
le5[i].dX - nTable5[i - 1].dX));
 END_FOR
 nTable5[63].dV:=nTable5[0].dV;

 // Calculate dA
 nTable5[0].dA:=TO_LREAL((nTable5[63].dV - nTable5[62].dV) / (nTable5[63
].dX - nTable5[62].dX));
 FOR i:=1 TO 62 DO
 nTable5[i].dA:=TO_LREAL((nTable5[i].dV - nTable5[i - 1].dV) / (nTab
le5[i].dX - nTable5[i - 1].dX));
 END_FOR
 nTable5[63].dA:=nTable5[0].dA;

 MC_CAM_REF_5.byType:=3;
 MC_CAM_REF_5.byVarType:=0;
 MC_CAM_REF_5.xStart:=0.0;
 MC_CAM_REF_5.xEnd:=360.0;
 MC_CAM_REF_5.nElements:=64;
 MC_CAM_REF_5.nTappets:=0;
 MC_CAM_REF_5.pce:=ADR(nTable5);
 MC_CAM_REF_5.pt:=Math_Globals.NULL;
 MC_CAM_REF_5.strCAMName:='Camexample05';
 MC_CAM_REF_5.byInterpolationQuality:=1;
 MC_CAM_REF_5.byCompatibilityMode:=0;

 bMake:=TRUE;
END_IF

CASE iProcess OF
 0:// Make MC_CAM_REF

6.2 Cam Synchronous Control

WUME-GM1PGR-10 6-57

 IF bMake = TRUE THEN
 FOR i:= 0 TO 63 DO
 PersistentVars.Cam_dX[i]:=nTable5[i].dX;
 PersistentVars.Cam_dY[i]:=nTable5[i].dY;
 PersistentVars.Cam_dV[i]:=nTable5[i].dV;
 PersistentVars.Cam_dA[i]:=nTable5[i].dA;
 END_FOR
 iProcess:=1;
 END_IF

 1:// Save dX Values
 CreateRecipe:=RecipeManCommands_0.CreateRecipe(RecipeDefinitionName
:='CAM_X', RecipeName:='Rp_MCCam_X');
 ReadAndSaveRecipe:=RecipeManCommands_0.ReadAndSaveRecipe(RecipeDefi
nitionName:='CAM_X', RecipeName:='Rp_MCCam_X');
 iProcess:=2;

 2:// Save dY Values
 CreateRecipe:=RecipeManCommands_0.CreateRecipe(RecipeDefinitionName
:='CAM_Y', RecipeName:='Rp_MCCam_Y');
 ReadAndSaveRecipe:=RecipeManCommands_0.ReadAndSaveRecipe(RecipeDefi
nitionName:='CAM_Y', RecipeName:='Rp_MCCam_Y');
 iProcess:=3;

 3:// Save dV Values
 CreateRecipe:=RecipeManCommands_0.CreateRecipe(RecipeDefinitionName
:='CAM_V', RecipeName:='Rp_MCCam_V');
 ReadAndSaveRecipe:=RecipeManCommands_0.ReadAndSaveRecipe(RecipeDefi
nitionName:='CAM_V', RecipeName:='Rp_MCCam_V');
 iProcess:=4;

 4:// Save dA Values
 CreateRecipe:=RecipeManCommands_0.CreateRecipe(RecipeDefinitionName
:='CAM_A', RecipeName:='Rp_MCCam_A');
 ReadAndSaveRecipe:=RecipeManCommands_0.ReadAndSaveRecipe(RecipeDefi
nitionName:='CAM_A', RecipeName:='Rp_MCCam_A');
 iProcess:=5;
END_CASE

6.2 Cam Synchronous Control

6-58 WUME-GM1PGR-10

6.3 Phase Correction

6.3.1 MC_Phasing (Master Axis Phase Correction)

This is a function block (FB) that performs phase correction between the master axis and slave
axis. Phase synchronous operation can be performed by making phase correction for the
master axis.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Master AXIS_REF_SM3 - Specifies the master axis.

Slave AXIS_REF_SM3 - Specifies the slave axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

PhaseShift LREAL 0 Specify the phase difference
between the master axis and the
slave axis.

Velocity LREAL 0 Specify the maximum speed for
phase correction (u/s), which is the
relative speed from the master axis.

Acceleration LREAL 0 Specify the maximum acceleration
for phase correction (u/s2）

Deceleration LREAL 0 Specify the maximum deceleration
for phase correction (u/s2）

Jerk LREAL 0 Specify the maximum jerk for phase
correction (u/s3）

Output Done BOOL FALSE TRUE: Phase correction is
completed.

Busy BOOL FALSE TRUE: The FB is in operation.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

6.3 Phase Correction

WUME-GM1PGR-10 6-59

■ Detail of function
● Function Description

• If this Function Block (FB) is executed during gear synchronous operation, the ongoing
gear synchronous operation will be interrupted and will switch to the behavior of this FB.
If this FB is executed while not in synchronization control, it will perform synchronization
control and phase correction.

• At the rising edge of this FB's Execute, if there is a difference in speed between the main
and follower axes, the speed of the slave axis will be synchronized to the speed of the
master axis in accordance with this FB's Acceleration and Deceleration.
After that, the slave axis begins phase correction following the Acceleration and
Deceleration parameters.

• PhaseShift indicates the phase difference between the main axis and the slave axis after
the completion of phase correction.Furthermore, the position of the slave axis after the
completion of phase correction will be Master axis position - PhaseShift .

• During phase correction, the speed of the slave axis changes to Master axis speed +
Velocity or Master axis speed - Velocity to ensure that phase correction is completed in
the shortest possible time. Additionally, if Master axis speed - Velocity becomes a
negative value, the slave axis may move in the negative direction

• Phase correction is completed when the phase difference between the master axis and
the slave axis reaches PhaseShift, and the slave axis has matched the speed of the
master axis.

• After the completion of phase correction, if the speed of the master axis changes, the
slave axis will follow the speed of the master axis.

• This FB must be called every control cycle during phase correction.
• If you want to reset the phase difference to 0 after phase correction is complete, re-

execute with PhaseShift = 0.

● Operation Start
• At the rising edge of Execute, the slave axis starts phase correction following Velocity,

Acceleration, Deceleration, and Jerk.
● Re-execution

• Set Execute to FALSE. Then, reset the input values. By triggering Execute, it will run with
the new input values.

● Operation Interruption
• If a Function Block (FB) that controls the axis is called for the slave axis during operation,

the operation of this FB will be interrupted.

■ Timing chart
● If Execute is triggered while gear synchronous operation is in progress, CommandAborted

will occur in MC_GearIn, and the Busy of this FB will become TRUE.
● If the phase correction is completed, Busy will turn to FALSE, and Done will become TRUE.

The TRUE state of Done will become FALSE if Execute is set to FALSE.

6.3 Phase Correction

6-60 WUME-GM1PGR-10

MC_GearIn

Velocity

Execute

Busy
Master

ProfileVelocity
100

200

RatioNumertor

RatioDenominator

Execute

Busy

InGear

CommandAborted

Error

MC_MoveVelocity

100

200

Velocity

PhaseShift

Execute

Busy

Done

CommandAborted

Error

MC_Phasing

Master/Slave

Slave red
greenisaxisMaster

isaxis

Position Profile

-

Master/Slave

Slave red
greenisaxisMaster

isaxis

Profile

Acceleration
Master/Slave

Slave red
greenisaxisMaster

isaxis

Profile

Velocity

Time

0isPhaseShift

50

50

50

250

50

-240 0

100

0

PhaseShift is -240

2

1

100 200 100

Time Time

Time

Time

Time

Time

Time

0isPhaseShift

6.3 Phase Correction

WUME-GM1PGR-10 6-61

(MEMO)

6-62 WUME-GM1PGR-10

7 Motion Control Function
Blocks (Interpolation Control)

This section describes function blocks used to perform interpolation control using the
CNC program.

7.1 Interpolation Control..7-2
7.1.1 PMC_Interpolator2D (2-axis Interpolation Control) 7-2
7.1.2 PMC_Interpolator3D (3-axis Interpolation Control) 7-4
7.1.3 PMC_NCDecoder (CNC Table Conversion) 7-6

WUME-GM1PGR-10 7-1

7.1 Interpolation Control

7.1.1 PMC_Interpolator2D (2-axis Interpolation Control)

This function block (FB) performs 2-axis interpolation control according to the specified CNC
table.

■ Icon

■ Parameter

Scope Name Type Default value Description

I/O Axisx AXIS_REF_SM3 - Specifies the x-axis.

Axisy AXIS_REF_SM3 - Specifies the y-axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.

poqDataIn POINTER TO
SMC_OUTQUE
UE

- Specifies a pointer to the CNC
table.

bSlowStop BOOL FALSE TRUE: A pause is executed.
Deceleration stop is executed
according to the velocity profile
(iVelMode).
FALSE: The pause is canceled.

bEmergencyStop BOOL FALSE TRUE: An emergency stop is
executed.
FALSE: The emergency stop is
canceled.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

dwIpoTime DWORD 0 MotionTask interval (μsec)

iVelMode SMC_INT_VEL
MODE

TRAPEZOID Specifies a velocity profile.

dJerkMax LREAL LREAL Specifies the maximum value of
jerk.

7.1 Interpolation Control

7-2 WUME-GM1PGR-10

Scope Name Type Default value Description
This parameter must be specified
when QUADRATIC is selected for
the velocity profile (iVelMode).

bWaitAtNextStop(Note

1)
BOOL BOOL TRUE: A pause is executed in the

table where the velocity between
paths becomes zero.
The conditions that cause the
velocity between paths to become
zero are set in bSingleStep or
dAngleMode.
FALSE: The pause is canceled.

bSingleStep(Note 1) BOOL BOOL TRUE: All connections between
paths are established through
deceleration stop.

Output bCommandAborted BOOL FALSE TRUE: An interruption is caused by
another FB.

bBusy BOOL - TRUE: Execution of the FB is not
completed.

bDone BOOL FALSE TRUE: Output is completed.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorIDdx SMC_ERROR SMC_NO_ERR
OR

Error ID output during x-axis
movement processing

ErrorIDdy SMC_ERROR SMC_NO_ERR
OR

Error ID output during y-axis
movement processing

ErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output during interpolation
control operation

(Note 1) When both bWaitAtNextStop and bSingleStep are set to TRUE, they may not work properly, so please
do not use them together.

SMC_INT_VELMODE (Enumeration type)

Name Value Description

TRAPEZOID 0 Trapezoid

SIGMOID 1 Sin2

SIGMOID_LIMIT 2 Sin2 (limit)

QUADRATIC 3 Quadratic

QUADRATIC_SMOOTH 4 Quadratic (smooth)

7.1 Interpolation Control

WUME-GM1PGR-10 7-3

7.1.2 PMC_Interpolator3D (3-axis Interpolation Control)

This function block (FB) performs 3-axis interpolation control according to the specified CNC
table.

■ Icon

■ Parameter

Scope Name Type Default value Description

I/O Axisx AXIS_REF_SM3 - Specifies the x-axis.

Axisy AXIS_REF_SM3 - Specifies the y-axis.

Axisz AXIS_REF_SM3 - Specifies the z-axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.

poqDataIn POINTER TO
SMC_OUTQUE
UE

- Specifies a pointer to the CNC
table.

bSlowStop BOOL FALSE TRUE: A pause is executed.
Deceleration stop is executed
according to the velocity profile
(iVelMode).
FALSE: The pause is canceled.

bEmergencyStop BOOL FALSE TRUE: An emergency stop is
executed.
FALSE: The emergency stop is
canceled.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

dwIpoTime DWORD 0 MotionTask interval (μsec)

iVelMode SMC_INT_VEL
MODE

TRAPEZOID Specifies a velocity profile.

dJerkMax LREAL LREAL Specifies the maximum value of
jerk.

7.1 Interpolation Control

7-4 WUME-GM1PGR-10

Scope Name Type Default value Description
This parameter must be specified
when QUADRATIC is selected for
the velocity profile (iVelMode).

bWaitAtNextStop(Note

1)
BOOL BOOL TRUE: A pause is executed in the

table where the velocity between
paths becomes zero.
The conditions that cause the
velocity between paths to become
zero are set in bSingleStep or
dAngleMode.
FALSE: The pause is canceled.

bSingleStep(Note 1) BOOL BOOL TRUE: All connections between
paths are established through
deceleration stop.

Output bCommandAborted BOOL FALSE TRUE: An interruption is caused by
another FB.

bBusy BOOL - TRUE: Execution of the FB is not
completed.

bDone BOOL FALSE TRUE: Output is completed.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorIDdx X-axis error ID SMC_NO_ERR
OR

Error ID output during x-axis
movement processing

ErrorIDdy Y-axis error ID SMC_NO_ERR
OR

Error ID output during y-axis
movement processing

ErrorIDdz Z-axis error ID SMC_NO_ERR
OR

Error ID output during z-axis
movement processing

ErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output during interpolation
control operation

(Note 1) When both bWaitAtNextStop and bSingleStep are set to TRUE, they may not work properly, so please
do not use them together.

SMC_INT_VELMODE (Enumeration type)

Name Value Description

TRAPEZOID 0 Trapezoid

SIGMOID 1 Sin2

SIGMOID_LIMIT 2 Sin2 (limit)

QUADRATIC 3 Quadratic

QUADRATIC_SMOOTH 4 Quadratic (smooth)

7.1 Interpolation Control

WUME-GM1PGR-10 7-5

7.1.3 PMC_NCDecoder (CNC Table Conversion)

This function block (FB) decodes the specified SMC_CNC_REF value to SMC_OUTQUEUE.

■ Icon

■ Parameter

Scope Name Type Default value Description

I/O ncprogIn SMC_CNC_REF - Specifies the SMC_CNC_REF
value to be decoded.

Input bExecute BOOL FALSE Starts execution at the rising edge.

nSizeOutQueue UDINT - Specifies a buffer size.
We recommend that a buffer be
created and the sizeof operator be
specified as shown in the following
example.
ExampleBuf: ARRAY [0..50] OF
SMC_GEOINFO;
nSizeOutQueue:=sizeof(ExampleB
uf)

pbyBufferOutQueue POINTER　TO
ARRAY [0..0] OF
SMC_GEOINFO

- Specifies the memory space for
SMC_OUTUEUE.
We recommend that array
SMC_GEOINFO be defined and an
address be specified as shown in
the following example.
ExampleBuf: ARRAY [0..50] OF
SMC_GEOINFO;
(Buffer that can store 50 path
elements)
pbyBufferOutQueue:=ADR(Exampl
eBuf)

dXstartPosition LREAL 0 Specifies the position of the x-axis
at the start of movement(Note 1).

dYstartPosition LREAL 0 Specifies the position of the y-axis
at the start of movement(Note 1).

dZstartPosition LREAL 0 Specifies the position of the z-axis
at the start of movement(Note 1).

bAppend BOOL FALSE TRUE: Decoded data of ncprogIn is
appended to the end of poqDataOut
without resetting the poqDataOut

7.1 Interpolation Control

7-6 WUME-GM1PGR-10

Scope Name Type Default value Description
data within the FB at the rising edge
as specified by bExecute.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

Output poqDataOut POINTER TO
SMC_OUTQUE
UE

- Pointer to SMC_OUTQUEUE which
manages decoded SMC_GEOINFO
objects

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Done BOOL FALSE TRUE: Output is completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

(Note 1) We recommend that fSetPosition be entered. If the entered value and the actual position differ, there is
a risk that the axis may move suddenly.

7.1 Interpolation Control

WUME-GM1PGR-10 7-7

(MEMO)

7-8 WUME-GM1PGR-10

8 Motion Control Function
Blocks (CNC Control)

This section describes function blocks used to perform control using the CNC program.

8.1 Overview of CNC Control and How to Use It8-3
8.2 CNC Data Decoding ...8-7

8.2.1 SMC_NCDecoder (CNC Program Conversion) 8-7
8.2.2 SMC_ReadNCFile2 (Read CNC File) .. 8-11
8.2.3 SMC_NCInterpreter (Convert CNC File).. 8-16
8.2.4 SMC_GEOINFO (CNC Executable Format Data) 8-19

8.3 Pre-processing after decoding..8-22
8.3.1 SMC_CheckVelocities (Check Angle between Paths) 8-22
8.3.2 SMC_SmoothPath (path smoothing) ... 8-23
8.3.3 SMC_RoundPath (Arc correction between paths) 8-26
8.3.4 SMC_ToolRadiusCorr (Tool Radius Correction for Path) 8-29

8.4 Control calculation ..8-31
8.4.1 SMC_Interpolator (CNC Control Operation) 8-31
8.4.2 SMC_GetMParameters (Get M-code Parameters) 8-35
8.4.3 SMC_PreAcknowledgeMFunction (Deactivate M-code).................. 8-36

8.5 Control command & kinematics conversion..8-37
8.5.1 SMC_ControlAxisByPos (Axis Position Control).............................. 8-37
8.5.2 SMC_ToolLengthCorr (Tool Length Correction) 8-38
8.5.3 SMC_TRAFO_Polar (Conversion from Two-dimensional (X, Y)

Coordinates to Polar Coordinates) ... 8-41
8.5.4 SMC_TRAFOF_Polar (Conversion from Polar Coordinates to Two-

dimensional (X, Y) Coordinates) ... 8-42
8.5.5 SMC_TRAFO_Bipod_Arm (Bipod robot hand XY coordinates →

conversion of each axis position).. 8-44
8.5.6 SMC_TRAFO_Gantry2 (Convert XY Gantry Coordinates to

Positions of Axes) ... 8-46
8.5.7 SMC_TRAFOF_Gantry2 (Conversion Positions of Axes -> XY

Gantry Coordinates).. 8-47
8.5.8 SMC_TRAFO_Gantry3 (Convert XYZ Gantry Coordinates to

Positions of Axes) ... 8-49
8.5.9 SMC_TRAFOF_Gantry3 (Conversion Positions of Axes -> XYZ

Gantry Coordinates).. 8-50
8.5.10 SMC_TRAFO_GantryCutter2 (Convert XY Gantry Coordinates

with Tool rotation to Positions of Axes) ... 8-52
8.5.11 SMC_TRAFO_GantryCutter3 (Convert XYZ Gantry Coordinates

with Tool rotation to Positions of Axes) ... 8-53
8.5.12 SMC_TRAFO_Scara2 (Conversion from Hand Coordinates of a

2-link SCARA Robot to Angle Information of Each Axis Motor)........ 8-54

WUME-GM1PGR-10 8-1

8.5.13 SMC_TRAFO_Scara3 (Conversion from Hand Coordinates of a
3-link SCARA Robot to Angle Information of Each Axis Motor)........ 8-56

8.5.14 SMC_TRAFOF_Scara2 (Conversion from Angle Information of
Each Axis Motor to Hand Coordinates of a 2-link SCARA Robot) 8-59

8.5.15 SMC_TRAFOF_Scara3 (Conversion from Angle Information of
Each Axis Motor to Hand Coordinates of a 3-link SCARA Robot) 8-61

8.6 CNC Program Operation and Setting Method8-64
8.6.1 CNC Editor and Coding Rules ... 8-64
8.6.2 List of G-codes... 8-66
8.6.3 G00, G01: Linear Interpolation... 8-69
8.6.4 G02, G03: Circular Interpolation .. 8-72
8.6.5 G04: Dwell Time... 8-79
8.6.6 G05, G10: Spline Interpolation... 8-81
8.6.7 G08, G09: Elliptic Interpolation .. 8-90
8.6.8 G15, G16, G17, G18, G19: Plane Specification 8-95
8.6.9 G20, G36, G37: Jump and Loop Process.. 8-98
8.6.10 G40, G41, G42: Tool Radius Correction for Path........................... 8-108
8.6.11 G43: Tool Length Correction .. 8-114
8.6.12 G50, G51, G52: Path Smoothing ... 8-123
8.6.13 G53, G54, G55, G56: Coordinate Conversion 8-127
8.6.14 G75: Timing Synchronization ... 8-138
8.6.15 G90, G91: Coordinate Specification .. 8-140
8.6.16 G92: Start position specification .. 8-142
8.6.17 G98, G99: Circular arc coordinate specification 8-144
8.6.18 M-code ... 8-147
8.6.19 H-Switch... 8-151
8.6.20 CNC Program File.. 8-155

8.7 Example of Use of CNC Control ...8-160
8.7.1 Example of USE: Specifying Starting Coordinates 8-160
8.7.2 Example of Use: C-point Control and P-point Control 8-165
8.7.3 Example of Use: Repeating Processes ... 8-169
8.7.4 Example of use: Pre-processing and tool correction 8-173

8 Motion Control Function Blocks (CNC Control)

8-2 WUME-GM1PGR-10

8.1 Overview of CNC Control and How to Use It

This section describes an overview of CNC control and how to use CNC control with GM
Programmer.

You must execute the following series of processes to perform CNC control with the GM1
controller.
● Create a CNC program written in G-code using the CNC editor or other tools.
● Decode the CNC program to executable format.
● Compute command data from the decoded CNC program at every cycle of motor control to

control the motor.

Programming in POU

Creating CNC program
Create a CNC program written in G-code or the like using
GMProgrammer or a text file

Decode
Convert the CNC program to executable format

Pre-processing after decoding
Perform pre-processing on the CNC program in executable format
before control calculation
Assessing continuous motion (switching of P -point control, C-point
control), smoothing, etc.

Control calculation
Run the CNC program one line by one line by an interpreter system
For interpolation control, convert G-code instructions into time-series
information
 G01 X10 Y10
 → X0.1, 0.2, , , 9.9, 10
 Y0.1, 0.2, , , 9.9, 10

Control command
Control each motor with command values after kinematics
conversion (Calculation of corrections such as superposition of data
is possible.)

Kinematics conversion
Convert locus information about tools or processed points into each
motor command value (inverse kinematics transformation of robotic
control)

8.1 Overview of CNC Control and How to Use It

WUME-GM1PGR-10 8-3

1. Create a CNC program and decode it
A CNC program (SMC_OUTQUEUE type) written in executable format is necessary to
program CNC control using GM Programmer. The CNC program in executable format can
be created by any of the following three methods.
● After creating a CNC program (SMC_CNC_REF type) using the CNC editor, decoding

the CNC program to that of the SMC_OUTQUEUE type by"8.2.1 SMC_NCDecoder
(CNC Program Conversion)".

● Creating a CNC program (SMC_OUTQUEUE type) using the CNC editor. The created
CNC program is converted into executable format when it is downloaded.

● Reading a CNC program file (*.CNC), which is created by a text editor or CAD/CAM, via
a SD card using"8.2.2 SMC_ReadNCFile2 (Read CNC File)"and decoding the CNC file
to that of the SMC_OUTQUEUE type by "8.2.3 SMC_NCInterpreter (Convert CNC
File)" .

Read & Decode
(SMC_OUTQUEUE type)Decode (SMC_OUTQUEUE type)

Create CNC program & calculate in
advance (SMC_OUTQUEUE type)

Save CNC program on SD card
(*.CNC)

 Create CNC program based on drawing
data

 by CAD/CAM, or by text editor

Create CNC program
(SMC_CNC_REF type)

CNC table Conversion
(SMC_NCDecoder)

CNC editor CNC editor

Read CNC file
(SMC_ReadNCFile2)

Convert CNC file
(SMC_NCInterpreter)

Conversion at downloading

For details on how to create a CNC program using the CNC editor, refer to theGM1 Series
User’s Manual (Operation Edition).

2. Pre-processing after decoding
As pre-processing including assessing continuous motion and smoothing, process the CNC
program in executable format.

Pre-processing after decoding
Perform pre-processing on decoded CNC information before control calculation
Assessing continuous motion (switching of P-point control, C-point control), smoothing, etc.

Y

X

Y

X

Path smoothing
(SMC_SmoothPath)

Arc correction between paths
(SMC_RoundPath)

Check angle between paths
(SMC_CheckVelocities)

Perform smoothing by"8.3.2 SMC_SmoothPath (path smoothing)"or perform arc correction
between decoded paths by "8.3.3 SMC_RoundPath (Arc correction between paths)" .

8.1 Overview of CNC Control and How to Use It

8-4 WUME-GM1PGR-10

Using "8.3.1 SMC_CheckVelocities (Check Angle between Paths)", check an angle formed
by decoded paths. If the angle is larger than or equal to a set threshold, axial motion
instantaneously stops between the paths (C-point motion).
Using "8.3.4 SMC_ToolRadiusCorr (Tool Radius Correction for Path)", apply tool radius
correction to decoded paths.

3. Control calculation
Run the CNC program in executable format, i.e., the CNC information, one line by one line
by an interpreter system through"8.4.1 SMC_Interpolator (CNC Control Operation)".
For interpolation control, calculate time-series information for every control cycle from G-
code instructions.

Control calculation
Run the CNC program one line by one line by an interpreter system
For interpolation control, convert G-code instructions into time-series information

G01 X10 Y10
→ X0.1, 0.2, , , 9.9, 10

Y0.1, 0.2, , , 9.9, 10
0

10

20

30

X

time

0

10

20

30

Y

time

CNC control operation
(SMC_Interpolator)

4. Kinematics conversion
Convert locus information about tools or processed points into each motor command value.
By"8.5.3 SMC_TRAFO_Polar (Conversion from Two-dimensional (X, Y) Coordinates to
Polar Coordinates)", locus information can be converted to data on the polar coordinate
system.

Kinematics conversion
Convert locus information about tools or processed points into each motor command value
(inverse kinematics transformation of robotic control)

0

50φ

time

0

10

20

30

R

time

Conversion to polar coordinates
(SMC_TRAFO_Polar)

Function blocks used in kinematics conversion include "8.5.5 SMC_TRAFO_Bipod_Arm
(Bipod robot hand XY coordinates → conversion of each axis position)" and
"8.5.2 SMC_ToolLengthCorr (Tool Length Correction)" .

8.1 Overview of CNC Control and How to Use It

WUME-GM1PGR-10 8-5

5. Control command
Using"8.5.1 SMC_ControlAxisByPos (Axis Position Control)", control each motor with
command values after kinematics conversion.

Control command
Output command values after kinematics conversion to
motor (Calculation of corrections such as superposition
of data is possible.)

Axis position control
(SMC_ControlAxisByPos)

8.1 Overview of CNC Control and How to Use It

8-6 WUME-GM1PGR-10

8.2 CNC Data Decoding

8.2.1 SMC_NCDecoder (CNC Program Conversion)

This function block (FB) decodes a specified CNC program (SMC_CNC_REF) to data
(SMC_OUTQUEUE) used to manage an array list of CNC executable format data
(SMC_GEOINFO). In each cycle, one line of the program is decoded. Execute the function
block by MotionTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

I/O ncprog SMC_CNC_REF - Specifies the CNC program
(SMC_CNC_REF) to be decoded.

Input bExecute BOOL FALSE Starts execution at the rising edge.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

bAppend BOOL FALSE TRUE: At the rising edge as
specified by bExecute, the
poqDataOut data within the FB is
not reset.(Note 1)

Decoded data of ncprogIn is
appended to the end of
poqDataOut.

bStepSuppress BOOL FALSE TRUE: Lines of the CNC program
starting with “/” are ignored.

piStartPosition SMC_POSINFO - Start position of the path(Note 2)

vStartToolLength SMC_Vector3d dX=0, dY=0,
dZ=0

Start tool length

nSizeOutQueue UDINT 0 Specifies the size of the data buffer
to which the list of SMC_GEOINFO
structure objects will be written.
This buffer must be able to hold at
least five SMC_GEOINFO objects.
If the size of the buffer is not
satisfactory, no error occurs and the
FB is not executed.

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-7

Scope Name Type Default value Description
The buffer size may be predefined,
but may be changed only during a
reset.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Writing
example]nSizeOutQueue:=SIZEOF(
ExampleBuf);

pbyBufferOutQueue POINTER TO
ARRAY [0..0] OF
SMC_GEOINFO

- Specifies the address of the
memory space for
SMC_OUTUEUE.(Note 4)

We recommend that array
SMC_GEOINFO be defined and an
address be specified as shown in
the following example.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Writing example]
pbyBufferOutQueue:=ADR(Exampl
eBuf);

bEnableSyntaxChecks BOOL FALSE TRUE: Detects invalid G-code and
wrong CNC program, and stops
with the occurrence of an error.

eOriConv SMC_ORI_CON
VENTION

ADDAXES A definition for the order in which
Euler angles specified by
coordinate system conversion
G54/G55/G56 rotate

dCircleTolerance LREAL 0 Tolerance to determine whether the
definition of a circle makes
sense(Note 3)

Output bDone BOOL FALSE TRUE: Decode output is completed.

bBusy BOOL FALSE TRUE: Execution of the FB is not
completed.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

wErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output

poqDataOut POINTER
TO SMC_OUTQ
UEUE

- Pointer to the CNC program which
manages decoded SMC_GEOINFO
objects
Specify this output for the
poqDataIn input of"8.3 Pre-
processing after decoding".

iStatus SMC_DEC_STA
TUS

WAIT_PROG Current status

iLineNumberDecoded DINT 0 The 0-based line number of the
CNC file that is completely decoded

8.2 CNC Data Decoding

8-8 WUME-GM1PGR-10

Scope Name Type Default value Description

GCodeText SMC_GCODE_T
EXT

- The G-Code text that is currently
decoded

(Note 1) To decode the CNC program including circular interpolation written by center-point approach with
bAppend = TRUE, explicitly specify G98/G99 in the CNC program.

(Note 2) We recommend that fSetPosition be entered. If the entered value and the current value greatly differ,
there is a risk that the axis may move suddenly.

(Note 3) This is determined according to the following rules.
Definition via target position and radius: If the distance between start- and end-positions is greater
than 2 * the radius + MAX (dCircleTolerance, 1e-06), the circle will be converted into a line.
Definition via target- and center-position: Let x be the maximum of the distance between start- and
center-positions and the distance between target- and center-positions. If those distances differ by
more than MAX (dCircleTolerance, 0.1 * x), the circle will be converted into a line.

(Note 4) Do not set SMC_GEOINFO objects that are specified in other function blocks.

● To use the bAppend function, set bAppend to TRUE after decoding of the first CNC program is
completed, and then decode the second and subsequent CNC programs.

● While decoding of a CNC program that uses G20, do not set bExecute to FALSE. Loop
processing will not be executed correctly.

● For the tool length (vStartToolLength), refer to "8.5.2 SMC_ToolLengthCorr (Tool Length
Correction)".

SMC_POSINFO (Structure)
This is a structure that describes the positions of coordinate axes including additional axes for a
particular position point.
Information on the path written in G code is output as position information for control at every
cycle from the SMC_Interpolator.
Information about the output is written by this structure.

Name Type Default value Description

iFrameNo INT 0 Frame number (Additional information not relevant for the
SoftMotion modules may be stored by the user.)

wAuxData WORD 7 Axes to be calculated by the Interpolator: TRUE = Enabled,
FALSE = Disabled
bit0 = X axis, bit1 = Y axis, bit2 = Z axis, bit3 and
subsequent bits are not used.

wSProfile WORD 0 Not used

dX LREAL 0 X-position in coordinate system

dY LREAL 0 Y-position in coordinate system

dZ LREAL 0 Z-position in coordinate system

dA LREAL 0 Not used

dB LREAL 0 Not used

dC LREAL 0 Not used

dA1 LREAL 0 Not used

dA2 LREAL 0 Not used

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-9

Name Type Default value Description

dA3 LREAL 0 Not used

dA4 LREAL 0 Not used

dA5 LREAL 0 Not used

dA6 LREAL 0 Not used

■ Example
● For 2-axis interpolation control, wAuxData = 10#3 and values are set in dX: target position X

for next cycle and dY: target position Y for next cycle. The other parameters are not used.
● For 3-axis interpolation control, wAuxData = 10#7 and values are set in dX: target position X

for next cycle, dY: target position Y for next cycle, and dZ: target position Z for next cycle.
The other parameters are not used.

SMC_ORI_CONVENTION (Enumeration type)
Input values need to be specified when coordinate conversion (G54, G55, G56) is executed.
While parallel translation (X, Y, Z) of the coordinate system is executed with any input value,
rotation of the coordinate system requires an input value that sets the derided order in rotation
to be specified.

Name Type Value Description

ADDAXES INT 0 Rotation of the coordinate system is not executed (default
value).

ZYZ INT 1 The coordinate system rotates around the Z axis > The
coordinate system rotates around the Y axis > The
coordinate system rotates around the Z axis

ZYX INT 2 The coordinate system rotates around the Z axis > The
coordinate system rotates around the Y axis > The
coordinate system rotates around the X axis

XYZ INT 3 The coordinate system rotates around the X axis > The
coordinate system rotates around the Y axis > The
coordinate system rotates around the Z axis

SMC_DEC_STATUS (Enumeration type)

Name Type Value Description

WAIT_PROG INT 0 Waiting program

READ_WORD INT 1 Program decoding in progress

PROG_READ INT 2 Program decoding completed

SMC_GCODE_TEXT (Structure)

Name Type Default value Description

str STRING(80) '' Outputs the G-Code text that is currently decoded

iLineNumber DINT 0 Line number

bNewLine BOOL FALSE TRUE: A new line has been decoded.

bClearList BOOL FALSE TRUE: When the NCDecoder has been started from new, a
buffer that may store the last lines needs to be emptied.

8.2 CNC Data Decoding

8-10 WUME-GM1PGR-10

8.2.2 SMC_ReadNCFile2 (Read CNC File)

This function block reads a CNC file in an SD card and outputs data (SMC_GSentenceQueue)
read from the CNC file. Execute the function block by UserTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input bExecute BOOL FALSE Starts execution at the rising edge.

sFileName STRING(255) '' Specifies the file name with an
absolute path. (Note 1)

pvl POINTER TO
SMC_VARLIST

- Specifies the address of an
SMC_VARLIST object. (Note 2)

Setting of variables written in the
CNC file

fDefaultVel LREAL 0 Default velocity(u/s)(Note 3)

fDefaultAccel LREAL 0 Default acceleration(u/s2)(Note 3)

fDefaultDecel LREAL 0 Default deceleration(u/s2)(Note 3)

fDefaultVelFF LREAL 0 Default velocity (u/s) for fast
forward (G0)(Note 3)

fDefaultAccelFF LREAL 0 Default acceleration (u/s2) for fast
forward (G0)(Note 3)

fDefaultDecelFF LREAL 0 Default deceleration (u/s2) for fast
forward (G0)(Note 3)

b3DMode BOOL TRUE TRUE: XYZ 3-axis interpolation can
be used without G16 to G19 plane
specification.(Note 3)

If this input is FALSE, default 2D
mode is enabled.

bStepSuppress BOOL FALSE TRUE: In the CNC file, lines starting
with "/" will be ignored.

aSubProgramDirs ARRAY [0..4] OF
STRING(174)

- Directories where subprograms are
stored (up to 5 directories can be
specified). (Note 4)

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-11

Scope Name Type Default value Description

bParenthesesAsComm
ents

BOOL TRUE TRUE: Treats parentheses as
comments. (Note 5)

bDisableJumpBuffer BOOL FALSE Do not use.

Output bBusy BOOL FALSE TRUE: FB is in progress.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

errorPos SMC_NC_Sourc
ePosition

- Detects invalid G-code or incorrect
writing and outputs the position
where an error has occurred, as
well as the character length.

ErrorProgramName STRING '' Absolute path to the name of the
CNC file where an error has
occurred

sentences SMC_GSentenc
eQueue

- Data read from the CNC file
Specify this output for the input of
"8.2.3 SMC_NCInterpreter (Convert
CNC File)".

adwFileSize ARRAY [0..
(NUM_PARSER
_CHAINS - 1)]
OF DWORD

- Outputs the number of characters
written in the CNC file. (Note 6)

adwPos ARRAY [0..
(NUM_PARSER
_CHAINS - 1)]
OF DWORD

- Output the current position of the
cursor in the CNC file. (Note 6)

(Note 1) Please specify the filename within 237 characters, including the extension ('.cnc').
(Note 2) Do not set it to 0(NULL) if variables are written in the CNC file.
(Note 3) If velocity or acceleration (F, E, FF, EF) is not written, or plane specification (G17, G18, G19) is not

written in the CNC file, the corresponding setting is used.
This setting does not apply to called subprograms.

(Note 4) To specify the root directory, specify ‘.’ or ‘./’.
(Note 5) Parentheses “(,)” used to group expressions and for subprogram calls are also treated as comments.

Regardless of this setting, it is recommended that curly braces “{,}” be used to group expressions and
for subprogram calls.

(Note 6) ‘RN’ is handled as two characters, and ‘$R’, ‘$N’, and a space are each handled as one character.

8.2 CNC Data Decoding

8-12 WUME-GM1PGR-10

● You cannot use full size characters and the following symbols in file and directory names: [\], [/],
[:], [*], [?], [”], [<], [>], [|].

● This function block's instance declaration uses a significant amount of memory. Limit instance
declarations to a maximum of two, and if you need more than two, reusing instances is
recommended.

● The directories specified for the aSubProgramDirs argument are used to search for the CNC
file for a subprogram to be called. The CNC file is searched for in the specified directories,
starting with directory aSubProgramDirs[0], in order. The CNC file that matches first is used.

● The subroutine to be read should have a filename that is within 237 characters, including the
directory name and extension.

● The adwFileSize/adwPos outputs are output as follows.
For adwFileSize[0]/adwPos[0], the number of characters/the reading position in the main
program are output.
For adwFileSize[1]/adwPos[1], the number of characters/the reading position written in the
last subprogram called by the main program are output.
For each of adwFileSize[2]/adwPos[2] and subsequent elements, the number of
characters/the reading position written in the last subprogram called by each subprogram are
output.

■ SMC_VARLIST (Structure)
This structure stores settings for variables written in the CNC file.

Name Type Default value Description

wVarListID WORD 16#BBFA Fixed to 16#BBFA

wNumberVars WORD 0 Specifies the number of
SMC_SINGLEVAR array
elements used

psvVarList POINTER TO SMC_SINGLEVAR - Specifies the address of
an element of the
SMC_SINGLEVAR array

● If multiple global variables are written in the CNC file, specify the address of a data element of
the SMC_SINGLEVAR array for the psvVarList argument.
Starting from the array element specified for the psvVarList argument, the number of array
elements equal to the number specified for the wNumberVars argument is used.

■ SMC_SINGLEVAR (Structure)
This structure defines the global variable used in the CNC file.

Name Type Default value Description

strVarName STRING '' Specifies the name of the
global variable as written
in the CNC program file in
capital letters. (Note 1)

pAdr POINTER TO BYTE - Pointer to the program
variable used with the
name of the global

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-13

Name Type Default value Description
variable specified for
strVarName. (Note 2)

eVarType SMC_VARTYPE SMC_TYPE_UNKNOWN Specifies the type of the
specified variable. (Note 3)

diValue DINT 0 0 (Fixed)

fValue LREAL 0 0 (Fixed)

(Note 1) The set character string and the name of the global variable written in the CNC file do not distinguish
between upper- and lowercase letters.

(Note 2) If you specify 0 (NULL) for the pointer, the function does not operate properly, and thus do not specify
so.

(Note 3) Set a type identical to that of the variable specified for the pAdr argument. If you set a type different
from that of the variable specified for the pAdr argument, the function does not operate properly.

● The character string specified for the strVarName argument is used as the global variable, and
the variable/type specified for the pAdr/eVarType arguments are specified for the global
variable.

● For an SMC_VARLIST structure in which the SMC_SINGLEVAR object is set as an array, the
pAdr/eVarType arguments are specified for the global variable when the character string
specified for the strVarName argument matches the name of the global variable and are not
specified when they do not match each other.

■ SMC_VARTYPE (Enumeration type)

Name Type

SMC_TYPE_INT 1

SMC_TYPE_BYTE 2

SMC_TYPE_WORD 3

SMC_TYPE_DINT 4

SMC_TYPE_DWORD 5

SMC_TYPE_REAL 6

SMC_TYPE_SINT 14

SMC_TYPE_USINT 15

SMC_TYPE_UINT 16

SMC_TYPE_UDINT 17

SMC_TYPE_LREAL 22

■ SMC_NC_SourcePosition (Structure)
This structure detects invalid G-code or incorrect writing and outputs the position where an error
has occurred, as well as the character length.

Name Type Default value Description

diLine DINT -1 Outputs the line number.
(Note 1)(Note 3)

8.2 CNC Data Decoding

8-14 WUME-GM1PGR-10

Name Type Default value Description

diColumn DINT -1 Outputs the position from
the left end.(Note 2)(Note 3)

diLength DINT -1 Outputs the character
length.(Note 3)

(Note 1) The uppermost line in the CNC file is regarded as 0th line, and 'RN’ is handled as a line separator.
(Note 2) A character at the leftmost end in the CNC file is regarded as the 0th character, and ‘$R’, ‘$N’, and a

space are each handled as one character.
(Note 3) Outputs -1 if unknown.

Example 1 A CNC file in which G-code word X is written without writing of the number (‘01’) of
G-code (‘G01’)
● CNC File to be read

N000 G X10 Y20
N010 G01 X30 Y30

● Output result
errorPos.diLine=0 (0th line)
errorPos.diColumn=7 (7th character)
errorPos.diLength=1 (1 character)

When you write G-code, G + ‘number’ must be written. Since G-code word X is written
without writing of any number for G-code, an error has occurred in G-code Word ‘X’.

Example 2 A CNC file in which N number is written as maximum value (DWORD) + 1
● CNC File to be read

N000 F10 E100 E-100
N4294967296 G01 X10 Y20

● Output result
errorPos.diLine=1 (1st line)
errorPos.diColumn=1 (1st character)
errorPos.diLength=10 (10 characters)

N number that is written must be a numerical value in the range from 0 to 4294967295.
Since the written N-code number is 4294967296 (outside the effective range), an error has
occurred at '4294967296'.

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-15

8.2.3 SMC_NCInterpreter (Convert CNC File)

This is a function block (FB) used to decode data (SMC_GSentenceQueue) read from the CNC
file to data (SMC_OUTQUEUE) that is managed in the form of an array list of CNC executable
format data (SMC_GEOINFO). Execute the function block by MotionTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

sentences SMC_GSentenc
eQueue

- CNC file data
Specify the output of
SMC_ReadNCFile2.

Input bExecute BOOL FALSE Starts execution at the rising edge.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

bAppend BOOL FALSE TRUE: At the rising edge as
specified by bExecute, the
poqDataOut data within the FB is
not reset.(Note 1)

The sentences data is appended to
the end of the poqDataOut output.

piStartPosition SMC_POSINFO - Start position of the motion in the
CNC Program(Note 2)

vStartToolLength SMC_Vector3d dX=0,dY=0,dZ=0 Start tool length in the CNC
program

nSizeOutQueue UDINT 0 Specifies the size of the data buffer
to which the list of SMC_GEOINFO
structure objects will be written.
This buffer must be able to hold at
least five SMC_GEOINFO objects.
If the size of the buffer is not
satisfactory, no error occurs and the
FB is not executed.
The buffer size may be predefined,
but may be changed only during a
reset.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Example of acquiring appropriate
buffer size]
nSizeOutQueue:=SIZEOF(Example
Buf);

8.2 CNC Data Decoding

8-16 WUME-GM1PGR-10

Scope Name Type Default value Description

pbyBufferOutQueue POINTER TO
ARRAY [0..0] OF
SMC_GEOINFO

- Specifies the address of the
memory space for
SMC_OUTQUEUE.(Note 5)

We recommend that array
SMC_GEOINFO be defined and an
address be specified as shown in
the following example.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Writing example]
pbyBufferOutQueue:=ADR(Exampl
eBuf);

bEnableSyntaxChecks BOOL TRUE TRUE: Detects invalid G-code and
incorrect CNC file, and stops with
the occurrence of an error.

eOriConv SMC_ORI_CON
VENTION

ADDAXES A definition for the order in which
Euler angles specified by
coordinate system conversion
G54/G55/G56 rotate Refer
to"8.2.1 SMC_NCDecoder (CNC
Program Conversion)"

dCircleTolerance LREAL 0 Tolerance to determine whether the
definition of a circle makes
sense(Note 3)

pInterpreterStack POINTER TO
BYTE

- Specifies the address of a buffer for
the interpreter stack.
If 0, a default buffer of size 10240
bytes is used.

nInterpreterStackSizeB
ytes

UDINT 0 Specifies the size of the buffer
pointed to by pInterpreterStack.
At least 1024 bytes are required for
the size.

Output bDone BOOL FALSE TRUE: Decode output is completed.

bBusy BOOL FALSE TRUE: FB is in progress.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

wErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

errorPos SMC_NC_Sourc
ePosition

- Detects invalid G-code or incorrect
CNC program and outputs the
position where an error has
occurred, as well as the character
length.

poqDataOut POINTER TO
SMC_OUTQUE
UE

- An address to the CNC program
which manages decoded
SMC_GEOINFO objects
Specify this output for the
poqDataIn input of"8.3 Pre-
processing after decoding".

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-17

Scope Name Type Default value Description

iStatus SMC_DEC_STA
TUS

WAIT_PROG Current status

iLineNumberDecoded DINT 0 The 0-based line number of the
CNC file that is completely
decoded(Note 4)

GCodeText SMC_GCODE_T
EXT

- The G-Code text that is currently
decoded

CallstackInfo SMC_NCCallsta
ckInfo

- Not supported

aActivePrograms ARRAY [0..
(SoftMotion_NC
2_Constants.IPR
_CALLSTACK_S
IZE - 1)] OF
STRING

- The name of the currently decoded
program (CNC file name) is output.

(Note 1) If a subprogram is decoded with the parameter set to TRUE, the function does not operate properly,
and thus do not use this setting in that way.

(Note 2) We recommend that fSetPosition be entered. If the entered value and the current value greatly differ,
there is a risk that the axis may move suddenly.

(Note 3) Definition via target-position and radius: If the distance between start- and end-positions is greater
than 2 * the radius + MAX (dCircleTolerance, 1e-06), the circle will be converted into a line.
Definition via target- and center-position: Let x be the maximum of the distance between start- and
center-positions and the distance between target- and center-positions.
If those distances differ by more than MAX (dCircleTolerance, 0.1 * x), the circle will be converted into
a line.

(Note 4) If the input arguments b3DMode, fDefault** of SMC_ReadNCFile2 are used, the line number is output
starting from -1.

(Note 5) Do not set SMC_GEOINFO objects that are specified in other function blocks.

● To use the bAppend function, set bAppend to TRUE after decoding of the first CNC file is
completed, and then decode the second and subsequent CNC files.

● If the CNC file containing 65 or more M-codes written in a row is decoded, an error occurs. G4-
elements are also counted as M-codes.
To decode a CNC file containing 65 or more M-codes written in a row, write a G75 before the
first M-code of the sequence.

● Program names are output to the elements of the aActivePrograms argument array as shown
below.

For the argument element aActivePrograms[0], the name of the currently decoded CNC file
(program name) is output.
For each of the argument element aActivePrograms[1] and subsequent elements, the name
of each calling CNC file (program name) is output.

● For the tool length (vStartToolLength), refer to "8.5.2 SMC_ToolLengthCorr (Tool Length
Correction)".

8.2 CNC Data Decoding

8-18 WUME-GM1PGR-10

8.2.4 SMC_GEOINFO (CNC Executable Format Data)

This is a structure of CNC program data stored line by line in the executable format. Data such
as movement types (linear interpolation, circular interpolation) as well as motion path
parameters such as start position, target position, velocity, and acceleration are stored.

■ Parameter

InOut

Name Type Default value Description

iObjNo DINT 0 Identification ID

iSourceLine_N
o

DINT 0 The 0-based line number in the CNC program

diSentenceNo DINT 0 CNC program N number

iMoveType SMC_MOVTY
P

- Movement type such as linear interpolation and circular
interpolation

piStartPos SMC_POSINF
O

- Start position of the travel path

piDestPos SMC_POSINF
O

- Target position (end position of the travel path)

dP1 LREAL 0 Described later

dP2 LREAL 0 Described later

dP3 LREAL 0 Described later

dP4 LREAL 0 Described later

dP5 LREAL 0 Described later

dP6 LREAL 0 Described later

dP7 LREAL 0 Described later

dP8 LREAL 0 Described later

dP9 LREAL 0 Described later

dP10 LREAL 0 Described later

dP11 LREAL 0 Described later

dP12 LREAL 0 Described later

dP13 LREAL 0 Described later

dP14 LREAL 0 Described later

dP15 LREAL 0 Described later

dP16 LREAL 0 Described later

dP17 LREAL 0 Described later

dP18 LREAL 0 Described later

vX SMC_Vector3D STRUCT(dX :=
1, dY := 0,
dZ := 0)

Do not use.

vY SMC_Vector3D STRUCT(dX :=
0, dY := 1,
dZ := 0)

Do not use.

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-19

Name Type Default value Description

vN SMC_Vector3D STRUCT(dX :=
0, dY := 0,
dZ := 1)

Do not use.

dT1 LREAL 0 Described later

dT2 LREAL 1 Described later

dToolRadius LREAL 0 Tool radius

dVel LREAL 0 Target velocity [u/sec]

dVelEnd LREAL 0 Velocity when the target position is reached [u/sec]

dVelEndStored LREAL - Do not use.

dVelEndSafe LREAL 0 Do not use.

dAccel LREAL 100 Maximum allowable acceleration [u/sec2]

dDecel LREAL 100 Maximum allowable deceleration [u/sec2]

dLength LREAL 0 Path length

wInternMark2 WORD 0 Do not use.

byInternMark BYTE 0 Do not use.

dwFeatureFlag
s

DWORD - TRUE: Operates in 3D mode

b3DMode BOOL FALSE Stores feature bits set by G38/G39.

dHelpPos ARRAY
[0..MAX_IPOS
WITCHES] OF
LREAL

- Do not use.

iHelpID ARRAY
[0..MAX_IPOS
WITCHES] OF
INT

- Do not use.

adVelAddAx ARRAY [0..7]
OF LREAL

- Do not use.

adAccAddAx ARRAY [0..7]
OF LREAL

- Do not use.

adDecAddAx ARRAY [0..7]
OF LREAL

- Do not use.

aAdditionalPar
ams

ARRAY [0..
(SMC_MAX_A
DDITIONAL_P
ARAMS - 1)]
OF LREAL

- Do not use.

adToolLength ARRAY [0..2]
OF LREAL

- Parameters for tool length compensation (set by G43 I/J/K)

For the parameters dP1 to dP18, information that varies with the iMoveType is defined.
● LIN, LINPOS (G00, G01)

Information stored in piStartPos and piDestPos
● CLW, CCLW (G02, G03)

The coordinates are stored in the coordinate system (vX, vY, vN).
• dP1: X-axis coordinate of circle center

8.2 CNC Data Decoding

8-20 WUME-GM1PGR-10

• dP2: Y-axis coordinate of circle center
• dP3: Circle radius
• dP4: Y-axis coordinate of circle

● INITPOS (M-codes)
MCOMMAND: for M-commands (iMoveType = 120), the M-code number is 120 during halt.

dT1 and dT2 are the start and end parameters for circle/spline.
● CLW（G02）

• dT1: Start angle [in degree] (0=east, 90=north, 180=west, 270=south)
• dT2: Apex angle of circle [in degree] (Example: 90=quarter of circle, 180 = semicircle)

● CCLW（G03）
• dT1: Start angle [in degree] (0=east, 90=north, 180=west, 270=south)
• dT2: Negative apex angle of circle [in degree] (Example: 90=quarter of circle, 180 =

semicircle)

8.2 CNC Data Decoding

WUME-GM1PGR-10 8-21

8.3 Pre-processing after decoding

8.3.1 SMC_CheckVelocities (Check Angle between Paths)

This function block (FB) is used to check an angle between paths and perform P-point control
(without deceleration stop between paths) or C-point control (with deceleration stop between
paths) according to the formed angle. If the SMC_OUTQUEUE has not been created by the
editor, but by the program (e.g. SMC_NCDecoder), this FB has to be called straight before each
call to the SMC_Interpolator. Execute the function block by MotionTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input bExecute BOOL FALSE Starts execution of the FB at the
rising edge.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.(Note 1)

Do not use this if you want to stop
movement in midstream.

poqDataIn POINTER TO
SMC_OUTQUE
UE

- A pointer to the CNC program
Input the poqDataOut output of
"8.2 CNC Data Decoding".

dAngleTol LREAL 0.001 Tolerance angle up to which P-point
control is performed

bCheckAddAxVelJump BOOL FALSE TRUE: Additional axes velocities
are checked.
Even if this parameter is set,
nothing is reflected in operation. Do
not use.

dMaxAddAxVelDifferen
ce

LREAL 0 Maximum allowed velocity
difference (u/s)
Even if this parameter is set,
nothing is reflected in operation. Do
not use.

Output bBusy BOOL FALSE TRUE: Execution of the FB is not
completed.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

8.3 Pre-processing after decoding

8-22 WUME-GM1PGR-10

Scope Name Type Default value Description

wErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output

poqDataOut POINTER
TO SMC_OUTQ
UEUE

- A pointer to SMC_OUTQUEUE that
has checked the angle between the
paths(Note 2)

Specify this output for the
poqDataIn input of
"8.4.1 SMC_Interpolator (CNC
Control Operation)".

(Note 1) The abort function operates only before the completion of SMC_NCDecoder or when the G code
“"8.6.14 G75: Timing Synchronization"” is used.

If you want to stop axial movement in midstream, do not use bAbort but use the argument described
in "8.4.1 SMC_Interpolator (CNC Control Operation)".

(Note 2) For the poqDataIn value, do not specify a pointer to values other than the CNC program. Otherwise,
SMC_CheckVelocities and subsequent processes will not be executed.

● See "8.7.2 Example of Use: C-point Control and P-point Control" for examples of use. An
explanation of the definition of the angle between the paths is also described.

8.3.2 SMC_SmoothPath (path smoothing)

This function block can smooth bends in the path of the specified CNC program. G51 and G50
in the G-code are used to perform smoothing. Unlike SMC_RoundPath, the entire path is also
subject to smoothing, not just between paths. This FB must be run before running
SMC_Interpolator. Execute the function block by MotionTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input bExecute BOOL FALSE Starts execution at the rising edge.

8.3 Pre-processing after decoding

WUME-GM1PGR-10 8-23

Scope Name Type Default value Description

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

bAppend BOOL FALSE TRUE: At the rising edge as
specified by bExecute, the
poqDataOut data within the FB is
not reset.
Decoded data of ncprogIn is
appended to the end of
poqDataOut.
(Note 1)

poqDataIn POINTER TO
SMC_OUTQUE
UE

- Specifies a pointer to the CNC
program.(Note 2)

Input the poqDataOut output
of"8.2 CNC Data Decoding".

dEdgeDistance LREAL 0 Set the radius of curvature of the
smoothing process to be added to
parameter D of G-code G51.

dAngleTol LREAL '0.001 Set the tolerance for the path-to-
path angle at which smoothing is
not performed

nSizeOutQueue UDINT 0 Specifies the size of the data buffer
to which the list of SMC_GEOINFO
structure objects will be written.
This buffer must be able to hold at
least five SMC_GEOINFO objects.
If the size of the buffer is not
satisfactory, no error occurs and the
FB is not executed.
The buffer size may be predefined,
but may be changed only during a
reset.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Example of acquiring appropriate
buffer size]
nSizeOutQueue:=SIZEOF(Example
Buf);

pbyBufferOutQueue POINTER TO
ARRAY [0..0] OF
SMC_GEOINFO

- Points to the first byte of the
memory space assigned to the
structure SMC_OUTQUEUE, which
must be at least the same size as
that defined by nSizeOutQueue.
(Note 2)(Note 4)

The buffer size may be predefined,
but may be changed only during a
reset.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Writing example]
pbyBufferOutQueue:=ADR(Exampl
eBuf);

8.3 Pre-processing after decoding

8-24 WUME-GM1PGR-10

Scope Name Type Default value Description

eMode SMC_SMOOTH
PATHMODE

SP_SPLINE3 Element type applied to path
smoothing

bSymmetricalDistance
s

BOOL TRUE Half the length of the short side of
the two sides that form the angle
and the smoothed radius of
curvature D are compared, and the
smaller value is taken as D'.
TRUE: The smoothed radius of
curvature is set to the value of D'
FALSE: The value set in D is used

bImprovedSymmetricC
uts

BOOL FALSE The setting is reflected when
bSymmetricalDistances = TRUE.
TRUE:For comparison of the radius
of curvature of bSymmetrical
Distances at the second and
subsequent turns, the radius of
curvature used for the judgment at
the first corner is applied.

eAddAxMode SMC_SMOOTH
PATHADDAXMO
DE

SPAA_LATE It does not affect the operation even
if set. Do not use.

dMinimumCurvatureRa
dius

LREAL 0 If the spline inserted in the
smoothing path contains a position
in which the radius of curvature is
less than this parameter, it is not
smoothed and the original path
bend is used

bCheckCurvature BOOL FALSE TRUE: Check whether the
curvature of adjacent elements is
equal. If not equal, the path is
smoothed.

dRelativeCurvatureTol LREAL 0.001 It does not affect the operation even
if set. Do not use.

bCheckAddAxVelJump BOOL FALSE It does not affect the operation even
if set. Do not use.

dMaxAddAxVelDifferen
ce

LREAL It does not affect the operation even
if set. Do not use.

Output bDone BOOL FALSE TRUE：Completion of smoothing of
input data

bBusy BOOL FALSE TRUE： Execution of the FB is not
completed.

bError BOOL FALSE TRUE： An error has occurred
within the FB.

wErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output

poqDataOut POINTER
TO SMC_OUTQ
UEUE

- Pointer to the SMC_GEOINFO
object that has executed the
smoothing process
Specify this output for the
poqDataIn input
of"8.4.1 SMC_Interpolator (CNC
Control Operation)".

8.3 Pre-processing after decoding

WUME-GM1PGR-10 8-25

Scope Name Type Default value Description

udiStopsDueToCurvatu
reRadius

UDINT 0 Number of bends that could not be
smoothed due to the
dMinimumCurvatureRadius setting

(Note 1) To use the bAppend function, set bAppend to TRUE simultaneously with bAppend of
SMC_NCDecoder.

(Note 2) If the input variables are not set correctly, bBusy remains TRUE and the function block will not be
executed without error.

(Note 3) For details, refer to “G50, G51, G52”
(Note 4) Do not set SMC_GEOINFO objects that are specified in other function blocks.

SMC_SMOOTHPATHMODE (Enumeration type)

Name Description

SP_SPLINE3 A 3rd order spline with different tangent lengths is inserted to define the spline.
The length is dependent on the length of the adjacent object.

SP_SPLINE5 A 5th order spline is inserted.

SP_SPLINE3_CV A 3rd order spline with different tangent lengths is inserted to define the spline.
The length is dependent on the length of the portion of the cut adjacent object.
For two adjacent line objects, SP_SPLINE3_CV stays inside the convex groove of the
original path.

SP_SPLINE5_CV A 5th order spline with different tangent lengths is inserted to define the spline.
The length is dependent on the length of the portion of the cut adjacent object.

SP_SPLINE5_MIN_CU
RVATURE

Multiplication with the 5th order polynomial of the minimum curvature.

● For the method of using G50, G51, refer to"8.6.12 G50, G51, G52: Path Smoothing".

8.3.3 SMC_RoundPath (Arc correction between paths)

This function block can correct between paths in the specified CNC program with an arc. To
perform smoothing, use G52 and G50 in G-code. Unlike SMC_SmoothPath, arc correction is
applied only between the paths in the specified section. This FB must be run before running
SMC_Interpolator. Execute the function block by MotionTask.

■ Icon

8.3 Pre-processing after decoding

8-26 WUME-GM1PGR-10

■ Parameter

Scope Name Type Default value Description

Input bExecute BOOL FALSE Starts execution at the rising edge.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

bAppend BOOL FALSE TRUE: At the rising edge as
specified by bExecute, the
poqDataOut data within the FB is
not reset.
Decoded data of ncprogIn is
appended to the end of
poqDataOut.
(Note 1)

poqDataIn POINTER TO
SMC_OUTQUE
UE

- Specifies a pointer to the CNC
program.(Note 2)

Input the poqDataOut output
of"8.2 CNC Data Decoding".

dRadius LREAL 0 Set the radius of curvature of arc
correction to be added to parameter
D of G code G52.(Note 3)

dAngleTol LREAL '0.001 Sets the tolerance for the angle
between paths where arc correction
is not performed.

nSizeOutQueue UDINT 0 Specifies the size of the data buffer
to which the list of SMC_GEOINFO
structure objects will be written.
This buffer must be able to hold at
least five SMC_GEOINFO objects.
If the size of the buffer is not
satisfactory, no error occurs and the
FB is not executed.
The buffer size may be predefined,
but may be changed only during a
reset.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Example of acquiring appropriate
buffer size]
nSizeOutQueue:=SIZEOF(Example
Buf);

pbyBufferOutQueue POINTER TO
ARRAY [0..0] OF
SMC_GEOINFO

- Points to the first byte of the
memory space assigned to the
structure SMC_OUTQUEUE, which
must be at least the same size as
that defined by nSizeOutQueue.
(Note 2)(Note 4)

The buffer size may be predefined,
but may be changed only during a
reset.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;

8.3 Pre-processing after decoding

WUME-GM1PGR-10 8-27

Scope Name Type Default value Description
(An array of five or more elements
is required)
[Writing example]
pbyBufferOutQueue:=ADR(Exampl
eBuf);

Output bDone BOOL FALSE TRUE：Completion of smoothing of
input data

bBusy BOOL FALSE TRUE： Execution of the FB is not
completed.

bError BOOL FALSE TRUE： An error has occurred
within the FB.

wErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output

poqDataOut POINTER
TO SMC_OUTQ
UEUE

- Pointer to the SMC_GEOINFO
object that performed arc correction
Specify this output for the
poqDataIn input
of"8.4.1 SMC_Interpolator (CNC
Control Operation)".

(Note 1) To use the bAppend function, set bAppend to TRUE simultaneously with bAppend of
SMC_NCDecoder.

(Note 2) If the input variables are not set correctly, bBusy remains TRUE and the function block will not be
executed without error.

(Note 3) If the radius specification is 0, subsequent arc correction will not be performed.
(Note 4) Do not set SMC_GEOINFO objects that are specified in other function blocks.

● For the method of using G50, G52, refer to"8.6.12 G50, G51, G52: Path Smoothing".

8.3 Pre-processing after decoding

8-28 WUME-GM1PGR-10

8.3.4 SMC_ToolRadiusCorr (Tool Radius Correction for Path)

This is a function block (FB) that performs tool radius correction. This FB converts the section of
the path specified by G41 to G40 or G42 to G40 in the CNC program so that it is offset by the
tool radius. When specified by G41, the path will be corrected to the right for the radius. When
specified by G42, the path will be corrected to the left for the radius. This FB must be run before
running SMC_Interpolator. Execute the function block by MotionTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input bExecute BOOL FALSE Starts execution at the rising edge.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

bAppend BOOL FALSE TRUE: At the rising edge as
specified by bExecute, the
poqDataOut data within the FB is
not reset.
The poqDataIn data is appended to
the end of the poqDataOut output.

poqDataIn POINTER TO
SMC_OUTQUE
UE

- Specifies the address of the CNC
table.

nSizeOutQueue UDINT 0 Specifies the size of the data buffer
to which the list of SMC_GEOINFO
structure objects will be written.
This buffer must be able to hold at
least five SMC_GEOINFO objects.
If the size of the buffer is not
satisfactory, no error occurs and the
FB is not executed.
The buffer size may be predefined,
but may be changed only during a
reset.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Example of acquiring appropriate
buffer size]
nSizeOutQueue:=SIZEOF(Example
Buf);

pbyBufferOutQueue POINTER TO
ARRAY [0..0] OF
SMC_GEOINFO

- Specifies the address of the
memory space for
SMC_OUTQUEUE.(Note 1)(Note 2)

We recommend that array
SMC_GEOINFO be defined and an

8.3 Pre-processing after decoding

WUME-GM1PGR-10 8-29

Scope Name Type Default value Description
address be specified as shown in
the following example.
[Declaration example] ExampleBuf:
ARRAY[0..49] OF SMC_GEOINFO;
(An array of five or more elements
is required)
[Writing example]
pbyBufferOutQueue:=ADR(Exampl
eBuf);

Output bDone BOOL FALSE TRUE：Processing of input data
from poqDataIn is completed.

bBusy BOOL FALSE TRUE: FB is in progress.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

wErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

poqDataOut POINTER TO
SMC_OUTQUE
UE

- An address to the CNC table which
manages corrected
SMC_GEOINFO objects

(Note 1) If the input variables are not set correctly, bBusy remains TRUE and the function block will not be
executed without error.

(Note 2) Do not set SMC_GEOINFO objects that are specified in other function blocks.

● Use this function block with the bAppend input of SMC_NCDecoder and SMC_NCInterpreter
set to FALSE.

● To perform coordinate conversion when using this function block, set 3D mode using G17, etc.
However, it cannot be used in combination with coordinate rotation conversion.

● Timing synchronization by G75 cannot be used during tool radius correction. Execute G75 after
movement to the line following G40 (after radius correction is canceled).
For details, refer to "Example: Combined use of timing synchronization by G75 and tool
correction".

● For the method of using G40, G41, and G42, refer to "8.6.10 G40, G41, G42: Tool Radius
Correction for Path".

8.3 Pre-processing after decoding

8-30 WUME-GM1PGR-10

8.4 Control calculation

8.4.1 SMC_Interpolator (CNC Control Operation)

This is a function block (FB) that converts a continuous path described by SMC_GEOINFO
objects into discrete path position points taking into account a defined velocity profile and time
pattern. Execute the function block by MotionTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input bExecute BOOL FALSE Starts execution at the rising edge.

poqDataIn POINTER TO
SMC_OUTQUE
UE

- Specifies a pointer to the CNC file.
Input the poqDataOut output of
"8.3 Pre-processing after decoding".

bSlow_Stop BOOL FALSE TRUE: Executes deceleration stop
according to the velocity profile
(iVelMode).
FALSE: The pause is canceled.

bEmergency_Stop BOOL FALSE TRUE: Causes an emergency stop,
so that piSetPosition will be
retained at the current value and
the velocity will be set to 0.(Note 1)

FALSE: The emergency stop is
canceled.

bWaitAtNextStop(Note

4)
BOOL FALSE TRUE: Executes a pause at points

in the CNC program where the
velocity between paths becomes
zero.

8.4 Control calculation

WUME-GM1PGR-10 8-31

Scope Name Type Default value Description
FALSE: The pause is canceled.

dOverride LREAL 1 This parameter can be used to
handle the override, and the
velocity gets scaled. (0.01 -)(Note 2)

The modified override will only be
applied if axis acceleration or
deceleration is not in progress.

iVelMode SMC_INT_VEL
MODE

TRAPEZOID Specifies a velocity profile.(Note 3)

dwIpoTime DWORD 0 MotionTask interval (μsec)

dLastWayPos LREAL 0 The total length of the path
generated by the CNC control
operation can be measured.
To use this, dLastWayPos needs to
be connected to dWayPos.

bAbort BOOL FALSE TRUE: Execution of the FB is
stopped.

bSingleStep(Note 4) BOOL FALSE TRUE: All connections between
paths are established through
deceleration stop.

bAcknM BOOL FALSE TRUE：Output wM is cleared and
processing resumes from the
paused state.
Since the processing resumes
when the launch of TRUE is
detected, keep the input at TRUE
for one cycle and return it to
FALSE.

bQuick_Stop BOOL FALSE TRUE: Reduces the velocity of the
object to zero and stops it.
The velocity is reduced according to
the velocity profile specified in
iVelMode and the deceleration
given by the maximum of the values
specified in dQuickDeceleration and
programmed in the path.

If a quadratic velocity profile is
used, the jerk is limited by
max(dJerkMax, dQuickStopJerk).
FALSE: Cancels deceleration stop.

dQuickDeceleration LREAL 0 Specifies a deceleration value used
for bQuick_Stop.

dJerkMax LREAL 0 Magnitude of the maximum allowed
jerk used for quadratic velocity
profiles
Must be positive and cannot be
changed while performing a CNC
control operation

dQuickStopJerk LREAL 0 Specifies the jerk used for
bQuick_Stop.

8.4 Control calculation

8-32 WUME-GM1PGR-10

Scope Name Type Default value Description

bSuppressSystemMFu
nctions

BOOL FALSE TRUE: The output wM is not set
when G75 or G4 command is
executed.

Output bDone BOOL FALSE TRUE: Output is completed.

bBusy BOOL FALSE TRUE: Execution of the FB is not
completed.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

wErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output during CNC control
operation

piSetPosition SMC_POSINFO - The target coordinates of the next
position set by CNC control
operation (Cartesian coordinate
system)

iStatus SMC_INT_STAT
US

IPO_INIT The status of CNC control operation

bWorking BOOL FALSE TRUE: The process is underway.
Specify this output for the bEnable
input of SMC_ControlAxisByPos.

iActObjectSourceNo DINT -1 Outputs a value of iSourceLine_No
of active SMC_GEOINFO object of
poqDataIn-queue.
When bWorking = FALSE, the value
is set to -1.

dActObjectLength LREAL 0 The length of the current object.
Valid if bWorking = TRUE.
A correct value may not be output.
Do not use.

dActObjectLengthRem
aining

LREAL 0 The remaning length of the current
object. Valid if bWorking = TRUE.
A correct value may not be output.
Do not use.

dVel LREAL 0 Current path velocity

vecActTangent SMC_VECTOR3
D

- Current path tangent, a unit vector

iLastSwitch INT 0 The number of the last switch H
passed

dwSwitches DWORD 0 The current switch status of H
switches 1 to 32, in bit notation

dWayPos LREAL 0 Refer to dLastWayPos.

wM WORD 0 Number of M-code where CNC
control operation is paused.

adToolLength ARRAY [0..2] OF
LREAL

- Parameters for tool length
compensation

Act_Object POINTER TO
SMC_GEOINFO

0 Pointer to the CNC program in
executable format currently in
progress
The line number in progress and G-
code information can be acquired.

8.4 Control calculation

WUME-GM1PGR-10 8-33

(Note 1) Make sure that bEmergency_Stop is connected to SMC_ControlAxisByPos.bStopIpo.
(Note 2) Set dOverride to a numerical value greater than 0.01.

If set to a smaller value, no axis movement starts and no error occurs.
(Note 3) Axis velocity ramp type settings do not apply to CNC control using SMC_Interpolator.

Specify the velocity profile in iVelMode.
(Note 4) Please do not use bWaitAtNextStop and bSingleStep inputs together as setting both to TRUE may

cause the function block to operate incorrectly.

SMC_INT_VELMODE (Enumeration type)

Name Value Description

TRAPEZOID 0 Trapezoid

SIGMOID 1 Sin2

SIGMOID_LIMIT 2 Sin2 (limit)

QUADRATIC 3 Quadratic

QUADRATIC_SM
OOTH

4 Quadratic (smooth)

SMC_INT_STATUS (Enumeration type)

Name Value Description

IPO_UNKNOWN 0 Internal state that may not occur after a complete pass of the
SMC_Interpolator

IPO_INIT 1 Initialization state, movement not started yet

IPO_ACCEL 2 Currently accelerating

IPO_CONSTANT 3 Movement ongoing with constant velocity

IPO_DECEL 4 Currently decelerating

IPO_FINISHED 5 The execution of the CNC program is done. From then on,
SMC_GEOINFO object input in poqDataIn is not processed.

IPO_WAIT 6 Currently waiting by a stop input in SMC_Interpolator or a M-code
process

IPO_INCREASIN
G_ACCEL

7 Currently increasing the acceleration

IPO_DECREASIN
G_ACCEL

8 Currently decreasing the acceleration

IPO_INCREASIN
G_DECEL

9 Currently increasing the deceleration

IPO_DECREASIN
G_DECEL

10 Currently decreasing the deceleration

8.4 Control calculation

8-34 WUME-GM1PGR-10

8.4.2 SMC_GetMParameters (Get M-code Parameters)

If SMC_Interpolator is paused by an M-code, this function block (FB) can be used to get the
parameters that have been set for this M-code (K, L, O words).

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

Interpolator SMC_Interpolato
r

- Instance of the SMC_Interpolator

Input bEnable BOOL FALSE TRUE: Execution of the FB is
enabled.

Output bMActive BOOL FALSE TRUE: Processing is paused by an
M-code

dK LREAL 0 Parameter specified via word K

dL LREAL 0 Parameter specified via word L

MParameters SMC_M_PARA
METERS

- Parameters specified by a variable
of type SMC_M_PARAMETERS set
by the O-word

SMC_M_PARAMETERS (STRUCT)
This data type structure allows you to define additional parameters for the currently active M-
code that can be gotten by SMC_GetMParameters.

Name Value Default value

dP1 LREAL 0

dP2 LREAL 0

dP3 LREAL 0

dP4 LREAL 0

dP5 LREAL 0

dP6 LREAL 0

dP7 LREAL 0

dP8 LREAL 0

8.4 Control calculation

WUME-GM1PGR-10 8-35

8.4.3 SMC_PreAcknowledgeMFunction (Deactivate M-code)

This function block (FB) is designed to deactivate the process of an M-code before
SMC_Interpolator executes the M-code. This FB must be executed in the same task as the
SMC_Interporalter. By letting this FB acknowledge the M-code in advance, you can switch
between a pause by the M-code and nonpause.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input bEnable BOOL FALSE TRUE: Execution of the FB is
enabled.
Whenever this FB is executed
once, the single M-code is
deactivated and the bDone output
changes to TRUE.
To execute the FB consecutively,
immediately after the bDone output
changes to TRUE, set the bEnable
input to FALSE and set it to TRUE
again.

iM INT 0 M-code to be deactivated

poqDataIn POINTER
TO SMC_OUTQ
UEUE

- Specifies a pointer to the CNC file.
Input the poqDataOut output of
"8.3 Pre-processing after decoding".

Output bDone BOOL FALSE TRUE: M-code deactivation is
completed.

bBusy BOOL FALSE TRUE: FB is in progress.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

wErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

8.4 Control calculation

8-36 WUME-GM1PGR-10

8.5 Control command & kinematics conversion

8.5.1 SMC_ControlAxisByPos (Axis Position Control)

This function block (FB) writes the input variable fSetPosition to the drive structure
(AXIS_REF_SM3) and controls axis movement. Performs position control while monitoring
whether the axis speed exceeds the dynamic limit setting. Execute the function block by
MotionTask.

■ Icon

■ Parameter
The FB monitors if the axis velocity exceeds the dynamic limit setting. If the velocity exceeds
the limit setting, the FB outputs bStopIpo = TRUE to decelerate it. The FB adapts the axis to the
position at which the velocity exceeded the limit setting. When adaptation to the position is
completed, the FB outputs bStopIpo = FALSE and then returns to its original control.

Scope Name Type Default value Description

I/O Axis AXIS_REF_SM3 - Reference to the axis

Input iStatus SMC_INT_STAT
US

IPO_INIT Substitute iStatus of
SMC_Interpolator

bEnable BOOL FALSE TRUE: The FB can be executed.

bAvoidGaps BOOL TRUE TRUE：Enable monitoring of
dynamic limits
The axis is moved to the position
according to the values set in
fGapVelocity, fGapAcceleration, and
fGapDeceleration.

fSetPosition LREAL - Set position of the axis in (u).

fGapVelocity LREAL 1 Follow-up speed when the dynamic
limit is exceeded (u/s)
Set the value within the dynamic
limit.(Note 1)

fGapAcceleration LREAL 1 Follow-up acceleration when the
dynamic limit is exceeded (u/s^2)
Set the value within the dynamic
limit.(Note 1)

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-37

Scope Name Type Default value Description

fGapDeceleration LREAL 1E+15 Follow-up deceleration when the
dynamic limit is exceeded (u/s^2)　
Set the value within the dynamic
limit.(Note 1)

Deceleration is also used if
bAvoidGaps = FALSE, for stopping
after the change of bEnable from
TRUE to FALSE.

fGapJerk LREAL 1E+16 Follow-up jerk when dynamic limit is
exceeded (u/s^3)
Enabled when the axis velocity
ramp type is set to a value other
than “Trapezoid”

Output bBusy BOOL FALSE TRUE: FB operation is in progress.

bCommandAborted BOOL FALSE TRUE: An interruption is caused by
another FB.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

iErrorID SMC_ERROR SMC_NO_ERR
OR

Error ID output

bStopIpo BOOL FALSE TRUE：The speed of the axis
exceeds the set value of the
dynamic limit, and follow-up control
is being executed.(Note 2)

(Note 1) Do not set fGapVelocity, fGapAcceleration, and fGapDeceleration to values that exceed the axis
dynamic limit settings.

(Note 2) Make sure that bStopIpo is connected to SMC_Interpolator.bEmergency_Stop.

8.5.2 SMC_ToolLengthCorr (Tool Length Correction)

This is a function block (FB) that performs tool length correction. This FB converts the path of
the CNC program so that it is offset by the tool length. The tool length can be specified by
setting the adToolLength I/O in this FB, by setting the vStartToolLength input in the decoder FB,
or by using G43 in the CNC program file. Execute the function block by MotionTask.

■ Conversion formula
● When bForwardTrafo is set to FALSE:

piOut.dX = pi.dX - adToolLength[0]
piOut.dY = pi.dY - adToolLength[1]
piOut.dZ = pi.dZ - adToolLength[2]

● When bForwardTrafo is set to TRUE:
piOut.dX = pi.dX + adToolLength[0]
piOut.dY = pi.dY + adToolLength[1]
piOut.dZ = pi.dZ + adToolLength[2]

8.5 Control command & kinematics conversion

8-38 WUME-GM1PGR-10

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

pi SMC_PosInfo - Inputs
SMC_Interpolator.piSetPosition.

adToolLength ARRAY [0..2] OF
LREAL

- Tool length to be offset
x-, y-, and z-axis directions in order
from the smallest to the largest in
the array

Input eOriConv SMC_ORI_CON
VENTION

ZYZ When set to ADDAXES, tool length
correction is not executed.(Note 1)

bForwardTrafo BOOL FALSE FALSE: Executes backward
conversion in which the tool length
is subtracted from the path
coordinates.
TRUE: Executes forward
conversion in which the tool length
is added to the path coordinates.

Output piOut SMC_PosInfo - Inputs to the function block for
kinematics conversion.

(Note 1) Set the eOriconv input of the decoder (SMC_NCDecoder or SMC_NCInterpreter) and that of
SMC_ToolLengthCorr to the same value.

■ Setting the tool length
There are the following two methods to set the tool length.
● Method 1: Specifying only the tool number in the CNC program to perform tool length

correction
Set and manage tool information (SMC_Vector3d, etc.) in advance in the program according to
the tool to be used. To change the tool under CNC program control, use the M-code to call the
required tool information.
Set the tool length information in the adToolLength I/O of SMC_ToolLengthCorr in the program
and specify the tool length to be corrected.
● Method 2: Specifying the tool length correction value in the CNC program to perform

correction
Set the tool length at the start of operation in the vStartToolLength input of SMC_NCDecoder or
SMC_NCInterpreter. To change the correction tool length later under CNC program control, use
G43 to specify the tool length in the CNC program file.
Note that the value of vStartToolLength is used only at the start of decoding. This means that
changes made under CNC program control will not be reflected in the operation.
For details on each method, refer to "Example: Tool length correction in z-axis direction".

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-39

● Use SMC_ControlAxisByPos with bAvoidGaps set to TRUE. Depending on the current position
or the target position, sudden movements such as jumps in the path may occur due to the
effect of tool length correction.

● The tool length correction value is not affected by coordinate conversion. With the tool length is
set in the x-, y-, and z-axis directions in the coordinate system before coordinate conversion,
tool length correction is applied to the path after coordinate conversion.

● For the method of using G43, refer to "8.6.11 G43: Tool Length Correction".

8.5 Control command & kinematics conversion

8-40 WUME-GM1PGR-10

8.5.3 SMC_TRAFO_Polar (Conversion from Two-dimensional (X, Y)
Coordinates to Polar Coordinates)

This function block (FB) converts two-dimensional (X, Y) coordinates into polar (R, φ)
coordinates. The calculation of and conversion to R and φ are performed as follows.Please
execute it as a motion task.

■ Conversion formula
R = (X^2 ＋ Y^2)^0.5 + offsetR　φ=Atan(Y / X) + offsetφ　
When X = 0, φ = 90 deg (Y > 0) or -90 deg (Y≦ 0)　
When Y =0, φ= 0 deg (X > 0) or -180 deg (X < 0)　

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - Two-dimensional (X, Y) coordinates

dOffsetR LREAL 0 Offset for radial distance axis R

dOffsetPhi LREAL 0 Offset for angular direction axis φ in
degree

Output dR LREAL - Position of radial distance axis R
after conversion

dPhi LREAL - Position of angular direction axis φ
in degree after conversion(Note 1)

(Note 1) An angle that forms φ = 180 deg is converted as an angle of φ = -180 deg.

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-41

8.5.4 SMC_TRAFOF_Polar (Conversion from Polar Coordinates to Two-
dimensional (X, Y) Coordinates)

This function block (FB) converts polar (R, φ) coordinates into two-dimensional (X, Y)
coordinates. The calculation of and conversion to X and Y are performed as follows.Please
execute it as a motion task.

■ Conversion formula
X = (R + offsetR) * cos(φ + offsetφ)　Y = (R + offsetR) * sin(φ + offsetφ)　
The norm after normalization with the maximum radius is calculated below.
nX = X / (dmaxR - offsetR)　
nY = Y / (dmaxR - offsetR)　
nR = (R - offsetR) / (dmaxR - offsetR)　

■ Icon

■ Parameter

Scope Name Type Default value Description

I/O DriveR AXIS_REF_SM3 - Reference to current position of
radial distance axis R, fActPotion

DrivePhi AXIS_REF_SM3 - Reference to current position of
angular direction axis φ, fActPotion

Input dOffsetR LREAL 0 Offset for radial distance axis R

dOffsetPhi LREAL 0 Offset for angular direction axis φ in
degree

dmaxR LREAL 0 Maximum radius R (> 0) used in
normalization(Note 1)

Output bError BOOL FALSE TRUE if conversion is not possible

dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

dnx LREAL 0 A position vector to the X-
coordinate after conversion (after
normalized by maximum radius)

dny LREAL 0 A position vector to the Y-
coordinate after conversion (after
normalized by maximum radius)

8.5 Control command & kinematics conversion

8-42 WUME-GM1PGR-10

Scope Name Type Default value Description

dnr LREAL 0 Norm after normalized by maximum
radius

(Note 1) If the function block operates under the initial conditions of dmaxR = 0 and dOffsetR = 0, an exception
error occurs.

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-43

8.5.5 SMC_TRAFO_Bipod_Arm (Bipod robot hand XY coordinates →
conversion of each axis position)

It is a function block (FB) that converts the XY coordinates of the hand of the Bipod robot into
the angle information of each axis motor. Please execute it as a motion task.

■ Conversion formula
dA ={-180-atan(Yo/Xa)} + acos {(L1^2 +Xa^2+Yo^2-L2^2)/(2*L1*(Xa^2+Yo^2)^1/2)} +dOffsetA
dB = atan(Yo/Xb) + acos {(L1^2 +Xb^2+Yo^2-L2^2)/(2*L1*(Xb^2+Yo^2)^1/2)} +dOffsetB
・When L2 > L1+D/2, Yo=Y-(L2^2-(L1+D/2)^2)^1/2 Other than that, Yo=Y
・Xa= X+1/2*D、Xb= X-1/2*D、L1=dArmLength1、L2=dArmLength2、D=dDistance
・When Xa = 0, atan (Yo / Xa) => -90, when Xb = 0, atan (Yo / Xb) => -90
・An error will occur if any of the following conditions are met:
1. Yo > 0
2. L1 ≦ 0 or L2 ≦ 0 or D < 0
3. (Xa^2+Yo^2)^1/2 >　L1+L2 or (Xb^2+Yo^2)^1/2 >　L1+L2
4. Posture that cannot be taken due to the mechanism

● Please check the operating range according to the parameters in advance before use.
● Note that when L2> L1 + 1 / 2D, the origin position shifts in the Y direction by (L2 ^ 2- (L1 +

D / 2) ^ 2) ^ 1/2 minutes.

8.5 Control command & kinematics conversion

8-44 WUME-GM1PGR-10

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - XY2D coordinates of the hand

dArmLength1(Note 1) LREAL 0 Length from motor to joint(Note 2)

dArmLength1>0

dArmLength2(Note 1) LREAL 0 Length from joint to hand(Note 2)

dArmLength2>0

dDistance(Note 1) LREAL 0 Distance between two motors
dDistance≧0

dOffsetA(Note 1) LREAL 0 Reference offset angle of left motor

dOffsetB(Note 1) LREAL 0 Reference offset angle of right
motor

Output bError BOOL FALSE TRUE: Argument or error in
calculation process

dA LREAL 0 Angle of left motor to hand position

dB LREAL 0 Angle of right motor to hand
position

(Note 1) Even if the values of dArmLength1, dArmLength2, dDistance, dOffsetA, and dOffsetB are changed
after executing FB of the same instance, they are not reflected.

(Note 2) If the function block is operated with the initial value of dArmLength1 = 0 and dArmLength2 = 0, an
exception error will occur.

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-45

8.5.6 SMC_TRAFO_Gantry2 (Convert XY Gantry Coordinates to Positions of
Axes)

This is a function block (FB) that converts XY gantry coordinates (Xin, Yin) to positions of the
motor axes.　Execute the function block by MotionTask.

■ Conversion formula
dx = Xin + dOffsetX
dy = Yin + dOffsetY

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - Two-dimensional (X, Y) coordinates

dOffsetX LREAL 0 Offset for x-axis

dOffsetY LREAL 0 Offset for y-axis

Output dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

8.5 Control command & kinematics conversion

8-46 WUME-GM1PGR-10

8.5.7 SMC_TRAFOF_Gantry2 (Conversion Positions of Axes -> XY Gantry
Coordinates)

This is a function block (FB) that converts positions of the motor axes to XY gantry coordinates
(Xout, Yout).　Execute the function block by MotionTask.

■ Conversion formula
dx = X - dOffsetX
dy = Y - dOffsetY
When maxX - minX > 0 and maxY - minY > 0,

ratio = (maxX-minX)/(maxY-minY)
When ratio ≤ 1, dnOffsetX = ratio, dnOffsetY = 1
When ratio > 1, dnOffsetX = 1, dnOffsetY = 1 / ratio
dnx = dnOffsetX*(X-minX-dOffsetX)/(maxX-minX)
dny = dnOffsetY*(Y-minY-dOffsetY)/(maxY-minY)

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

DriveX AXIS_REF_SM3 - Specifies the x-axis.

DriveY AXIS_REF_SM3 - Specifies the y-axis.

Input dOffsetX LREAL 0 Offset x (x-axis component)

dOffsetY LREAL 0 Offset y (y-axis component)

minX LREAL 0 Lower bound of move range along
x-axis

maxX LREAL 0 Upper bound of move range along
x-axis

minY LREAL 0 Lower bound of move range along
y-axis

maxY LREAL 0 Upper bound of move range along
y-axis

Output dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

dnx LREAL 0 A position vector to the X-
coordinate after conversion (after
normalized by move range)

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-47

Scope Name Type Default value Description

dny LREAL 0 A position vector to the Y-
coordinate after conversion (after
normalized by move range)

ratio LREAL 0 Ratio between x-axis and y-axis
move ranges

dnOffsetX LREAL 0 X-offset for normalization

dnOffsetY LREAL 0 Y-offset for normalization

8.5 Control command & kinematics conversion

8-48 WUME-GM1PGR-10

8.5.8 SMC_TRAFO_Gantry3 (Convert XYZ Gantry Coordinates to Positions of
Axes)

This is a function block (FB) that converts XYZ gantry coordinates (Xin, Yin, Zin) to positions of
the motor axes.　Execute the function block by MotionTask.

■ Conversion formula
dx = Xin + dOffsetX
dy = Yin + dOffsetY
dz = Zin + dOffsetZ

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - Three-dimensional XYZ coordinates

dOffsetX LREAL 0 Offset for x-axis

dOffsetY LREAL 0 Offset for y-axis

dOffsetZ LREAL 0 Offset for z-axis

Output dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

dz LREAL 0 Z-coordinate after conversion

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-49

8.5.9 SMC_TRAFOF_Gantry3 (Conversion Positions of Axes -> XYZ Gantry
Coordinates)

This is a function block (FB) that converts positions of the motor axes to XYZ gantry
coordinates (Xout, Yout, Zout).　Execute the function block by MotionTask.

■ Conversion formula
dx = Xin - dOffsetX
dy = Yin - dOffsetY
dz = Zin - dOffsetZ
When maxX - minX > 0 and maxY - minY > 0,

ratio = (maxX-minX)/(maxY-minY)
When ratio ≤ 1, dnOffsetX = ratio, dnOffsetY = 1
When ratio > 1, dnOffsetX = 1, dnOffsetY = 1 / ratio
dnx = dnOffsetX*(Xin-minX-dOffsetX)/(maxX-minX)
dny = dnOffsetY*(Yin-minY-dOffsetY)/(maxY-minY)

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

DriveX AXIS_REF_SM3 - Specifies the x-axis.

DriveY AXIS_REF_SM3 - Specifies the y-axis.

DriveZ AXIS_REF_SM3 - Specifies the z-axis.

Input dOffsetX LREAL 0 Offset x (x-axis component)

dOffsetY LREAL 0 Offset y (y-axis component)

dOffsetZ LREAL 0 Offset y (z-axis component)

minX LREAL 0 Lower bound of move range along
x-axis

maxX LREAL 0 Upper bound of move range along
x-axis

minY LREAL 0 Lower bound of move range along
y-axis

maxY LREAL 0 Upper bound of move range along
y-axis

Output dx LREAL 0 X-coordinate after conversion

8.5 Control command & kinematics conversion

8-50 WUME-GM1PGR-10

Scope Name Type Default value Description

dy LREAL 0 Y-coordinate after conversion

dz LREAL 0 Z-coordinate after conversion

dnx LREAL 0 A position vector to the X-
coordinate after conversion (after
normalized by move range)

dny LREAL 0 A position vector to the Y-
coordinate after conversion (after
normalized by move range)

ratio LREAL 0 Ratio between x-axis and y-axis
move ranges

dnOffsetX LREAL 0 X-offset for normalization

dnOffsetY LREAL 0 Y-offset for normalization

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-51

8.5.10 SMC_TRAFO_GantryCutter2 (Convert XY Gantry Coordinates with Tool
rotation to Positions of Axes)

This is a function block (FB) that converts XY gantry coordinates (Xin, Yin) with a tool rotation
axis to positions of the motor axes.　Execute the function block by MotionTask.

■ Conversion formula
dx = Xin + dOffsetX
dy = Yin + dOffsetY
dr = 180.0/π * iDirectionR * atan(Vy/Vx) + dOffsetR
wherein when Vx = 0 and Vy = 0, dr = 0, and calculation results are corrected in the range 0 ≤
dr < 360.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - Two-dimensional (X, Y) coordinates

v SMC_VECTOR3
D

- Current path tangent, a unit vector

dOffsetX LREAL 0 Offset for x-axis

dOffsetY LREAL 0 Offset for y-axis

dOffsetR LREAL 0 Offset for rotation axis

iDirectionR INT 1 Rotation factor
The rotation direction can be set to
either a positive or negative value.

Output dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

dr LREAL 0 Rotation angle (deg) after
conversion

8.5 Control command & kinematics conversion

8-52 WUME-GM1PGR-10

8.5.11 SMC_TRAFO_GantryCutter3 (Convert XYZ Gantry Coordinates with
Tool rotation to Positions of Axes)

This is a function block (FB) that converts XYZ gantry coordinates (Xin, Yin, Zin) with a tool
rotation axis to positions of the motor axes.　Execute the function block by MotionTask.

■ Conversion formula
dx = Xin + dOffsetX
dy = Yin + dOffsetY
dz = Zin + dOffsetZ
dr = 180.0/π * iDirectionR * atan(Vy/Vx) + dOffsetR
wherein when Vx = 0 and Vy = 0, dr = 0, and calculation results are corrected in the range 0 ≤
dr < 360.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - Two-dimensional (X, Y) coordinates

v SMC_VECTOR3
D

- Current path tangent, a unit vector

dOffsetX LREAL 0 Offset for x-axis

dOffsetY LREAL 0 Offset for y-axis

dOffsetZ LREAL 0 Offset for z-axis

dOffsetR LREAL 0 Offset for rotation axis

iDirectionR INT 1 Rotation factor
The rotation direction can be set to
either a positive or negative value.

Output dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

dz LREAL 0 Z-coordinate after conversion

dr LREAL 0 Rotation angle R (deg) after
conversion

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-53

8.5.12 SMC_TRAFO_Scara2 (Conversion from Hand Coordinates of a 2-link
SCARA Robot to Angle Information of Each Axis Motor)

This is a function block (FB) that converts hand coordinate pi (X, Y) of a 2-link SCARA robot to
angle information of each axis motor. The angle of the hand is not included in the control.
Execute the function block by MotionTask.

■ Conversion formula

dA = ± acos[(X2 + Y2 + dArmLength12 - dArmLength22) / {2 * dArmLength1 * (X2 + Y2)1/2}] +
dOffsetA
dB = atan[{Y - dArmLength1 * sin(dA - dOffsetA)} / {X - dArmLength1 * cos(dA - dOffsetA)}] +
dOffsetB

● When bElbowLow = TRUE, the first item of dA takes the minus sign.
● The angle to be output is limited to the following ranges.

When X ≤ 0: -180° ≤ dA - dOffsetA < 180°
When X > 0: -180° < dA - dOffsetA ≤ 180°
-180° ≤ dB - dOffsetB < 180°

When any one of the following conditions is satisfied, bError turns TRUE and conversion is not
executed.
● When arm lengths are all 0

dArmLength1 = dArmLength2 = 0
● When hand coordinates are located outside the range that can be reached by the two arms

(X2 + Y2)1/2 > dArmLength1 + dArmLength2
● When hand coordinates are located inside beyond the range that can be reached by folding

the two arms
|dArmLength1 - dArmLength2| > (X2 + Y2)1/2

● When the posture cannot be taken due to the mechanism
• X = Y = 0

y

xO

dA

pi(X, Y)

dB
dArmLength1

dArmLength2

y

xO

pi(X, Y)

dArmLength1 dArmLength2

dA

dB

Y

X

Y

X

◆bElbowLow = TRUE ◆bElbowLow = FALSE

8.5 Control command & kinematics conversion

8-54 WUME-GM1PGR-10

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - Two-dimensional (X, Y)
coordinates.

dOffsetA LREAL 0 Offset angle (deg) of the first joint

dOffsetB LREAL 0 Offset angle (deg) of the second
joint

dArmLength1 LREAL 0 Length of the first arm(Note 1)

dArmLength2 LREAL 0 Length of the second arm(Note 1)

bElbowLow BOOL FALSE Specifies the posture of the arm
joint. (See Figure.)

Output bError BOOL FALSE TRUE: An error has occurred in the
argument or calculation process.

dA LREAL 0 Angle (deg) of the first joint relative
to the hand position

dB LREAL 0 Angle (deg) of the second joint
relative to the hand position

(Note 1) Enter a value larger than 0.

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-55

8.5.13 SMC_TRAFO_Scara3 (Conversion from Hand Coordinates of a 3-link
SCARA Robot to Angle Information of Each Axis Motor)

This is a function block (FB) that converts hand coordinate pi (X, Y) of a 3-link SCARA robot,
equipped with a 1-link mechanism that maintains the posture of the tip tool to a constant
direction, to angle information of each axis motor. Since conversion is made to maintain the
same posture for the tip tool, when the tip angle needs to be changed such as for picking and
placing the workpiece, it is necessary to control the tip angle by superimposing on the hand
angle. Execute the function block by MotionTask.

■ Conversion formula

dA = ± acos[(X'2 + Y'2 + dArmLength12 - dArmLength22) / {2 * dArmLength1 * (X'2 + Y'2)1/2}]
+ atan(Y'/X') + dOffsetA
dB = atan[{Y' - dArmLength1 * sin(dA - dOffsetA)} / {X' - dArmLength1 * cos(dA - dOffsetA)}] -
(dA - dOffsetA) + dOffsetB
dC = dDirection - (dA + dB) + dOffsetC

● X' = X - dArmLength3 * cos(dDirection), Y' = Y - dArmLength3 * sin(dDirection)
● When bElbowLow = TRUE, the first item of dA takes the minus sign.
● The angle to be output is limited to the following ranges.

When X' ≤ 0: -180° ≤ dA - dOffsetA < 180°
When X' > 0: -180° < dA - dOffsetA ≤ 180°
-180° ≤ dB - dOffsetB < 180°
0° ≤ dC < 360°

When any one of the following conditions is satisfied, bError turns TRUE and conversion is not
executed.
● When either one of the 2-link arm lengths is 0

dArmLength1 = 0
dArmLength2 = 0

● When hand coordinates are located outside beyond the range that can be reached by the
two arms

(X'2 + Y'2)1/2 > dArmLength1 + dArmLength2
● When hand coordinates are located inside beyond the range that can be reached by folding

the two arms
|dArmLength1 - dArmLength2| > (X'2 + Y'2)1/2

● When the posture cannot be taken due to the mechanism
• X' = Y' = 0

8.5 Control command & kinematics conversion

8-56 WUME-GM1PGR-10

Y

XX'

Y'

y

xO

dArmLength2

pi(X, Y)

dC
dDirection

dA

dArmLength1

dB

dArmLength3
y

xO
dA

dB

pi(X, Y)

dC

dDirection

dArmLength2

dArmLength1

dArmLength3Y

XX'

Y'

◆bElbowLow = TRUE ◆bElbowLow = FALSE

■ Icon

■ Parameter

Scope Name Type Default value Description

Input pi SMC_PosInfo - Two-dimensional (X, Y)
coordinates.

dDirection LREAL 0 Direction (deg) of the tip tool
Example) 0: +X direction, 90: +Y
direction

dOffsetA LREAL 0 Offset angle (deg) of the first joint

dOffsetB LREAL 0 Offset angle (deg) of the second
joint

dOffsetC LREAL 0 Offset angle (deg) of the third joint

dArmLength1 LREAL 0 Length of the first arm(Note 1)

dArmLength2 LREAL 0 Length of the second arm(Note 1)

dArmLength3 LREAL 0 Length of the third arm(Note 2)

bElbowLow BOOL FALSE Specifies the posture of the 2-link
arm. (See Figure.)

Output bError BOOL FALSE TRUE: An error has occurred in the
argument or calculation process.

dA LREAL 0 Angle (deg) of the first joint relative
to the hand position

dB LREAL 0 Angle (deg) of the second joint
relative to the hand position

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-57

Scope Name Type Default value Description

dC LREAL 0 Angle (deg) of the third joint relative
to the hand position

(Note 1) Enter a value larger than 0.
(Note 2) Enter a value of 0 or larger.

8.5 Control command & kinematics conversion

8-58 WUME-GM1PGR-10

8.5.14 SMC_TRAFOF_Scara2 (Conversion from Angle Information of Each
Axis Motor to Hand Coordinates of a 2-link SCARA Robot)

This is a function block (FB) that converts angle information of each axis motor to hand
coordinates (dX, dY) of a 2-link SCARA robot. Execute the function block by MotionTask.

■ Conversion formula
dx = dArmLength1 * cos(dAlpha) + dArmLength2 * cos(dAlpha + dBeta)
dy = dArmLength1 * sin(dAlpha) + dArmLength2 * sin(dAlpha + dBeta)
dAlpha = DriveA.fActPosition - dOffsetA
dBeta = DriveB.fActPosition - dOffsetB
dR1 = dArmLength1 / (dArmLength1 + dArmLength2)
dR2 = dArmLength2 / (dArmLength1 + dArmLength2)

When any one of the following conditions is satisfied, bError turns TRUE and conversion is not
executed.
● When either one of the arm lengths is 0

dArmLength1 = 0
dArmLength2 = 0

● When the posture cannot be taken due to the mechanism

y

xO

DriveA.fActPosition - dOffsetA

dArmLength1

dArmLength2

(dX, dY)

DriveB.fActPosition - dOffsetB

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-59

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

DriveA AXIS_REF_SM3 - Specifies the axis of the first joint.

DriveB AXIS_REF_SM3 - Specifies the axis of the second
joint.

Input dOffsetA LREAL 0 Offset angle (deg) of the first joint

dOffsetB LREAL 0 Offset angle (deg) of the second
joint

dArmLength1 LREAL 0 Length of the first arm(Note 1)

dArmLength2 LREAL 0 Length of the second arm(Note 1)

Output bError BOOL FALSE TRUE: An error has occurred in the
argument or calculation process.

dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

dAlpha LREAL 0 Angle (deg) of the first joint without
offset

dBeta LREAL 0 Angle (deg) of the second joint
without offset

dpx LREAL 0 Do not use.

dpy LREAL 0 Do not use.

dnx LREAL 0 Do not use.

dny LREAL 0 Do not use.

dR1 LREAL 0 Ratio of the first arm relative to the
entire arm length

dR2 LREAL 0 Ratio of the second arm relative to
the entire arm length

(Note 1) Enter a value larger than 0.

8.5 Control command & kinematics conversion

8-60 WUME-GM1PGR-10

8.5.15 SMC_TRAFOF_Scara3 (Conversion from Angle Information of Each
Axis Motor to Hand Coordinates of a 3-link SCARA Robot)

This is a function block (FB) that converts angle information of each axis motor.to hand
coordinates (dX, dY) of a 3-link SCARA robot. Execute the function block by MotionTask.

■ Conversion formula
dx = dArmLength1 * cos(dAlpha) + dArmLength2 * cos(dAlpha + dBeta) + dArmLength3 *
cos(dAlpha + dBeta + dGamma)
dy = dArmLength1 * sin(dAlpha) + dArmLength2 * sin(dAlpha + dBeta) + dArmLength3 *
sin(dAlpha + dBeta + dGamma)
dAlpha = DriveA.fActPosition - dOffsetA
dBeta = DriveB.fActPosition - dOffsetB
dGamma = DriveC.fActPosition - dOffsetC
dR1 = dArmLength1 / (dArmLength1 + dArmLength2 + dArmLength3)
dR2 = dArmLength2 / (dArmLength1 + dArmLength2 + dArmLength3)
dR3 = dArmLength3 / (dArmLength1 + dArmLength2 + dArmLength3)

When any one of the following conditions is satisfied, bError turns TRUE and conversion is not
executed.
● When arm lengths are all 0

dArmLength1 = dArmLength2 = dArmLength3 = 0
● When the posture cannot be taken due to the mechanism

y

xO

dArmLength1

dArmLength2

dArmLength3

DriveA.fActPosition - dOffsetA

(dX, dY)

DriveB.fActPosition - dOffsetB

DriveC.fActPosition - dOffsetC

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-61

■ Icon

■ Parameter

Scope Name Type Default value Description

Input /
output

DriveA AXIS_REF_SM3 - Specifies the axis of the first joint.

DriveB AXIS_REF_SM3 - Specifies the axis of the second
joint.

DriveC AXIS_REF_SM3 - Specifies the axis of the third joint.

Input dOffsetA LREAL 0 Offset angle (deg) of the first joint

dOffsetB LREAL 0 Offset angle (deg) of the second
joint

dOffsetC LREAL 0 Offset angle (deg) of the third joint

dArmLength1 LREAL 0 Length of the first arm(Note 1)

dArmLength2 LREAL 0 Length of the second arm(Note 1)

dArmLength3 LREAL 0 Length of the third arm(Note 1)

Output bError BOOL FALSE TRUE: An error has occurred in the
argument or calculation process.

dx LREAL 0 X-coordinate after conversion

dy LREAL 0 Y-coordinate after conversion

dAlpha LREAL 0 Angle (deg) of the first joint without
offset

dBeta LREAL 0 Angle (deg) of the second joint
without offset

dGamma LREAL 0 Angle (deg) of the third joint without
offset

dpx LREAL 0 Do not use.

dpy LREAL 0 Do not use.

dppx LREAL 0 Do not use.

dppy LREAL 0 Do not use.

8.5 Control command & kinematics conversion

8-62 WUME-GM1PGR-10

Scope Name Type Default value Description

dnx LREAL 0 Do not use.

dny LREAL 0 Do not use.

dR1 LREAL 0 Ratio of the first arm relative to the
entire arm length

dR2 LREAL 0 Ratio of the second arm relative to
the entire arm length

dR3 LREAL 0 Ratio of the third arm relative to the
entire arm length

(Note 1) Enter a value larger than 0.

8.5 Control command & kinematics conversion

WUME-GM1PGR-10 8-63

8.6 CNC Program Operation and Setting Method

This chapter explains CNC program operation.

8.6.1 CNC Editor and Coding Rules

There are the following rules on coding of CNC programs.

■ Line number (N number)
G-codes must be written in lines that begin with an N-number (N**) in the range of 0 to
4294967295. Although duplicate N numbers do not cause any problem in operation, it is difficult
to distinguish the N number being executed.
Example:

N10 G01 X0 Y0 Z0 F10
N20 G01 X100 Y100 Z100 F10

By selecting CNC>Renumber CNC Program from the GM Programmer menu, you can
renumber the line numbers in increments of 10 starting from N000.

■ Only one G-code per line
It is not permitted to write more than one G-code or the same G-code word in a single line. Split
the G-codes as shown below in coding.
● Acceptable coding

N01 G17
N02 G01 X10 Y10 F10
N03 G01 X20

● Unacceptable coding
N01 G17 G01 X10 Y10 F10

or
N01 G17
N02 G01 X10 Y10 F10 X20

■ G-code omitted writing
If a G-code is omitted in a line, the previously executed G-code is assumed and executed. G-
codes that can be omitted are G00 and G01 for linear interpolation and G02 and G03 for
circular interpolation.
Example: G01 is omitted in N20 and N30 lines.

N10 G01 X0 Y0 Z0 F10
N20 X100 Y100
N30 Z100

The above coding and the following coding
N10 G01 X0 Y0 Z0 F10
N20 G01 X100 Y100
N30 G01 Z100

are equivalent.

8.6 CNC Program Operation and Setting Method

8-64 WUME-GM1PGR-10

■ G-code word omitted writing
Some G-code words can be omitted when writing a CNC program, such as target position X, Y,
Z, etc.

G-code word Set value Description

X、Y、Z Target position in interpolated movement
Position shift amount in coordinate
conversion
Start position specification

Can be omitted
Writing only X, Y, or Z is acceptable.

I、J、K Center point of circular interpolation in
center-point approach
Tool length

Can be omitted
Writing only I, J, or K is acceptable.

Normal vector for plane designation Cannot be omitted
All of I, J, and K must be specified

Scaling factor for coordinate conversion All of I, J, and K must be specified, if
written

Parameters using other G-code words must be written. For details, refer to the description of
each G-code.

■ Velocity, acceleration, and deceleration settings
Motion velocity, acceleration, and deceleration settings can be omitted. If they are omitted in the
SMC_CNC_REF type or SMC_OUTQUEUE type program, the "default values" in the CNC
program setting properties will be applied to movements. For CNC program files, the default
values set in "SMC_ReadNCFile2" will be applied to movements.
To change these settings in a CNC program, write the program with the following G-code
words.

Set value Code Remarks

Velocity Fxxx (xxx: Velocity) The unit is u/s.

Acceleration,
deceleration Exxx (xxx: Acceleration, deceleration)

Xxx > 0: Specifies acceleration.
Xxx < 0: Specifies deceleration.

Velocity, acceleration, and deceleration can be specified in the following ways.
● Example 1: Batch specification

Once you set velocity, acceleration, and deceleration, the same velocity, acceleration, and
deceleration will be applied until you change the values.

N00　F100 E10 E-10
N10　G01 X100 Y50 Z10

● Example 2: Sequential setting
Specify velocity, acceleration, and deceleration for every interpolation operation. When you
change velocity, acceleration, or deceleration settings in the CNC program more than once,
using this input method can prevent input mistakes.

N10 G01 X100 Y50 Z10 F100 E10 E-10
N20 G01 X150 Y100 Z50 F200 E5 E-5

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-65

■ Use of variables (global variables) in CNC programs
Variables declared in POU can be used in CNC programs. To use a variable in a CNC program,
specify it between $ marks. This method can be used only when the CNC program of
SMC_CNC_REF type is created.
Example: Using a variable declared as Variable in POU for the variable to be set with G36

N10 G01 X0 Y0 Z0 F10
N20 G36 O$POU.Variable$ D5

● For CNC programs, only half size alphanumeric characters can be used. You cannot use full
size characters.
In addition, symbols can be used only in global variable names.

● Separate each G-code and parameter with a half size space.
● Do not include half size spaces between the letter G of each G-code and its number or

between the word X, Y, or Z and its number.
● The portion enclosed in parentheses () is regarded as a comment.

8.6.2 List of G-codes

G-code is a method of writing programs in NC programming of machines. The G-codes used in
the GM1 controller conform to the "Din 66025" standard.
Each G-code operation will be described later.

G-code Function Description Remarks

G00 Fast-forward linear
interpolation Executes rapid linear interpolation. End point: X, Y, Z, Velocity: FF,

Acceleration: FE

G01 Linear interpolation Executes linear interpolation End point: X, Y, Z, Velocity: F,
Acceleration: E

G02 Circular interpolation
(clockwise)

Executes circular interpolation
(clockwise) End point: X, Y, Z

Center point: I (X), J (Y), K (Z)
Radius: RG03 Circular interpolation

(counterclockwise)
Executes circular interpolation
(counterclockwise)

G04 Dwell time Sets a time to wait until next movement
is started Time specified in seconds: T

G05 Spline interpolation (2D
mode)

Executes spline interpolation in 2D
mode. End point: X, Y, Z, Velocity: F,

Acceleration: E
G10 Spline interpolation (3D

mode)
Executes spline interpolation in 3D
mode.

G08 Elliptic interpolation
(clockwise)

Executes elliptic interpolation
(clockwise).

Target coordinates: X, Y
Center point: I(X), J(Y)
Ratio: R, Angle: K, Velocity: F,
Acceleration: EG09 Elliptic interpolation

(counterclockwise)
Executes elliptic interpolation
(counterclockwise).

G15 Plane specification
(X/Y)· 2D mode switch

Deactivates 3D mode, and activates 2D
mode for XY-plane specification. Default

G16 Arbitrary plane
specification

Specifies arbitrary plane with normal
vector (I, J, K). Activates 3D mode.(Note 2)

8.6 CNC Program Operation and Setting Method

8-66 WUME-GM1PGR-10

G-code Function Description Remarks

G17 XY plane specification Executes circular interpolation in XY
plane.

G18 XZ plane selection Executes circular interpolation in XZ
plane.

G19 YZ plane selection Executes circular interpolation in YZ
plane.

G20 Conditional jump
Jumps to the line number specified by
the G code and executes the described
content in a loop unless the jump
condition is other than 0.

Jump condition (K)
Jump target line (L)
Writing of jump conditional
expression(Note 1)

G36 Variable setting

Writes a value to the variable.
The write variable can be used to
specify the number of jumps for G20.
Written to the internal variable unless a
variable is specified.
(The internal variable is 32-bit variable
type: 0 to 4294967295.)

Set value (D)
Set variable (O)

G37 Variable increment/
decrement

Increases or decreases the variable
value set in G36 by a specified value.
Applies to the internal variable unless a
variable is specified.

Increase/ Decrease value (D)
Increment/decrement variable
(O)

G40 End of tool radius
correction

Ends the tool radius correction by
SMC_ToolRadiusCorr.

G41
Start of tool radius
correction to left in
direction of motion

Starts tool radius correction by
SMC_ToolRadiusCorr to the left in the
direction of motion.

Tool radius (D)

G42
Start of tool radius
correction to right in
direction of motion

Starts tool radius correction by
SMC_ToolRadiusCorr to the right in the
direction of motion.

G43(Note 1) Tool length correction Executes tool length correction by
SMC_ToolLengthCorr.

Tool length in x-, y-, or z-axis
direction (I,J,or K)

G50 End of smoothing and
arc correction

Finishes the smoothing and arc
correction processing of
SMC_SmoothPath and
SMC_RoundPath.

G51 Start smoothing the
path

The path smoothing process by
SMC_SmoothPath starts.

Radius of curvature of the
spline(D)

G52 Start arc correction
between paths

The arc correction process between
paths by SMC_RoundPath starts. Radius of arc(D)

G53 Coordinate conversion
resetting

Returns to the reference coordinate
system.

G54 Absolute coordinate
conversion

Converts coordinates from the
reference coordinate system using an
absolute value. Coordinate system shift values

(X, Y, Z)
Coordinate system rotation
values (A, B, C)

Scaling factors (I, J, K)(Note 1)G55 Relative coordinate
conversion

Converts coordinates from the current
coordinate system using a relative
value. Combined use of G54 and G55
and use of multiple G55 codes are
possible.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-67

G-code Function Description Remarks

G56
Coordinate reference
point setting(Note 1)

Sets the current orientation and position
of the reference coordinate system in
the specified coordinate system.

G75 Timing synchronization Synchronizes decoding and CNC
operation timing.

G90 Absolute coordinate
specification

Specifies target coordinates as absolute
coordinates. If any of G90 and G91 are not

specified, the program runs
with G90 absolute coordinates.G91 Relative coordinate

specification
Specifies target coordinates as relative
coordinates

G92 Start position
specification

Sets the start position of CNC program
operation.

G98
Absolute coordinates
specification
(center point)

Specifies the center point of circular
interpolation as absolute coordinates If any of G98 and G99 are not

specified, the program runs
with G99 relative coordinates.

G99
Relative coordinates
specification
(center point)

Specifies the center point of circular
interpolation as relative coordinates.

(Note 1) Only CNC program files can be used.
(Note 2) To execute XYZ three-axis interpolation, specify 3D mode. The mode is by default put in the state

selected by G15 due to tool or FB argument.

8.6 CNC Program Operation and Setting Method

8-68 WUME-GM1PGR-10

8.6.3 G00, G01: Linear Interpolation

The path moves from the current coordinates to target coordinates by linear interpolation. All
the axes reach the target coordinates simultaneously. To perform continuous motion (P-point
control) through interpolation control, use G01.

Setting rules for linear interpolation

● Specifying linear interpolation

G-code Function

G00 Fast-forward linear interpolation

G01 Linear interpolation

● Parameters set for linear interpolation

Parameter name Input value

X-axis X xxx　 (xxx: target coordinate)

Y-axis Y xxx　 (xxx: target coordinate)

Z-axis
Z xxx　 (xxx: target coordinate)
* In the 2D mode, Z-axis is not subject to interpolation control and thus is
controlled at a specified velocity.

Velocity
G00 FF xxx　 (xxx: Composite velocity [u/sec])
G01 F xxx　 (xxx: Composite velocity [u/sec])　

Acceleration / deceleration

G00 EF xxx (xxx > 0: Acceleration [u/sec2]), (xxx < 0: Deceleration [u/
sec2])

G01 E xxx (xxx > 0: Acceleration [u/sec2]), (xxx < 0: Deceleration [u/sec2])
* When xxx = 0, an error occurs.

Example: 2-axis linear interpolation

Examples of setting linear interpolation in the XY-plane are shown below. In this example, target
coordinates are set as absolute coordinates.
[Setting example]

G-code example:
N01 G01 X100 Y100 F100 E500 E-500

● Explanation of G-code
N01: The X-axis and Y-axis are specified to form an XY-plane. Linear interpolation can be set
in the XY-plane according to the following values.

Current position (X0, Y0), end point (X100, Y100)
Velocity 100 [u/sec], Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-69

End Position
(X100, Y100)

Start Position
(X0, Y0)

Motion trajectory

100

f [u/s]

t [s]

synthetic speed

acceleration = 500

deceleration = -500

Example: 3-axis linear interpolation

Examples of setting linear interpolation in the XYZ-plane are shown below. In this example,
target coordinates are set as absolute coordinates.
[Setting example]

G-code example:
N11 G01 X100 Y100 Z100 F100 E500 E-500

● Explanation of G-code
N11: Linear interpolation is performed in the XYZ-plane according to the following values.

Current value (X0, Y0, Z0), end point (X100, Y100, Z100)
Velocity 100 [u/sec], Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

End Position
(X100, Y100, Z100)

Start Position
(X0, Y0, Z0) Motion

trajectory

8.6 CNC Program Operation and Setting Method

8-70 WUME-GM1PGR-10

● To perform 3-axis linear interpolation, 3D mode must be activated.
For details on how to activate 3D mode, refer to "8.6.8 G15, G16, G17, G18, G19: Plane
Specification".

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-71

8.6.4 G02, G03: Circular Interpolation

The path moves from the current coordinates to target coordinates by circular interpolation. All
the axes reach the target coordinates simultaneously.

Setting rules for circular interpolation

● Specifying a rotation direction for circular arc
The rotational direction of a circular arc can be switched by specifying a G-code.

G-code Function

G02 Circular interpolation (clockwise)

G03 Circular interpolation (counterclockwise)

● Parameters set for circular interpolation

Parameter name Input value

Target coordinates

X-axis X xxx　 (xxx: Target coordinate)

Y-axis Y xxx　 (xxx: target coordinate)

Z-axis Z xxx　 (xxx: target coordinate)

Center point

X-axis I　xxx　 (xxx: Center point coordinate)

Y-axis J　xxx　 (xxx: Center point coordinate)

Z-axis K　xxx　 (xxx: Center point coordinate)

Radius R xxx　 (xxx: Circle radius)

Velocity F xxx　 (xxx: Composite velocity [u/sec])

Acceleration / deceleration E xxx (xxx > 0: Acceleration [u/sec2]), (xxx < 0: Deceleration [u/sec2])
* When xxx = 0, an error occurs.

● For circular arcs, it is necessary to specify a start point and target position, as well as a
radius (R) or center point (I, J, K). Set either a center point or radius.

● The target position and center point of circular interpolation can be specified as relative
coordinates or absolute coordinates. For details on how to set relative coordinates or
absolute coordinates, refer to "Setting rules for coordinate specification".

● Specifying the coordinate plane for circular interpolation
For circular interpolation, it is necessary to determine the plane targeted for interpolation. If
no plane is specified, the XY-plane will be set by default.
The coordinate plane can be switched according to the G-code specification. For details of
the setting method, refer to "Setting rules for plane selection".

● For axes untargeted for interpolation
Note that if a control amount is specified for the axis that is regarded as an axis untargeted
for circular interpolation because of the plane specification, "helical interpolation" will be set.
For details on helical interpolation, refer to "Example: Helical interpolation".

8.6 CNC Program Operation and Setting Method

8-72 WUME-GM1PGR-10

Example: Circular interpolation

■ Example of setting circular interpolation with center point specified
Examples of setting circular interpolation with G-code are shown below. In these examples,
target coordinates are set as absolute coordinates and center point coordinates are set as
relative coordinates.
For circular interpolation, it is necessary to specify the coordinate plane targeted for
interpolation. When using circular interpolation, specify a coordinate plane.
● Circular interpolation by center-point approach (XY-plane)

[Setting example 1] Locus moving along semicircle

G-code example:
N00 G17
N10 G02 X100 Y0 I50 J0 F100 E500 E-500

• Explanation of G-code
N00: An XY-plane is selected. (This can be omitted when there is no need to change the
plane.)
N10: Circular interpolation is performed in the XY-plane according to the following values.

Current value (X0, Y0), end point (X100, Y0)
Center point (X50, Y0)
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

End Position
(X100, Y0)

Start Position
(X0, Y0)

Motion trajectory

Center Position
(X50, Y0)

100

f [u/s]

t [s]

synthetic speed

acceleration = 500

deceleration = -500

● Circular interpolation by center-point approach (round circle)
A round circle can be specified by omitting an end point or entering the same coordinates for
the start point and end point as below. (For center point specification only)
[Setting example 2] Locus moving along perfect circle (When end point is omitted)

G-code example:
N00 G17
N20 G02 I50 J0 F100 E500 E-500

[Setting example 3] Locus moving along perfect circle (When start point = end point)

G-code example:
N00 G17

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-73

N20 G02 X0 Y0 I50 J0 F100 E500 E-500

• Explanation of G-code
N00: An XY-plane is selected.
N20: Circular interpolation is performed clockwise in the XY-plane according to the
following values.

Current value (X0, Y0), end point (X0, Y0 or omitted)
Center point (X50, Y0)
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

Start Position
(X0, Y0)

Motion
trajectory

Center Position
(X50, Y0)

● Circular interpolation by radius approach (XY-plane)
[Setting example 4] Locus moving along semicircle

G-code example:
N00　G17
N30　G02 X100 Y0 R50 F100 E500 E-500

• Explanation of G-code
N03: An XY-plane is selected.
N04: Circular interpolation is performed in the XY-plane according to the following values.

Current value (X0, Y0), end point (X100, Y0)
Radius 50
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

8.6 CNC Program Operation and Setting Method

8-74 WUME-GM1PGR-10

End Position
(X100, Y0)

Start Position
(X0, Y0)

Motion
trajectory

Center Position
(X50, Y0)

● Circular interpolation by center-point approach (ZX-plane)
[Setting example 5] Locus moving along semicircle

G-code example:
N00 G18
N40 G03 X100 Z0 I50 K0 F100 E500 E-500

• Explanation of G-code
N00: A ZX-plane is selected.
N40: Circular interpolation is performed counterclockwise in the ZX-plane according to the
following values.

Current value (X0, Z0), end point (X100, Z0)
Center point (X50, Z0)
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-75

End Position
(X100, Z0)

Start Position
(X0, Z0)

Motion
trajectoryCenter Position

(X50, Z0)

● Circular interpolation by center-point approach (YZ-plane)
[Setting example 6] Locus moving along semicircle

G-code example:
N00 G19
N50 G02 Y100 Z0 J50 K0 F100 E500 E-500

• Explanation of G-code
N00: An YZ-plane is selected.
N50: Circular interpolation is performed clockwise in the YZ-plane according to the
following values.

Current value (Y0, Z0), end point (Y100, Z0)
Center point (Y50, Z0)
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

8.6 CNC Program Operation and Setting Method

8-76 WUME-GM1PGR-10

End Position
(Y100, Z0)

Start Position
(Y0, Z0)

Motion
trajectory

Center Position
(Y50, Z0)

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-77

Example: Helical interpolation

Axes other than those in the target plane are selected and used, helical interpolation will be
performed.
[Setting example]

G-code example:
N00 G17
N60 G02 X0 Y0 Z100 I50 J0 F100 E500 E-500

● Explanation of G-code
N00: An XY-plane is selected.
N60: Circular interpolation is performed clockwise in the XY-plane according to the following
values.

Current value (X0, Y0, Z0), end point (X0, Y0, Z100)
Center point (X50, Y0)
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

End Position
(X0, Y0, Z100)

Start Position
(X0, Y0, Z0)

Motion
trajectory

Center Position
(X50, Y0, Z0)

8.6 CNC Program Operation and Setting Method

8-78 WUME-GM1PGR-10

8.6.5 G04: Dwell Time

Dwell time is a time to wait until next processing is executed. It is used for purposes such as
waiting for a particular operation.

Setting rules for dwell time

● Specifying dwell time

G-code Function

G04 Dwell time

● Parameter set for dwell time

Parameter name Input value

Dwell time T xxx (xxx: Dwell time [sec])

Example: Dwell time setting

[Setting example]

G-code example:
N00 E500 E-500
N10 G01 X100 Y100 F100
N20 G04 T1.5
N30 G01 X100 Y0 F100

● Explanation of G-code
N00: Acceleration and deceleration (acceleration 500 [u/sec2] and deceleration -500 [u/sec2])
are set collectively.
N10: Linear interpolation (X100, Y100) is performed. (Section (1) in the figure below)
N20: The system waits for the dwell time (1.5 seconds).
N30: Linear interpolation (X100, Y0) is performed. (Section (2) in the figure below)

End Position
(X100, Y0)

Start Position
(X0, Y0)

(X100, Y100)

(1)
(2)

1.5sec wait (Dwell time)

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-79

100

f [u/s]

t [s]

synthetic speed

acceleration = 500

deceleration = -500
synthetic speed

acceleration = 500

deceleration = -500

Dwell time 1.5sec

8.6 CNC Program Operation and Setting Method

8-80 WUME-GM1PGR-10

8.6.6 G05, G10: Spline Interpolation

The tool is moved from the current coordinates to target coordinates by spline interpolation. All
the axes reach the target coordinates simultaneously. Paths set by G05 and G10 are
represented as polynomials of cardinal spline interpolation by cubic Hermite functions.

Setting rules for spline interpolation

● Specifying spline interpolation

G-code Function

G05 Spline interpolation (2.5D mode)

G10 Spline interpolation (3D mode)

● Parameters used for spline interpolation

Parameter name Input value

Target coordinates

X-axis X xxx　 (xxx: target coordinate)

Y-axis Y xxx　 (xxx: target coordinate)

Z-axis Z xxx　 (xxx: target coordinate)

Velocity F xxx　 (xxx: Composite velocity [u/sec])

Acceleration / deceleration E xxx (xxx > 0: Acceleration [u/sec2]), (xxx < 0: Deceleration [u/sec2])
* When xxx = 0, an error occurs.

● G05 cannot be used in 3D mode.
When using 3D mode, use G10.

● Spline interpolation will not be performed for ramp-in and ramp-out paths by tool radius
correction by G40 and G41.

● Path smoothing and arc correction by G51 and G52 will not be performed for spline-
interpolated paths.

■ Calculation formula
Paths calculated by G05 and G10 are represented as p(t) below.
Except for t, the parameters are calculated as vectors since each has an axial component.

Spline interpolated path: p(t) = (2p0 + m0 - 2p1 + m1)t3 + (-3p0 + 3p1 - 2m0 - m1)t2 + m0t + p0

● p-1: Operation starting coordinates of the previous G05/G10
● p0: Operation starting coordinates of G05/G10
● p1: Operation ending coordinates of the G05/G10
● p2: Operation ending coordinates of the next G05/G10
● t: Parameter that represents each discrete point in the section from 0 (start point) to 1 (end

point)
Here, variables used in p(t) are calculated as follows.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-81

Slope of the tangent line at the start point: m0 = (p1 - p-1) / |p1 - p-1| * |p1 - p0|
Slope of the tangent line at the end point: m1 = (p2 - p0) / |p2 - p0| * |p1 - p0|
Factor c = |p1 - p0|

● At end points where G05/G10 do not exist as the previous and next G-codes, the calculation is
performed as p-1 = p0, p2 = p1.

● In the following cases, for the slopes of the tangent lines m0 and m1, the slopes for the previous
and next interpolation operations are used, respectively.
• If another interpolation operation (G01, etc.) is used before G05/G10: m0 is the slope of the

tangent line of the previous interpolation operation.
• If G05/G10 is used before another interpolation operation (G01, etc.): m1 is the slope of the

tangent line for the next interpolation operation.
However, after a motion by G00 or G92, the slope of the tangent line calculated from the above
formula is used.

● If G75 is used in the middle of a path connected by G05/G10:
For m1 immediately before the G75, the calculation is performed assuming that there is no path
after the G75.
For m0 immediately after G75, the slope of the tangent line m1 of G05/G10 immediately before
G75 is used.

Example: Spline interpolation

Examples of setting spline interpolation with G-code are shown below.
In this example, target coordinates are set as absolute coordinates.
[Setting example 1] Four spline-interpolated paths by G05

G-code example:
N10 G05 X20 Y0 F100 E500 E-500
N20 G05 X20 Y20
N30 G05 X40 Y20
N40 G05 X40 Y40

● Explanation of G-code
N10: The tool is moved (spline-interpolated) to (X20, Y0).
N20: The tool is moved (spline-interpolated) to (X20, Y20).
N30: The tool is moved (spline-interpolated) to (X40, Y20).
N40: The tool is moved (spline-interpolated) to (X40, Y40).

8.6 CNC Program Operation and Setting Method

8-82 WUME-GM1PGR-10

Start Position
(X0,Y0)

End Position
(X40,Y40)

● Calculation process
• For N10

1. Parameters required to calculate the spline-interpolated paths are calculated.
p-1 = (0, 0)
p0 = (0, 0)
p1 = (20, 0)
p2 = (20, 20)

m0 / c = (p1 - p-1) / |p1 - p-1| = {(20, 0) - (0, 0)} / {(20 - 0)2 + (0 - 0)2}1/2 = (1, 0)

m1 / c = (p2 - p0) / |p2 - p0| = {(20, 20) - (0, 0)} / {(20 - 0)2 + (20 - 0)2}1/2 = (0.707,
0.707)
c = |p1 - p0| = {(20 - 0)2 + (0 - 0)2}1/2 = 20

2. The parameters are substituted into the spline interpolation calculation formula p(t).
X-axis: px(t) = -5.8580 * t3 + 5.8580 * t2 + 20 * t + 0

Y-axis: py(t) = 14.1420 * t3 - 14.1420 * t2 + 0 * t + 0
3. Discrete points are calculated from the starting point (t = 0) to the end point (t = 1).

As an example here, the calculation is performed by dividing t into 55 sections.
If t = 0, then X-axis: px(t=0) = 0 and Y-axis: py(t=0) = 0.
If t = 1/55, then X-axis: px(t=1/55) = 0.3655 and Y-axis: py(t=1/55) = -0.0046.
If t = 2/55, then X-axis: px(t=2/55) = 0.7347 and Y-axis: py(t=2/55) = -0.0180.
(Lines omitted)
If t = 53/55, then X-axis: px(t=53/55) = 19.4705 and Y-axis: py(t=53/55) = -0.4775.
If t = 54/55, then X-axis: px(t=54/55) = 19.7390 and Y-axis: py(t=54/55) = -0.2479.
If t = 1, then X-axis: px(t=1) = 20 and Y-axis: py(t=1) = 0.

• N20 or later
Parameters required to calculate the spline-interpolated paths are calculated in the same
way as for N10 (step 1).
A spline interpolation calculation formula p(t) is created for each N number line by using
the parameters (step 2). Then, discrete points are calculated from the start point (t = 0) to
the end point (t = 1) (step 3).
- Calculation parameters for N20

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-83

p-1 = (0, 0)
p0 = (20, 0)
p1 = (20, 20)
p2 = (40, 20)
m0 / c = (0.707, 0.707)
m1 / c = (0.707, 0.707)
c = 20

- Calculation parameters for N30
p-1 = (20, 0)
p0 = (20, 20)
p1 = (40, 20)
p2 = (40, 40)
m0 / c = (0.707, 0.707)
m1 / c = (0.707, 0.707)
c = 20

- Calculation parameters for N40
p-1 = (20, 20)
p0 = (40, 20)
p1 = (40, 40)
p2 = (40, 40)
m0 / c = (0.707, 0)
m1 / c = (0, 1)
c = 20

8.6 CNC Program Operation and Setting Method

8-84 WUME-GM1PGR-10

N10 path

p-1 = p0

p1

p2

N20 path

p2

p1

p0p-1

N30 path

p2

p1

p0

p-1

p1 = p2

p0

p-1

N40 path

t = 0

t = 1 m0/c
is the slope of this tangent

m1/c
is the slope of this tangent

[Setting example 2] When spline interpolation by G05 is inserted before and after linear
interpolation by G01

G-code example:
N10 G05 X20 Y0 F100 E500 E-500
N20 G05 X20 Y20
N30 G01 X40 Y20
N40 G05 X40 Y40

● Explanation of G-code
N10: The tool is moved (spline-interpolated) to (X20, Y0).
N20: The tool is moved (spline-interpolated) to (X20, Y20). Since the next interpolation
operation is G01, the slope of the tangent line (m1) at the end of the spline interpolation is
the slope for the interpolation operation of G01.
N30: The tool is moved (linearly interpolated) to (X40, Y20).
N40: The tool is moved (spline-interpolated) to (X40, Y40). Since the previous interpolation
operation is G01, the slope of the tangent line (m0) at the start of the spline interpolation is
the slope for the interpolation operation of G01.

● Calculation process
• For N10

The same calculation as for N10 in [Setting example 1] is performed.
• For N20

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-85

Parameters required to calculate the spline-interpolated paths are calculated.
Since the next interpolation operation is G01, the slope of the tangent line m1 is the slope
for the next interpolation operation of G01.

p-1 = (0, 0)
p0 = (20, 0)
p1 = (20, 20)
p2 = (40, 20)
m0 / c = (0.707, 0.707)

m1 / c = (40 - 20, 20 - 20) / {(40 - 20)2 + (20 - 20)2}1/2 = (1, 0)
c = 20

• For N40
Parameters required to calculate the spline-interpolated paths are calculated.
Since the previous interpolation operation is G01, the slope of the tangent line m0 is the
slope for the previous interpolation operation of G01.

p-1 = (20, 20)
p0 = (40, 20)
p1 = (40, 40)
p2 = (40, 40)

m0 / c = (40 - 20, 20 - 20) / {(40 - 20)2 + (20 - 20)2}1/2 = (1, 0)
m1 / c = (0, 1)
c = 20

Start Position
(X0,Y0)

End Position
(X40,Y40)

The slope of the tangent line m0 is the slope
of the previous G01.

The slope of the tangent line m1 is the slope
of the next G01.

[Setting example 3] Timing synchronization (G75) during spline interpolation

G-code example:
N10 G05 X20 Y0 F100 E500 E-500
N20 G05 X20 Y20
N30 G75
N40 G05 X40 Y20
N50 G05 X40 Y40

● Explanation of G-code

8.6 CNC Program Operation and Setting Method

8-86 WUME-GM1PGR-10

N10: The tool is moved (spline-interpolated) to (X20, Y0).
N20: The tool is moved (spline-interpolated) to (X20, Y20).
N30: Timing synchronization causes decoding to wait until CNC operation has worked
through previous objects.
N40: The tool is moved (spline-interpolated) to (X40, Y20).
N50: The tool is moved (spline-interpolated) to (X40, Y40).

Start Position
(X0,Y0)

End Position
(X40,Y40)

G75

● Calculation process
• For N10

The same calculation as for N10 in [Setting example 1] is performed.
• For N20

Parameters required to calculate the spline-interpolated paths are calculated.
Since the next G-code is G75 (in N30), the decoding is split up to N20. Therefore, the
calculation is performed as p1 = p2.

p-1 = (0, 0)
p0 = (20, 0)
p1 = (20, 20)
p2 = (20, 20)
m0 / c = (0.707, 0.707)
m1 / c = (0, 1)
c = 20

• For N40
Parameters required to calculate the spline-interpolated paths are calculated.
Since the previous G-code is G75 (in N30), the decoding starts from N40 in a split state.
Therefore, the calculation is performed as p-1 = p0.
However, since the path is connected to the path of N20 by spline interpolation, the slope
of the tangent line at the end point of N20 is equal to that at the start point of N40.
Therefore, it is calculated as m0 / c (N40) = m1 / c (N20).

p-1 = (20, 20)
p0 = (20, 20)
p1 = (40, 20)
p2 = (40, 40)
m0 / c = (0, 1)

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-87

m1 / c = (0.707, 0.707)
c = 20

• For N50
The same calculation as for N40 in [Setting example 1] is performed.

G75 G75

The slope of the tangent line of N40 will be equal
to N20 so that it is connected smoothly.

N10~N20 N40~N50

m0/c at N40m1/c at N20

[Example 4] Spline interpolation in 3D mode

G-code example:
N00 G17
N10 G10 X20 Y0 Z10 F100 E500 E-500
N20 G10 X20 Y20 Z20
N30 G10 X40 Y20 Z10
N40 G10 X40 Y40 Z0

● Explanation of G-code
N00: 3D mode is activated.
N10: The tool is moved (spline-interpolated) to (X20, Y0, Z10).
N20: The tool is moved (spline-interpolated) to (X20, Y20, Z20).
N30: The tool is moved (spline-interpolated) to (X40, Y20, Z10).
N40: The tool is moved (spline-interpolated) to (X40, Y40, Z0).

● Calculation process
• For N10

1. Parameters required to calculate the spline-interpolated paths are calculated.
p-1 = (0, 0, 0)
p0 = (0, 0, 0)
p1 = (20, 0, 10)
p2 = (20, 20, 20)

m0 / c = (p1 - p-1) / |p1 - p-1| = {(20, 0, 10) - (0, 0, 0)} / {(20 - 0)2 + (0 - 0)2 + (10 -
0)2}1/2 = (0.894, 0, 0.447)
m1 / c = (p2 - p0) / |p2 - p0| = {(20, 20, 20) - (0, 0, 0)} / {(20 - 0)2 + (20 - 0)2 + (20 -
0)2}1/2 = (0.577, 0.577, 0.577)
c = |p1 - p0| = {(20 - 0)2 + (0 - 0)2 + (10 - 0)2}1/2 = 22.36

8.6 CNC Program Operation and Setting Method

8-88 WUME-GM1PGR-10

2. The parameters are substituted into the spline interpolation calculation formula p(t).
X axis: px(t) = -7.0895 * t3 + 7.0901 * t2 + 19.9994 * t + 0

Y-axis: py(t) = 12.9111 * t3 - 12.9111 * t2 + 0 * t + 0

Z-axis: pz(t) = 2.9108 * t3 - 2.9105 * t2 + 10 * t + 0
3. Discrete points are calculated from the starting point (t = 0) to the end point (t = 1). As

an example here, the calculation is performed by dividing t into 55 sections.
If t = 0, then X-axis: px(t=0) = 0, Y-axis: py(t=0) = 0, and Z-axis: pz(t=0) = 0.
If t = 1/55, then X-axis: px(t=1/55) = 0.3659, Y-axis: py(t=1/55) = -0.0042, and Z-axis:
pz(t=1/55) = 0.1809.
If t = 2/55, then X-axis: px(t=2/55) = 0.7363, Y-axis: py(t=2/55) = -0.0165, and Z-axis:
pz(t=2/55) = 0.3599.
(Lines omitted)
If t = 53/55, then X-axis: px(t=53/55) = 19.5121, Y-axis: py(t=53/55) = -0.4359, and Z-
axis: pz(t=53/55) = 9.5381.
If t = 54/55, then X-axis: px(t=54/55) = 19.7606, Y-axis: py(t=54/55) = -0.2263, and Z-
axis: pz(t=54/55) = 9.7672.
If t = 1, then X-axis: px(t=1) = 20, Y-axis: py(t=1) = 0, and Z-axis: pz(t=1) = 10.

• N20 or later
Parameters are calculated in the same way as for N10.

Start Position
(X0,Y0,Z0)

End Position
(X40,Y40,Z0)

(X20,Y0,Z10)

(X40,Y20,Z10)

(X20,Y20,Z20)

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-89

8.6.7 G08, G09: Elliptic Interpolation

The tool is moved from the current coordinates to target coordinates by elliptic interpolation. All
the axes reach the target coordinates simultaneously.

Setting rules for elliptic interpolation

● Specifying a rotation direction for elliptic interpolation
The rotational direction of elliptic interpolation can be switched by specifying a G-code.

G-code Function

G08 Elliptic interpolation (clockwise)

G09 Elliptic interpolation (counterclockwise)

● These G-codes cannot be used in 3D mode.
● Do not use these-functions in combination with tool radius correction by G41/G42.
● For elliptic interpolation, arc correction between paths by G52 will not be performed.
● Do not use these functions in combination with coordinate conversion with scaling factors by

G54 to G56.
● Parameters used for elliptic interpolation

Parameter name Input value

Target coordinates
X-axis X xxx (xxx: target coordinate)

Y-axis Y xxx (xxx: target coordinate)

Center point
X-axis I xxx (xxx: center point coordinate)

Y-axis J xxx (xxx: center point coordinate)

Ratio
R xxx (xxx: ratio of major axis to minor axis)
Specifies the ratio of the minor axis to the major axis.

Angle
K xxx (xxx: direction angle of major axis [°])
If not specified, the angle is regarded as 0°.

Velocity F xxx (xxx: composite velocity [u/sec])

Acceleration / deceleration E xxx (xxx > 0: acceleration [u/sec2]), (xxx < 0: deceleration [u/sec2])
* When xxx = 0, an error occurs.

● For ellipses, it is necessary to specify a center point (I, J), as well as a target position (X, Y).
● The target position of elliptic interpolation can be specified as relative coordinates or

absolute coordinates. For details on how to set relative coordinates or absolute coordinates,
refer to "8.6.15 G90, G91: Coordinate Specification".

● The center point of elliptic interpolation can be specified as relative coordinates or absolute
coordinates. For details on how to set relative coordinates or absolute coordinates, refer to
"8.6.17 G98, G99: Circular arc coordinate specification".

8.6 CNC Program Operation and Setting Method

8-90 WUME-GM1PGR-10

■ Calculation formula
The paths calculated by G08 and G09 are represented by the following equation of an ellipse
centered at the origin (0,0).

(x/a)2 + (y/b)2 = 1
From the center point (I, J) and angle (K), it can be converted to the following equation.

{(x-I)cos(K)+(y-J)sin(K)}2 / a2 + {-(x-I)sin(K)+(y-J)cos(K)}2 / b2 = 1
From the above equation, a and b are calculated using the starting point (current position) and
target position (X, Y). At this time, the set value of the ratio (R) is not used.
If a and b cannot be uniquely calculated using the start point (current position) and target
position (X, Y), the set value of the ratio (R) is used. a and b are calculated as R = b/a.

Example: Elliptic interpolation

Examples of setting elliptic interpolation with G-code are shown below. In these examples,
target coordinates are set as absolute coordinates and center point coordinates are set as
relative coordinates.
[Setting example 1] Locus of ellipse by automatically setting ratio (R) (semi-ellipse)

G-code example:
N000 G08 X10 Y0 I5 J0 R0.5 F100 E500 E-500

● Explanation of G-code
N000: Elliptic interpolation is performed clockwise according to the following values.

Current value (X0, Y0), end point (X10, Y0), center point (X5,Y0)
Velocity 100 [u/sec], Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]
Radius of major axis (major radius): 5, radius of minor axis (minor radius): 2.5, angle of
major axis: 0°

● Calculation process
1. The equation of the ellipse is obtained from the center point (I, J) and angle (K).

(x-5)2 / a2 + y2 / b2 = 1
2. The current value and end point are substituted.

Current value (X0, Y0): 25 / a2 = 1
End point (X10, Y0): 25 / a2 = 1

3. The radius a of the major axis and radius b of the minor axis are obtained.
Since b cannot be calculated from the equations in step 2 of the calculation process,
the ratio (R) is used.
Since R = b /a, a = 5 and b = 2.5

4. Paths are represented by the equation of the ellipse below.
(x-5)2 / 52 + y2 / 2.52 = 1

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-91

Start Position
(X0,Y0)

End Position
(X10,Y0)

Center Position
(X5,Y0)

Motion trajectory

[Setting example 2] Locus of ellipse by setting ratio (R) (ellipse)

G-code example:
N000 G08 X10 Y0 I5 J0 R0.5 F100 E500 E-500

● Explanation of G-code
N000: elliptic interpolation is performed clockwise according to the following values.

Current value (X0, Y0), end point (X0, Y0), center point (X5,Y0)
Velocity 100 [u/sec], Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]
Radius of major axis (major radius): 5, radius of minor axis (minor radius): 2.5, angle of
major axis: 0°

● Calculation process
Parameters are calculated in the same way as in [Setting example 1].

Start/End
Position

(X0,Y0)

Center Position
(X5,Y0)

Motion trajectory

[Setting example 3] Locus of ellipse by setting ratio (R) and angle (K) (elliptic arc)

G-code example:
N000 G08 X10 Y0 I5 J0 R0.5 K45 F100 E500 E-500

● Explanation of G-code
N000: elliptic interpolation is performed clockwise according to the following values.

Current value (X0, Y0), end point (X10, Y0), center point (X5,Y0)
Velocity 100 [u/sec], Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]
Radius of major axis (major radius): 7.906, radius of minor axis (minor radius): 3.953, angle
of major axis: 45°

● Calculation process

8.6 CNC Program Operation and Setting Method

8-92 WUME-GM1PGR-10

1. The equation of the ellipse is obtained from the center point (I, J) and angle (K).
{(x-5)cos(45°)+(y)sin(45°)}2 / a2 + {-(x-5)sin(45°)+(y)cos(45°)}2 / b2 = 1
⇒{1/√2*(x-5)+1/√2*(y)}2 / a2 + {-1/√2*(x-5)+1/√2*(y)}2 / b2 = 1

2. The current value and end point are substituted.
Current value (X0, Y0): 12.5 / a2 + 12.5 / b2 = 1
End point (X10, Y0): 12.5 / a2 + 12.5 / b2 = 1

3. The radius a of the major axis and radius b of the minor axis are obtained.
Since a and b cannot be uniquely calculated from the equations in step 2 of the
calculation process, the ratio (R) is used.
Since R = b /a , a = 7.906 and b = 3.953

4. Paths are represented by the equation of the ellipse below.
{1/√2*(x-5)+1/√2*(y)}2 / 7.9062 + {1/√2*(x-5)+1/√2*(y)}2 / 3.9532 = 1

Start Position
(X0,Y0)

End Position
(X10,Y0)

Center Position
(X5,Y0)

Motion trajectory

45 °

[Setting example 4] Locus of ellipse by automatically setting ratio (R) (elliptic arc)

G-code example:
N000 G08 X10 Y5 I4 J3 F100 E500 E-500

● Explanation of G-code
N000: Elliptic interpolation is performed clockwise according to the following values.

Current value (X0, Y0), end point (X10, Y5), center point (X4,Y3)
Velocity 100 [u/sec], Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]
Radius of major axis (major radius): 7.212, radius of minor axis (minor radius): 3.606, angle
of major axis: 0°

● Calculation process
1. The equation of the ellipse is obtained from the center point (I, J) and angle (K).

(x-4)2 / a2 + (y-3)2 / b2 = 1
2. The current value and end point are substituted.

Current value (X0, Y0): 16 / a2 + 9 / b2 = 1
End point (X10, Y5): 36 / a2 + 4 / b2 = 1

3. The radius a of the major axis and radius b of the minor axis are obtained.
From the two equations in step 2 of the calculation process, a=7.212 and b=3.606.

4. Paths are represented by the equation of the ellipse below.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-93

(x-4)2 / 7.2122 + (y-3)2 / 3.6062 = 1

Start Position
(X0,Y0)

End Position
(X10,Y5)

Center Position
(X4,Y3)

Motion trajectory

8.6 CNC Program Operation and Setting Method

8-94 WUME-GM1PGR-10

8.6.8 G15, G16, G17, G18, G19: Plane Specification

A plane in which circular interpolation motion is performed can be specified.
If no plane is specified, the XY-plane will be set by default. Once a plane is set, motion
continues on the same specified plane unless another plane is specified. The plane setting is
related to linear interpolation, circular interpolation, and coordinate conversion functions.

Setting rules for plane selection

● Specifying plane

G-code Function

G15 Deactivates 3D mode, and activates 2D mode for XY-plane specification.

G16 Activates 3D mode in the plane specified using normal vector (I, J, K).

G17 Activate 3D mode with the XY-plane specified.

G18 Activate 3D mode with the XZ-plane specified.

G19 Activate 3D mode with the YZ-plane specified.

● With the GM1 Controller, operation modes available for CNC control are 2D mode and 3D
mode. 　　

In 2D mode, the system manages velocity and acceleration only along the x-axis and y-axis.
In 3D mode, the system manages velocity and acceleration along the x-axis, y-axis, and z-
axis.
Operation in 3D mode is allowed if G16, G17, G18, or G19 is executed and the following
conditions are satisfied.
• To read the CNC program as an external file, execute SMC_ReadNCFile2 with

b3DMode:=TRUE.
• If the CNC program is created on the CNC editor, select Application>CNC

program>Properties in this order by right-clicking in the Device tree of GM Programmer
and select the [3D mode] checkbox on the displayed [CNC tab].

● Parameters used for plane specification with G16 normal vector

Parameter name Input value

Normal vector(Note

1)

X-axis
component I xxx　 (xxx：-2147483648 to 2147483647)

Y-axis
component J xxx　 (xxx：-2147483648 to 2147483647)

Z-axis
component K xxx　 (xxx：-2147483648 to 2147483647)

(Note 1) All I, J, and K values need to be written. However, when all I, J, and K are set to 0, a build error
occurs.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-95

● If only an x-axis component is set like I=1, J=0, and K=0, the YZ-plane is specified and
operation will be similar to that with G19. Likewise, operation will be similar to that with G18
when I=0, J=1, and K=0 and be similar to that with G17 when I=0, J=0, and K=1.

● When two axis components of the normal vector are set, a plane is determined according to
the specified normal vector components, and motion is performed in the plane.
If the settings are I=0, J=1, and K=1, for example, a plane inclined at an angle of 45 degrees
with respect the x-axis is specified.

Example: Plane specification

● Examples of setting plane with normal vector specification

G-code example:
N00 F10 E100 E-100
N10 G91
N20 G16 I0 J0 K1
N30 G02 X10 Y0 R5
N40 G16 I0 J1 K1
N50 G02 X10 Y0 R5
N60 G16 I0 J1 K0
N70 G02 X10 Y0 R5

• Explanation of G-code
N00: Velocity, acceleration, and deceleration (velocity 10 [u/sec], acceleration 100 [u/sec2]
and deceleration -100 [u/sec2]) are set collectively.
N10: Relative coordinate specification is set.
N20: A plane is specified with normal vector components I=0, J=0, and K=1.

Since the normal vector faces along the z-axis, the XY-plane is specified.
N30: Arc correction is performed in the XY-plane according to the following values.
(Section (1) in the figure below)

Current position (X0, Y0, Z0), end point (X10, Y0, Z0), radius 5
N40: A plane is specified with normal vector components I=0, J=1, and K=1.

Since the size of the y- and z-axis components of the normal vector is set to 1, a plane
inclined at 45 degrees is specified.

45°

45°

specified plane

1

1

composite vector

N50: Arc correction is performed in the plane inclined at 45 degrees according to the
following values. (Section (2) in the figure below)

Current position (X10, Y0, Z0), end point (X20, Y0, Z0), radius 5

8.6 CNC Program Operation and Setting Method

8-96 WUME-GM1PGR-10

N60: A plane is specified with normal vector components I=0, J=1, and K=0.
Since the normal vector faces along the y-axis, the XZ-plane is specified.

N70: Circular interpolation is performed in the XZ-plane according to the following values.
(Section (3) in the figure below)

Current position (X20, Y0, Z0), end point (X30, Y0, Z0), radius 5

Start Position
(X0, Y0, Z0)

End Position
(X30, Y0, Z0)

(1)

(3)

(2)

● Examples of setting circular interpolation
For the setting examples, refer to "8.6.4 G02, G03: Circular Interpolation".

● Examples of setting coordinate conversion
For the setting examples, refer to "8.6.13 G53, G54, G55, G56: Coordinate Conversion".

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-97

8.6.9 G20, G36, G37: Jump and Loop Process

With a jump executed by G-code, a content written in the CNC program can be repeated.
You can specify the number of repetitive runs by setting a jump condition and a loop counter.
To use such a counter, configure counter settings and increments or decrements a counter
variable using G36 and G37.
You can also perform branching by combining a jump condition and a jump label.

Setting rules for jump

● Specifying jump condition

G-code Function

G20 Conditional jump

G36 Variable settings

G37 Variable increment/decrement

● Parameters used for jump

G-code Parameter name Input value

G20

Jump condition

K xxx
While K is other than 0, a jump process is executed by G20.
The jump condition can be handled from the program by the use
of a variable value declared for K.
If K is not defined, a CNC internal variable acts as a jump
condition and is configured using G36 and G37.

Jump target line
L xxx
Specifies a jump destination, the line number (N) in the CNC
program.

Example: Execution of a jump to N010 when the CNC internal variable for counter is not 0:
N020 G20 L10

Example: Execution of a jump to N010 when the global variable g_x is not 0:
N020 G20 L10 Kg_x

Jump label, jump index(Note

1)

L!x、L?x
From the jump index (eg, L? 4), the jumping process is
performed from the given line with the jump label (eg, L! 4).
The row that grants a jump label must be behind the Jump index
line.

Example: Execution of a jump from L?3 to L!3 line:
N020 G20 L?3
...
N080 G01 X0 Y0 L!3

G36
Value that is specified

D xxx (CNC internal variable)
Sets the counter to the specified value.
The O variable or CNC internal variable is changed.

Variable that is written O xxx(global variable(Note 2))

8.6 CNC Program Operation and Setting Method

8-98 WUME-GM1PGR-10

G-code Parameter name Input value
Specifies a global variable to which a value is assigned by the
parameter D.
If O is not used, the value is assigned to the CNC internal
variable.

Example: Set the CNC internal variable for counter to 3:
N020 G36 D3

Example: Set the global variable g_x to 3:
N020 G36 Og_x D3

G37

Incremental value

D xxx (CNC internal variable)
Increments the counter by the specified value. If a negative
value is specified, the counter is decremented by the value.
The O variable or CNC internal variable is changed.

Variable that is incremented

O xxx (global variable)
Specifies a global variable that is incremented or decremented
by the value of the parameter D.
If O is not used, the CNC internal variable is incremented or
decremented.

Example: Reduce CNC internal variables for counter by 1:
N050 G37 D-1

Example: Reduce global variables g_x by 1:
N050 G37 Og_x D-1

(Note 1) It can be used only for "8.6.20 CNC Program File".
(Note 2) If the CNC program is created with SMC_OUTQUEUE type, global variables cannot be used. (The

same is true for other G code.)

● The CNC internal variable is handled as one common variable.
If the G20 loop process is used two or more times, assign a value to the CNC internal variable
before the loop process is executed.

● To use a CNC internal variable, use it of the 32-bit variable type in the range of 0 to
4294967295.

● To use a global variable counter, declare a variable of the WORD type.
The variable that is used must have a positive integer in the range from 0 to 65535.

● A parallel or nested use of multiple G20 commands is possible. However, use separate global
variables for respective jump conditions.
Shared use of CNC internal variables and other variables may result in improper operation
such as an infinite loop.

Example: Loop Process with a conditional jump

● Loop Process with a conditional jump
[Setting example 1]

G-code example:
N000 G91
N010 G01 X10 Y5 F5
N020 G20 L10 KK

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-99

Global variable declaration:(GVL)
K : REAL := 1;

Control section (excerpt):
IF X_Drive.fSetPositon >= 15 THEN
K := 0;
END_IF

• Explanation of G-code
N000: Relative coordinate specification is set.
N010: The path is moved (linearly interpolated) from the current value by (X10, Y5).
N020: If K<>0, the program returns to N010 and repeats the process at N010 and
subsequent lines.

Blue: X-axis position
Red : Y-axis position

When reaching the point
of X=15, K=1→0

When the path reaches the position X = 15, K is changed to 0 and the jump process ends,
and in the meantime the CNC program is decoded.
As a result, the target position is set at a point out of sync with the time when jump condition
K = 0.
In order to make the point in sync with the timing, decoding must be synchronized with CNC
operation timing using G75.

● Loop process with a conditional jump (with synchronized timing)
[Setting example 2]

G-code example:
N000 G91
N010 G01 X10 Y5 F5
N020 G75
N030 G20 L10 KK

Global variable declaration:(GVL)
K : REAL := 1;

Control section (excerpt):
IF X_Drive.fSetPositon >= 15 THEN
K := 0;
END_IF

• Explanation of G-code
N000: Relative coordinate specification is set.
N010: The path is moved (linearly interpolated) from the current value by (X10, Y5).
N020: CNC program decoding and interpolation operation process are waited.

8.6 CNC Program Operation and Setting Method

8-100 WUME-GM1PGR-10

N030: If K<>0, the program returns to N010 and repeats the process at N010 and
subsequent lines.

Blue: X-axis position
Red : Y-axis position

When reaching the
point of X=15, K=1→0

When the path reaches the position X = 15, K is changed to 0 and the jump process ends.
While interpolation operation is performed, decoding is put in the wait state. Thus, the loop
process by G20 ends when operation at the time of jump condition K = 0 is completed.
However, to synchronize timing by G75, C-point control is executed to make a pause every
time.

Example: Loop Process Using Variable

● Loop process using a CNC internal variable
[Setting example 3]

G-code example:
N000 G91
N010 G01 X5 Y5 F5
N020 G36 D3
N030 G01 X2
N040 G01 Y3
N050 G37 D-1
N060 G20 L30
N070 G01 X5 Y5

• Explanation of G-code
N000: Relative coordinate specification is set.
N010: The path is moved (linearly interpolated) from the current value by (X+5, Y+5).
N020: The CNC internal variable is set to 3 by G36.
N030: The path is moved (linearly interpolated) from the current value by (X+2, Y+0).
N040: The path is moved (linearly interpolated) from the current value by (X+0, Y+3).
N050: By G37, -1 is added to the CNC internal variable.
N060: The program returns to N030 and repeats the process at N030 and subsequent
lines until the CNC internal variable reaches 0.
At the time when the CNC internal variable reaches 0, the program transitions to N070
without executing the jump.
N070: The path is moved (linearly interpolated) from the current value by (X+5, Y+5).

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-101

Start Position
(X0, Y0)

End Position
(X16, Y19)

After Linear Motion
(X5, Y5)

Repeat linear interpolation of
(X+2, Y+0) and (X+0, Y+3)

three times

● Loop process using global variable counter
[Setting example 4]

G-code example:
N000 G91
N010 G01 X5 Y5 F5
N020 G36 OO D3
N030 G01 X2
N040 G01 Y3
N050 G37 OO D-1
N060 G20 L30 KO
N070 G01 X5 Y5

Global variable declaration:(GVL)
O : WORD;

• Explanation of G-code
N000: Relative coordinate specification is set.
N010: The path is moved (linearly interpolated) from the current value by (X+5, Y+5).
N020: The global variable O is set to 3 by G36.
N030: The path is moved (linearly interpolated) from the current value by (X+2, Y+0).
N040: The path is moved (linearly interpolated) from the current value by (X+0, Y+3).
N050: By G37, -1 is added to the global variable O.
N060: The program returns to N030 and repeats the process at N030 and subsequent
lines until the global variable O reaches 0.
At the time when the variable O reaches 0, the program transitions to N070 without
executing the jump.
N070: The path is moved (linearly interpolated) from the current value by (X+5, Y+5).

8.6 CNC Program Operation and Setting Method

8-102 WUME-GM1PGR-10

Start Position
(X0, Y0)

End Position
(X16, Y19)

After Linear Motion
(X5, Y5)

Repeat linear interpolation of
(X+2, Y+0) and (X+0, Y+3)

three times

● Parallel use of loop processes [Unacceptable example]

N000 G91
N010 G01 X5 Y5 F5
N020 G36 D3
N030 G01 X2
N040 G01 Y3
N050 G37 D-1
N060 G20 L30
N070 G01 X10
N080 G01 Y20
N090 G37 D-1
N100 G20 L70
N110 G01 X5 Y5

Description of unacceptable example operation
• At N020, the CNC internal variable is set to 3.
• After a loop process at N030 to N060, the CNC internal variable is changed to 0.
• When a loop process at N070 to N100 is executed, the CNC internal variable is set to

0-1=-1 at N090. The CNC internal variable will not reach 0 hereafter, and the end
condition for G20 will not be satisfied, causing an infinite loop.

● Parallel use of loop processes [Acceptable example]

N000 G91
N010 G01 X5 Y5 F5
N020 G36 D3
N030 G01 X2
N040 G01 Y3
N050 G37 D-1
N060 G20 L30
N070 G36 D3
N080 G01 X10
N090 G01 Y20
N100 G37 D-1

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-103

N110 G20 L80
N120 G01 X5 Y5

Description of acceptable example operation
• A command at N70 is added, and a new number of repetitive run is specified for the CNC

internal variable, which has reached 0. After execution of a loop process at N080 to N110,
the program transitions to N120.

Example: Repeated processing by jump label

● [Setting example]

G-code example:
N000 G91
N010 G01 X10 Y5 F5
N020 G75
N030 G20 L?1 K{g_x>=25}
N040 G20 L10
N050 G90 L!1
N060 G01 X0 Y0 F20

Global variable declaration:(GVL)
g_x : LREAL := 0;

Control unit (excerpt):
g_x := X_Drive.fSetPositon;

• Explanation of G-code
N000: Relative coordinate specification is set.
N010: Move (X10, Y5) from the current position (straight interpolation).
N020: Wait for CNC decoding and interpolation operation.
N030: In the case of g_x>=25 , jump to the L!1(N050).
N040: Jump to N010 and repeat the operation from the N10 repeatedly.
N050: Absolute coordinate specification is set.
N060: Move from the current position to (X0, Y0).

8.6 CNC Program Operation and Setting Method

8-104 WUME-GM1PGR-10

Blue: X-axis position
Red : Y-axis position

Jump N50

Green: g_x(=X-axis position)

During the x<25, N040 is executed and returns to the N010 because the Jump condition
(g_x>=25) of the N030 are not satisfied.
The Jump condition are satisfied at the point of X = 25, jump to the L!1(N050) and perform
the processing afterwards.
However, to synchronize timing by G75, C-point control is executed to make a pause every
time.

● The jump label (L?1), jump index (L!1), and jump condition by variable ({global variable
condition}) can be written only for CNC program files described in "8.6.20 CNC Program File".

Example: Conditional branching by jump label

● [Setting example]

G-code example:
N000 G91
N010 G01 Z10 F50
N020 G75
N030 G20 L?1 K {$ProgramNo$ <> 1}
N040 G02 X0 Y0 I10 J0
N050 G20 L?2 K {$ProgramNo$ <> 2} L!1
N060 G02 X0 Y0 I20 J0
N070 G20 L?3 K {$ProgramNo$ <> 3} L!2
N080 G02 X0 Y0 I30 J0
N090 G20 L010 K {$ProgramNo$ <> 9} L!3
N100 G90
N110 G01 X0 Y0 Z0

Global variable declaration:(GVL)
ProgramNo : INT := 0;

Control section (excerpt):
IF Z_Drive.fSetPosition >= 100 THEN

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-105

GVL.ProgramNo:=9;
ELSIF Z_Drive.fSetPosition >= 80 THEN
GVL.ProgramNo:=2;
ELSIF Z_Drive.fSetPosition >= 50 THEN
GVL.ProgramNo:=3;
ELSIF Z_Drive.fSetPosition >= 20 THEN
GVL.ProgramNo:=1;
END_IF

• Explanation of G-code
N000: Relative coordinate specification is set.
N010: The tool is moved relatively (linearly interpolated) from the current position by (Z =
+5).
N020: CNC program decoding and interpolation operation process are waited.
N030: When ProgramNo is not 1, the program jumps to L!1 (N050).
N040: Circular interpolation (circle with a radius of 10) is performed with the center at
(X10,Y0) from the current position.
N050: When ProgramNo is not 2, the program jumps to L!2 (N070).
N060: Circular interpolation (circle with a radius of 20) is performed with the center at
(X20,Y0) from the current position.
N070: When ProgramNo is not 3, the program jumps to L!3 (N090).
N080: Circular interpolation (circle with a radius of 30) is performed with the center at
(X30,Y0) from the current position.
N090: When ProgramNo is not 9, the program jumps to N010 and repeats operation from
N010.
N100: Absolute coordinate specification is set.
N110: The tool is moved from the current position to (X0,Y0,Z0).

X-Axis Position

Global variable
: ProgramNo

Y-Axis Position

Z-Axis Position

circle with a radius of 10. circle with a radius of 30. circle with a radius of 20.

The program implemented in the control section changes the value of the global variable
ProgramNo in the order 0, 1, 3, 2, and 9 according to the change in the value of the z-axis
position.

8.6 CNC Program Operation and Setting Method

8-106 WUME-GM1PGR-10

If ProgramNo is 0, N030, N050, and N070 are set to TRUE and circular interpolation
operation is not performed. Then, N090 changes to TRUE, and the program jumps to N010,
and the z-axis position is incremented by +5.
If ProgramNo is 1, N030 is set to FALSE and circular interpolation operation with a radius of
10 is performed in N040. Since N050 and N070 also change to TRUE, N060 and N080 are
not executed. Then, N090 changes to TRUE, and the program jumps to N010, and the z-axis
position is incremented by +5.
If ProgramNo is 2, only N060 is executed. If ProgramNo is 3, only N080 is executed. Then,
N090 changes to TRUE, and the program jumps to N010, and the z-axis position is
incremented by +5.
If ProgramNo is 9, N030, N050, and N070 are set to TRUE and circular interpolation
operation is not performed. Then, N090 changes to FALSE, the program changes to N100,
and the processing ends at the absolute position (X0,Y0,Z0) in N110.
Thus, branching based on the value of the global variable ProgramNo can be achieved by
combining the jump conditions and jump labels written in N030 to N090.

● Jump labels (L?n), jump indexes (L!n), and jump conditions by variables ({global variable
conditions}) can be written only for CNC program files described in "8.6.20 CNC Program File".

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-107

8.6.10 G40, G41, G42: Tool Radius Correction for Path

Tool radius correction allows the programmed path to be corrected according to the radius of
the tool in use without change to the CNC program.

Rules for Tool Radius Correction

● Specification of tool radius correction
To perform tool radius correction using SMC_ToolRadiusCorr, specify G40, G41, and G42. Tool
radius correction converts a path in the specified range so that it is offset by the tool radius.

G-code Function

G40 Ends tool radius correction.

G41
D > 0: Executes tool radius correction to the left in the direction of motion.
D < 0: Executes tool radius correction to the right in the direction of motion.

G42
D > 0: Executes tool radius correction to the right in the direction of motion.
D < 0: Executes tool radius correction to the left in the direction of motion.

● Parameters used for tool radius correction

Parameter name Input value

Tool radius D xxx: Tool radius to be corrected

Example: Tool radius correction in XY plane

● Apply tool radius correction to outside of the square.
[Setting example 1]

G-code example:
N000 G42 D1
N010 G01 X5 Y5 F10
N020 G01 X10 Y5
N030 G01 Y10
N040 G01 X5
N050 G01 Y5
N060 G40
N070 G01 X0 Y0

● Explanation of G-code
N000: Tool radius correction with a tool radius of 1 is performed from the next path. The path
is corrected to the right in the direction of motion.
N010: The tool is moved (linearly interpolated) to the next start position in ramp-in motion for
tool radius correction.
N020 to N050: The tool is moved (linearly interpolated) on the path corrected to the right for
the tool radius (offset conversion) in the direction of motion. Between each path, circular
interpolation is inserted.
N060: The application of tool radius correction ends.
N070: The tool is moved (linearly interpolated) to (X0, Y0) in ramp-out motion.

8.6 CNC Program Operation and Setting Method

8-108 WUME-GM1PGR-10

Start & End
Position
(X0, Y0)

Ramp in
Motion

Ramp out
Motion

Path is offset to right in
direction of motion

D

D

● Apply tool radius correction to inside of the square.
[Setting example 2]

G-code example:
N000 G17
N010 G01 Z5 F10
N020 G41 D1
N030 G01 X5 Y7
N040 G01 Y5
N050 G01 Z0
N060 G01 X10 Y5
N070 G01 Y10
N080 G01 X5
N090 G01 Y5
N100 G01 Z5
N110 G01 X7

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-109

N120 G40
N130 G01 X0 Y0
N140 G01 X0 Y0 Z0

• Explanation of G-code
N000: 3D mode is activated for three-dimensional operation. Since the intended tool radius
correction is executed in XY plane, G17 is used.
N010: The tool is moved (linearly interpolated) to (X0, Y0, Z5).
N020: Tool radius correction with a tool radius of 1 is performed from the next path. The path is
corrected to the left in the direction of motion.
N030: The tool is moved (linearly interpolated) to the next start position in ramp-in motion for
tool radius correction.
N040 to N110: The tool is moved (linearly interpolated) on the path corrected to the left for the
tool radius in the direction of motion.
N120: The application of tool radius correction ends.
N130: The tool is moved (linearly interpolated) to (X0, Y0, Z5) in ramp-out motion.
N140: The tool is moved (linearly interpolated) to (X0, Y0, Z0).

Start & End
Position

(X0, Y0, Z0)

Path is offset to left in
direction of motionAfter Linear Motion

(X0, Y0, Z5)

8.6 CNC Program Operation and Setting Method

8-110 WUME-GM1PGR-10

● In the case of an inner surface processing such as Setting example 2, attention must be paid to
operations performed at the start and end points. These operations include, for example,
setting a path for ramp-in motion at a position away from the processing section according to
the offset tool radius (which corresponds to N030 in Setting Example 2). Performing tool radius
correction without setting such a path will lead to motions such as locus intersections.

N000 G17
N010 G01 Z5 F10
N020 G41 D1
N030 G01 X5 Y5
N040 G01 Z0
N050 G01 X10 Y5
N060 G01 Y10
N070 G01 X5
N080 G01 Y5
N090 G01 Z5
N100 G40
N110 G01 X0 Y0

Example: Change of corrected plane

● Apply tool radius correction to the three-dimensional arc.
[Setting example]

G-code example:
N000 G41 D1
N010 G16 I1 J1 K1
N020 G01 X5 F10
N030 G02 X0 Y5 R5
N040 G40
N050 G01 X-1
N060 G92
N070 G42 D1
N080 G16 I1 J1 K-1
N090 G01 X0
N100 G01 Y10
N110 G03 X10 Y0 R15

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-111

N120 G40

● Explanation of G-code
N000: Tool radius correction with a tool radius of 1 is performed from the next path. The path
is corrected to the left in the direction of motion.
N010: A plane is specified with normal vector components I=1, J=1, and K=1.
N020: The tool is moved (linearly interpolated) to the next start position in ramp-in motion for
tool radius correction.
N030: The tool is moved (circularly interpolated) on the path corrected to the left for the tool
radius in the direction of motion on the plane specified by the normal vector.
N040: The application of tool radius correction ends.
N050: The tool is moved (linearly interpolated) to (X-1, Y5) in ramp-out motion.
N060: The motion start position (X-1, Y5) is set to change the corrected plane.
N070: Tool radius correction with a tool radius of 1 is performed from the next path. The path
is corrected to the right in the direction of motion.
N080: A plane is specified with normal vector components I=1, J=1, and K=-1.
N090: The tool is moved (linearly interpolated) to the next start position in ramp-in motion for
tool radius correction.
N100: The tool is moved (linearly interpolated) on the path corrected to the right for the tool
radius in the direction of motion on the plane specified by the normal vector.
N110: The tool is moved (circularly interpolated) on the path corrected to the right for the tool
radius in the direction of motion on the plane specified by the normal vector.
N120: The application of tool radius correction ends.

● Behavior from N000 to N040

Specified Plane

Composit vector
I1 J1 K1

Ramp in Motion

Original Position
(X5, Y0, Z0)

Original Position
(X0, Y5, Z0)

Path is offset to left in direction of
motion on specified plane

Corrected Position
(X5.2, Y-0.79, Z0.58)

Corrected Position
(X-0.79,Y5.2, Z0.58)

Start Position
(X0, Y0, Z0)

8.6 CNC Program Operation and Setting Method

8-112 WUME-GM1PGR-10

● Behavior from N050 onwards

Ramp out Motion to
(X-1, Y5, Z0)

Original Position
(X0, Y5, Z0)

Path is offset to right in direction of
motion on specified plane

Specified Plane

Composit vector
I1 J1 K-1

Change correction plane

Ramp in Motion to
(X-0.71,Y5, Z-0.71)

Original Position
(X0, Y10, Z0)

Path is offset to right in direction of
motion on specified plane

Original Position
(X10, Y0, Z0)

Corrected Position
(X-0.71, Y10, Z-0.71)

Corrected Position
(X10.69, Y0.03, Z0.72)

● To change the plane to be corrected, G92 must be used, as shown in N060 in the above setting
example.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-113

8.6.11 G43: Tool Length Correction

Tool length correction allows the programmed path to be corrected according to the length of
the tool in use without change to the CNC program. G43 can be used only in CNC program
files.

Rules for Tool Length Correction

● Specification of tool length correction
To perform tool length correction by SMC_ToolLengthCorr, include G43 in the CNC program
file. Tool length correction converts the path so that it is offset by the specified tool length.

G-code Function

G43 Tool length correction

● Parameters used for tool length correction

Parameter name Input value Overview

Tool length

X-
axis

I xxx: Tool length to be
corrected

Correct the path by the specified tool length in the
direction of each axis.

Y-
axis

J xxx: Tool length to be
corrected

Z-
axis

K xxx: Tool length to be
corrected

Example: Tool length correction in z-axis direction

● Apply tool length correction to the coordinate system that is offset by the tool length when
using a tool with a length in the z-axis direction.

[Setting example]

G-code example:
N000 G17
N010 G43 K-5
N020 G01 X5 Y5 F10
N030 G01 X10 Y5
N040 G01 Y10
N050 G01 X5
N060 G01 Y5
N070 G01 X0 Y0

● Explanation of G-code
N000: 3D mode is activated.
N010: Tool length correction is activated. The tool length is 5 (K-5) in the z-axis direction.
N020: The tool is moved (linearly interpolated) to (X5, Y5). At the same time, the specified
tool length K-5 is corrected and the tool is moved to Z=5.
N030 and subsequent lines: The tool is moved (linearly interpolated) to the specified
coordinate position. Z is always in a position that is offset by the tool length K-5.

8.6 CNC Program Operation and Setting Method

8-114 WUME-GM1PGR-10

reference point of movement

Tool point

path the reference point moves

tool length offset is required for
the tool point to move on the path

● To change the tool length during operation
[Setting example 1]: Specifying the tool number in the CNC program to perform tool length
correction

G-code example:
N000 G17
N010 G01 X10 Y20 F10
N020 M100 K1
N030 G75
N040 G01 X20 Y30 F30

Declaration section (excerpt):
SMC_ToolLengthCorr_0 : SMC_ToolLengthCorr;
a_lrToolLength : ARRAY [0..2] OF LREAL := [0, 0, 5];
ToolNo : INT;
avTool : ARRAY [1..10] OF SMC_VECTOR3D;

Control section (excerpt):
SMC_ToolLengthCorr_0.adToolLength := a_lrToolLength;
ToolNo := TO_INT(SMC_GetMParameters_0.dK);
IF SMC_Interpolator0.wM = 100 THEN
　a_lrToolLength[0] := avTool[ToolNo].dX;
　a_lrToolLength[1] := avTool[ToolNo].dY;
　a_lrToolLength[2] := avTool[ToolNo].dZ;
END_IF

● Explanation of G-code
N000: 3D mode is activated.
N010: The tool is moved (linearly interpolated) to (X10, Y20).
N020: Since the M-code parameter K word (tool number) is 1, the tool length correction is
performed using the tool length preset in avTool[1].
N030: Timing synchronization causes decoding to wait until CNC operation has worked
through previous objects.
N040: The tool is moved (linearly interpolated) to (X20, Y30).

[Setting example 2]: Setting the offset value in the CNC program to perform tool length
correction

G-code example:
N000 G17
N010 G01 X10 Y20 F10

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-115

N020 G43 K1
N030 G01 X20 Y30 F30

Declaration section (excerpt):
SMC_NCInterpreter_0 : SMC_NCInterpreter;
aToolVector : SM3_Math.SMC_VECTOR3D := (dZ := 5);
SMC_ToolLengthCorr_0 : SMC_ToolLengthCorr;

Control section (excerpt):
SMC_NCInterpreter_0.vStartToolLength := aToolVector;
SMC_ToolLengthCorr_0.adToolLength := SMC_Interpolator_0.adToolLength;

● Explanation of G-code
N000: 3D mode is activated.
N010: The tool is moved (linearly interpolated) to (X10, Y20).
N020: Tool length correction is activated. The tool length is -1 (K1) in the z-axis direction.
N030: The tool is moved (linearly interpolated) to (X20, Y30). At the same time, the specified
tool length K1 is corrected.

8.6 CNC Program Operation and Setting Method

8-116 WUME-GM1PGR-10

The timing at which the movement to correct the tool length occurs differs depending on the
method of setting the tool length. For example, the figure below shows the trace waveforms in
Setting example 1 and Setting example 2 above, where the start tool length is set to Z=5 and then
the tool is changed to another tool with a length of Z=1.
● Trace waveform in Setting example 1

When a tool length is set directly in SMC_ToolLengthCorr.adToolLength, the tool moves
according to the CNC program after the movement to correct the tool length is completed. As
shown in Setting example 1, the movement by G01 (N010, N040) occurs after completion of
the movement for tool length correction.

N000 G17
N010 G01 X10 Y20 F10
N020 M100 K1
N030 G75
N040 G01 X20 Y30 F30

Movement for
Tool Length Correction

set by adToolLength

N010 Movement

Blue : X-axis Position
Green : Y-axis Position
Brown : Z-axis Position

Movement for
Tool Length Correction

set by adToolLength

N040 Movement

● Trace waveform in Setting example 2
When a tool length is set in the decoder's vStartToolLength, the correction movement occurs
before the operation written in the CNC program is performed. On the other hand, for the tool
length specified by G43, the correction movement occurs simultaneously with the motion
specified by the next G-code. As shown in Setting Example 2, the movement by G01 (N010)
occurs after the completion of the movement for tool length correction using vStartToolLength,
but the movement for tool length correction set by G43 occurs simultaneously with the
movement by G01 in N030.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-117

N000 G17
N010 G01 X10 Y20 F10
N020 G43 K1
N030 G01 X20 Y30 F30

Movement for
Tool Length Correction
set by vStartToolLength

N010 Movement

Blue : X-axis Position
Green : Y-axis Position
Brown : Z-axis Position

N030 Movement

Movement for
Tool Length Correction

set by G43

● To activate the H switch during tool length correction
[Setting example]

G-code example:
N000 G17
N010 G43 K5
N020 G01 X30 Y40 H1 L25 F10

● Explanation of G-code
N000: 3D mode is activated.
N010: Tool length correction is activated. The tool length is -5 (K5) in the z-axis direction.
N020: The tool is moved (linearly interpolated) to (X30, Y40). At the same time, the specified
tool length K5 is corrected.

H1 is switched ON at timing when the travel distance reaches 25.
The position where H1 is switched ON is (X14.93, Y19.91, Z-2.49), which is determined
including the movement for tool length correction.

8.6 CNC Program Operation and Setting Method

8-118 WUME-GM1PGR-10

z

x

y

30

40

15

20

Swiching Pint
L=25

z

x

y

30

40

14.93

19.91

Swiching Pint
L=25

-5

-2.49

With Tool Length CorrectionWithout Tool Length Correction

When linear interpolation and H switch are set in the G-code that follows G43, the movement of
tool length correction is also taken into account to determine the position where the switch is
activated.

Example: Tool length correction during coordinate conversion

● Applying tool length correction to correct the coordinate system in the y-axis direction in
combination with coordinate conversion using G54

[Setting example]

G-code example:
N000 G17
N010 G01 X5 Y5 Z5 F10
N020 G54 X10 Y10 Z10 A180 B0 C0
N030 G43 J-5
N040 G01 X5 Y5 Z5

● NCInterpreter.eOriConv
The convention is set to ZYZ (G54 parameters A and C are interpreted as rotation angles
around the z-axis, and the parameter B is interpreted as a rotation angle around the y-axis).

● Explanation of G-code
N000: 3D mode is activated.
N010: The tool is moved (linearly interpolated) to (X5, Y5, Z5).
N020: Absolute coordinate conversion is performed by G54.

The origin of the DCS coordinate system is converted from (X0, Y0, Z0) to (X10, Y10, Z10).
According to the rotation convention ZYZ, coordinates are rotated 180° around the z-axis.

N030: Tool length correction is activated. The tool length is 5 (J-5) in the y-axis direction.
The offset amount and orientation are applied to the original coordinate system, since tool
length correction is not affected by coordinate conversion.

N040: Linear interpolation according to the absolute coordinate system is performed. For the
Y-coordinate, the amount of travel is offset by the tool length correction.

The final motion path can be checked as shown in traces below.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-119

N000 G17
N010 G01 X5 Y5 Z5 F10
N020 G54 X10 Y10 Z10 A180 B0 C0
N030 G43 J-5
N040 G01 X5 Y5 Z5

Blue : X-axis Position
Green : Y-axis Position
Brown : Z-axis Position

Example: Combined use of timing synchronization by G75 and tool
correction

● Using timing synchronization by G75 allows you to perform tool correction after a tool change
even when CNC control is active by changing parameters according to the new tool. This
example shows G-codes for combined use of tool radius correction and tool length
correction.

[Setting example]

G-code example:
N000 G91 F10
N010 G17
N020 M902 K1
N030 G75
N040 G43 I$OffsetX$ J$OffsetY$ K$OffsetZ$
N050 G00 Z5
N060 G41 D$Radius$
N070 G00 X5 Y7
~
N150 G00 X2
N160 G40
N170 G00 X4 Y6
N180 M902 K2
N190 G75
N200 G43 I$OffsetX$ J$OffsetY$ K$OffsetZ$
N210 G42 D$Radius$
N220 G00 X1 Y1
~
N290 G40

8.6 CNC Program Operation and Setting Method

8-120 WUME-GM1PGR-10

N300 G00 X-2

● Explanation of G-code
N000: Relative coordinate specification is set.
N010: 3D mode is activated for three-dimensional operation. Since the intended tool radius
correction is executed in XY plane, G17 is used.
N020: The preset tool information corresponding to tool No. 1 is acquired.

The acquired tool information is set to OffsetX in N040 and Radius in N060.
N030: Timing synchronization causes decoding to wait until CNC operation has worked
through previous objects.
N040: Tool length correction is applied using the value acquired and set from the tool
number.
N050: The tool is moved (linearly interpolated) in the z-axis direction.
N060: Tool radius correction is performed from the next path. The correction radius is a value
acquired and set from the tool number and the path is corrected to the left in the direction of
motion.
(Lines omitted)
N160: The application of tool radius correction ends.
N170: The tool is moved (linearly interpolated) in ramp-out motion for tool radius correction.
N180: The preset tool information corresponding to tool No. 2 is acquired and set in the
variables.
N190: Timing synchronization causes decoding to wait until CNC operation has worked
through previous objects.
N200: Tool length correction is applied using the value acquired and set from the tool
number.
N210: Tool radius correction is performed from the next path. The correction radius is a value
acquired and set from the tool number and the path is corrected to the right in the direction of
motion.
(The rest omitted)

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-121

Timing
Synchronization

by G75
Timing Synchronization

by G75

Start Position
(X0, Y0, Z0)

Ramp in
Motion

Ramp in
Motion

Ramp out
Motion

● The processing of tool radius correction includes up to the movement (ramp-out motion) by the
line following G40. Therefore, a CNC program such as the following considers that tool radius
correction is in progress, so G75 cannot be used in combination.

Unacceptable example
N150 G00 X2
N160 G40
N170 M902 K2
N180 G75
N190 G00 X4 Y6

8.6 CNC Program Operation and Setting Method

8-122 WUME-GM1PGR-10

8.6.12 G50, G51, G52: Path Smoothing

With path smoothing, a connection between paths written in the CNC program can be changed
to a smooth path. An angle between paths subject to smoothing can be set to change C-point
control motion to P-point control motion.

Setting rules for smoothing

● Specifying smoothing properties
To perform smoothing by means of SMC_SmoothPath, write G50/G51 commands and to
perform arc correction by means of SMC_RoundPath, write G50/G52 commands.

G-code Function

G50 Ends smoothing.

G51 Starts path smoothing by SMC_SmoothPath.

G52 Starts arc correction between paths by SMC_RoundPath.

● Parameters used for smoothing

Parameter name Input value

Radius
D xxx
G51 xxx: The radius of curvature of a spline path for smoothing
G52 xxx: The radius of an arc for arc correction

Example: Smoothing by SMC_SmoothPath

● When bSymmetricalDistances is set to TRUE
[Setting example 1]

G-code example:
N000 G01 X10 Y0 F10
N010 G51 D10
N020 G01 X10 Y20
N030 G01 X20 Y20
N040 G01 X20 Y0
N050 G50
N060 G01 X30 Y0

• Explanation of G-code
N000: The path is moved (linearly interpolated) to (X10, Y0).
N010: Smoothing is performed on the path at the succeeding lines with a radius of
curvature of 10.
N020: The path is moved (linearly interpolated) to (X10, Y20).
N030: The path is moved (linearly interpolated) to (X20, Y20).
Smoothing is applied to a segment between the paths for N020 and N030.
Because bSymmetricalDistances = TRUE, the G-code set value D10 and half the length
of the short side of the path sides, 10 × 0.5 = 5, are compared to determine a radius of
curvature.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-123

The smaller value “5” is assigned to the radius of curvature D’ for smoothing.
N040: The path is moved (linearly interpolated) to (X20, Y0).
Smoothing is applied to a segment between the paths for N030 and N040.
Because bSymmetricalDistances = TRUE, the 5 assigned earlier to D’ and half the length
of the short side of the path sides are compared to determine a radius of curvature.
The short side is 5, from which a length equivalent to smoothing at N30 is subtracted.
Thus, the 5 for D’ and the half the length of the short side of the path sides, 5 × 0.5 = 2.5,
are compared, and the smaller value “2.5” is assigned to the radius of curvature for
smoothing.
N050: The applied smoothing ends.
N060: The path is moved (linearly interpolated) to (X30, Y0).

Start Position
(X0, Y0)

End Position
(X30, Y0)

After Linear Motion
(X10, Y0)

Smoothing
start point

Smoothing
end point

Smooth with
tool radius of 5

Smooth with
tool radius of 2.5

● When both bSymmetricalDistances and bImprovedSymmetricCuts are set to TRUE
[Setting example 2]

G-code example:
N000 G01 X10 Y0 F10
N010 G51 D10
N020 G01 X10 Y20
N030 G01 X20 Y20
N040 G01 X20 Y0
N050 G50
N060 G01 X30 Y0

• Explanation of G-code
N000: The path is moved (linearly interpolated) to (X10, Y0).
N010: Smoothing is performed on the path at the succeeding lines with a radius of
curvature of 10.
N020: The path is moved (linearly interpolated) to (X10, Y20).
N030: The path is moved (linearly interpolated) to (X20, Y20).

8.6 CNC Program Operation and Setting Method

8-124 WUME-GM1PGR-10

Smoothing is applied to a segment between the paths for N020 and N030.
Because bSymmetricalDistances = TRUE, the set value D10 and half the length of the
short side of the path sides, 10 × 0.5 = 5, are compared to determine a radius of
curvature. The smaller value “5” is assigned to the radius of curvature D’ for smoothing.
N040: The path is moved (linearly interpolated) to (X20, Y0).
Smoothing is applied to a segment between the paths for N030 and N040.
Because bSymmetricalDistances = TRUE, the 5 assigned earlier to D’ and half the length
of the short side of the path sides are compared to determine a radius of curvature. Since
bImprovedSymmetricCuts is set to TRUE, the half the length of the short side of the path
sides, 10 × 0.5 = 5, and the D’ are compared. The smaller value “5” is assigned to the
radius of curvature for smoothing.
N050: The applied smoothing ends.
N060: The path is moved (linearly interpolated) to (X30, Y0).

Start Position
(X0, Y0)

End Position
(X30, Y0)

After Linear Motion
(X10, Y0)

Smoothing
start point

Smoothing
end point

Smooth with
tool radius of 5

Smooth with
tool radius of 5

Example: Arc correction by SMC_RoundPath

● [Setting example]

G-code example:
N000 G01 X10 Y0 F10
N010 G52 D10
N020 G01 X10 Y20
N030 G01 X20 Y20
N040 G01 X20 Y0
N050 G50
N060 G01 X30 Y0

• Explanation of G-code
N000: The path is moved (linearly interpolated) to (X10, Y0).
N010: Arc correction is performed on the path at the succeeding lines with a radius of 10.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-125

N020: The path is moved (linearly interpolated) to (X10, Y20).
N030: The path is moved (linearly interpolated) to (X20, Y20).
Arc correction is applied to a segment between the paths for N020 and N030.
The set value D10 and half the short side of the path sides, 10 × 0.5 = 5, are compared to
determine a radius. The smaller value “5” is assigned to the radius for arc correction.
N040: The path is moved (linearly interpolated) to (X20, Y0).
Smoothing is applied to a segment between the paths for N030 and N040.
The set value D10 and half the short side of the path sides, 10 × 0.5 = 5, are compared to
determine a radius. The smaller value “5” is assigned to the radius of curvature for
smoothing.
N050: The applied arc correction ends.
N060: The path is moved (linearly interpolated) to (X30, Y0).

Start Position
(X0, Y0)

End Position
(X30, Y0)

After Linear Motion
(X10, Y0)

Smoothing
start point

Smoothing
end point

Round the edge with
an arc of radius 5

Round the edge with
an arc of radius 5

8.6 CNC Program Operation and Setting Method

8-126 WUME-GM1PGR-10

8.6.13 G53, G54, G55, G56: Coordinate Conversion

This chapter describes the method of coordinate conversion in CNC control.

■ Overview of coordinate conversion
After equipment is installed, offset or rotation amounts of a unit inside the equipment in XYZ
directions are corrected with respect to a coordinate system that serves as a basis, in some
cases.
On that occasion, replacing the original coordinate system with the coordinate system that
serves as a basis is called coordinate conversion.
For GM Programmer, the reference coordinate system under CNC is called the machine
coordinate system (MCS), and a coordinate system converted from the MCS is called the
decoder coordinate system (DCS).
● For instance, as shown below, information on a motion path made in a workpiece coordinate

system is converted to coordinates of an end of a robot (a robot coordinate system) and is
used to control the robot.
Example) The end of a tool of the robot is moved along a path from (X10, Y10, Z10) to (X10,
Y10, Z0) in a cubic coordinate system on the left side.

MCS
(Machine Coordinate System)

DCS
(Decoder Coordinate System)

X

Y

Z

Coordinate transformation

Tool tip positionOuter diameter information of CAD data
=> Generate trajectory command data

G01 X10 Y10 Z10
G01 X10 Y10 Z0

Y

X

Z

（x0,y0,z0）
（x1,y1,z1）

：
（xn,yn,zn）

GCode Trajectory data
MCS
Work coordinates (3D information)
10, 10, 10
10, 10, 9
10, 10, 8
10, 10, 7
10, 10, 6
10, 10, 5
10, 10, 4
10, 10, 3
10, 10, 2
10, 10, 1
10, 10, 0

Coordinate
transformation

X→X+90
Y→Y+190
Z→Z+40

DCS
robot coordinates
100, 200, 50
100, 200, 49
100, 200, 48
100, 200, 47
100, 200, 46
100, 200, 45
100, 200, 44
100, 200, 43
100, 200, 42
100, 200, 41
100, 200, 40

■ Coordinate system
● A left-handed coordinate system is adopted for GM Programmer.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-127

z

x

y

left-handed coordinate system

z

x

y

right-handed coordinate system

■ Rotation of coordinate system
● Rotation of the left-handed coordinate system in the forward direction is clockwise rotation

relative to the rotation axis.
● Rotation angles are specified in degrees.

Rotations can be set in a range from -180 degrees to +180 degrees.
If you specify an angle outside this range, the coordinate system rotates by a difference
between the angle and 360 degrees.

● Example) If an angle of 350 degrees is specified, a rotation of 350 degrees - 360 degrees =
-10 degrees is performed.

forward
rotation

8.6 CNC Program Operation and Setting Method

8-128 WUME-GM1PGR-10

Rotate 90 degrees
around the x-axis

z

x

y

Rotate -90 degrees
around the y-axis

z

y

x

Rotate 180 degrees
around the z-axis

z
y

x

If rotation around an axis is performed for coordinate conversion, the following input
parameters must be specified in function blocks for decoding.
Hence, PMC_NCDecoder cannot be used for coordinate rotation. Use SMC_NCDecoder or
SMC_NCInterpreter.

Parameter Type

SMC_NCDecoder.eOriConv
SMC_NCInterpreter.eOriConv

SMC_ORI_CONVENTION

■ SMC_ORI_CONVENTION(ENUM)

Scope Description

ADDAXES Rotation of the coordinate system is not executed. (Default)

ZYZ

Specifies rotation with Euler angles. The coordinate system is rotated in the order of
z-axis, y-axis, and z-axis.
The G-code parameters A, B, and C are interpreted as rotation angles around the z-
axis, y-axis, and z-axis, respectively.

ZYX

Specifies rotation with Euler angles. The coordinate system is rotated in the order of
z-axis, y-axis, and x-axis.
The G-code parameters A, B, and C are interpreted as rotation angles around the z-
axis, y-axis, and x-axis, respectively.

XYZ

Specifies rotation with Euler angles. The coordinate system is rotated in the order of
x-axis, y-axis, and z-axis.
The G-code parameters A, B, and C are interpreted as rotation angles around the x-
axis, y-axis, and z-axis, respectively.

Setting rules for coordinate conversion resetting

A command for coordinate conversion resetting is used to reset the decoder coordinate system
(DCS) and return to the coordinate system (MCS), which served as a basis before the
coordinate conversion was executed.
● Specifying coordinate conversion resetting

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-129

G-code Function

G53 Coordinate conversion resetting

Setting rules for absolute coordinate conversion

An absolute coordinate conversion method is used to convert the coordinate system (MCS),
which serves as a basis, to the decoder coordinate system (DCS) by shifting and rotating using
an absolute value.
This method can be used for purposes such as adjusting the positional relationship between a
workpiece coordinate system and a robot coordinate system.
● Specifying absolute coordinate conversion

G-code Function

G54 Absolute coordinate conversion

● Parameters set for absolute coordinate conversion

Parameter name Input value Overview

Coordinate shift
values

X-
axis X xxx (xxx: shift value)

Shifts the origin of the coordinate system (MCS), which
serves as a basis, to specified coordinates.

Y-
axis Y xxx (xxx: shift value)

Z-
axis Z xxx (xxx: shift value)

Coordinate
rotation values

1st
axis A xxx (xxx: rotation angle)

Shifts the origin of the coordinate system (MCS), which
serves as a basis, to specified coordinates. (Note 1)

2nd
axis B xxx (xxx: rotation angle)

3rd
axis C xxx (xxx: rotation angle)

Scaling factors

X-
axis I xxx (xxx: scaling factor)

Scales up or down along each axis by a specified
factor.
This can be used only in CNC program files.

Y-
axis J xxx (xxx: scaling factor)

Z-
axis K xxx (xxx: scaling factor)

(Note 1) Axes on which rotation angle parameters A, B, and C act differ depending on the eOriConv input.

Setting rules for relative coordinate conversion

A relative coordinate conversion method is used to convert the decoder coordinate system
(DCS) with the current position and orientation to the decoder coordinate system (DCS) by
shifting and rotating using a relative value.
This method can be used for purposes such as changing the tool offset amount to any value by
G55 in combination with G54 when an tool on the end of a robot is switched to another tool.
● Specifying relative coordinate conversion

G-code Function

G55 Relative coordinate conversion

8.6 CNC Program Operation and Setting Method

8-130 WUME-GM1PGR-10

● Parameters set for relative coordinate conversion

Parameter name Input value Overview

Coordinate shift
values

X-
axis X xxx (xxx: shift value)

Shifts the origin of the current coordinate system
(DCS) by a specified shift value.

Y-
axis Y xxx (xxx: shift value)

Z-
axis Z xxx (xxx: shift value)

Coordinate
rotation values

1st
axis A xxx (xxx: rotation angle)

Rotates the current coordinate system (DCS) around
the axis by a specified angle (degrees). (Note 1)

2nd
axis B xxx (xxx: rotation angle)

3rd
axis C xxx (xxx: rotation angle)

Scaling factors

X-
axis I xxx (xxx: scaling factor)

Scales up or down along each axis by a specified
factor.
This can be used only in CNC program files.

Y-
axis J xxx (xxx: scaling factor)

Z-
axis K xxx (xxx: scaling factor)

(Note 1) Axes on which rotation angle parameters A, B, and C act differ depending on the eOriConv input.

Setting rules for Coordinate reference point resetting

A coordinate reference point resetting method is used to convert to a decoder coordinate
system (DCS) by specifying shift and rotation values to the current orientation and position of
the coordinate system (MCS), which serves as a basis.
This method can be used for purposes such as setting the current position to a zero point or
any position when the robot position is calibrated.
● Specifying coordinate reference point resetting

G-code Function

G56 Coordinate reference point resetting

● Parameters set for coordinate reference point resetting

Parameter name Input value Overview

Coordinate shift
values

X-
axis X xxx (xxx: shift value)

Defines the current position in the reference coordinate
system (MCS) as a specified coordinate position.

Y-
axis Y xxx (xxx: shift value)

Z-
axis Z xxx (xxx: shift value)

Coordinate
rotation values

1st
axis A xxx (xxx: rotation angle)

Defines the current coordinate direction as a specified
rotation angle state. (Note 1)

2nd
axis B xxx (xxx: rotation angle)

3rd
axis C xxx (xxx: rotation angle)

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-131

Parameter name Input value Overview

Scaling factors

X-
axis I xxx (xxx: scaling factor)

Scales up or down along each axis by a specified
factor.
This can be used only in CNC program files.

Y-
axis J xxx (xxx: scaling factor)

Z-
axis K xxx (xxx: scaling factor)

(Note 1) Axes on which rotation angle parameters A, B, and C act differ depending on the eOriConv input.

Example: Absolute coordinate conversion

● [Setting example]

G-code example:
N00 G01 X10 Y10 Z10 F100 E500 E-500
N01 G54 X10 Y10 Z10
N02 G01 X10 Y10 Z10

• Explanation of G-code
N00: Linear interpolation according to the absolute coordinate system is performed.

Current position (X0, Y0, Z0), end point (X10, Y10, Z10)
Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

N01: Absolute coordinate conversion is performed.
The origin of the DCS coordinate system is converted from (X0, Y0, Z0) to (X10, Y10,
Z10).

N02: Linear interpolation according to the absolute coordinate system is performed.　
- DCS coordinate system: Current position (X0, Y0, Z0), end point (X10, Y10, Z10)
- MCS coordinate system: Current position (X10, Y10, Z10), end point (X20, Y20, Z20)

Velocity 100 [u/sec], Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

When G54 is executed in a condition in which coordinate conversion has been performed
through G54, G55, or G56, the coordinates are converted according to the settings in the
G54 command that is executed last irrespective of the result of the immediately preceding
coordinate conversion.

8.6 CNC Program Operation and Setting Method

8-132 WUME-GM1PGR-10

Example: Absolute coordinate conversion and relative coordinate conversion

● [Setting example]

G-code example:
N00 G54 X10 Y10 Z10
N10 G01 X10 Y10 Z10 F100 E500 E-500
N20 G55 X-10 Y10 Z-20
N30 G01 X10 Y10 Z10

• Explanation of G-code
N00: Absolute coordinate conversion is performed.

The origin of the DCS coordinate system is converted from (X0, Y0, Z0) to (X10, Y10,
Z10).

N10: Linear interpolation according to the absolute coordinate system is performed.
- DCS coordinate system: Current position (X-10, Y-10, Z-10), end point (X10, Y10, Z10)
- MCS coordinate system: Current position (X0, Y0, Z0), end point (X20, Y20, Z20)

Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]
N20: Relative coordinate conversion is performed.

The origin of the DCS coordinate system is converted from (X10, Y10, Z10) to (X0, Y20,
Z-10).

N30: Linear interpolation according to the absolute coordinate system is performed.
- DCS coordinate system: Current coordinates (X20, Y0, Z30), end point (X10, Y10, Z10)
- MCS coordinate system: Current coordinates (X20, Y20, Z20), end point (X10, Y30, Z0)

Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

When G55 is executed in a condition in which coordinate conversion has been performed
through G54, G55, or G56, the coordinates are converted in the coordinate system after the
immediately preceding coordinate conversion because relative values are specified for G55.
When only G55 is executed, the coordinates are converted in the same way as G54.

Example: Absolute coordinate conversion and coordinate conversion
resetting

● [Setting example]

G-code example:
N000 G54 X10 Y10 Z10
N001 G01 X10 Y10 Z10 F100 E500 E-500
N002 G53
N003 G01 X10 Y10 Z10

• Explanation of G-code
N00: Absolute coordinate conversion is performed.

The origin of the DCS coordinate system is converted from (X0, Y0, Z0) to (X10, Y10,
Z10).

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-133

N10: Linear interpolation according to the absolute coordinate system is performed.
- DCS coordinate system: Current position (X-10, Y-10, Z-10), end point (X10, Y10, Z10)
- MCS coordinate system: Current position (X0, Y0, Z0), end point (X20, Y20, Z20)

Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]
N002: Coordinate conversion resetting is performed.

The origin of the DCS coordinate system is reset to (X0, Y0, Z0).
N003: Linear interpolation is performed according to the following values.

Current position (X20, Y20, Z20), end point (X10, Y10, Z10)
Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

Example: Coordinate conversion combination

After absolute coordinate conversion is performed by G54, relative coordinate conversion can
be performed by executing G55 two or more times.
● [Setting example]

G-code example:
N000 G17
N010 G54 X10 Y10 Z10 A180 B0 C0
N020 G55 X5 Y5 Z5 A0 B90 C0
N030 G55 X5 Y-5 Z0 A0 B0 C-90
N040 G01 X0 Y0 Z0 F100
N050 G01 X100 Y0 Z0
N060 G01 X100 Y100 Z0
N070 G01 X0 Y100 Z0
N080 G01 X0 Y0 Z0
N090 G01 X0 Y0 Z100
N100 G01 X100 Y0 Z100
N110 G01 X100 Y0 Z0
N120 G01 X0 Y0 Z0
N130 G01 X0 Y0 Z100
N140 G01 X0 Y100 Z100
N150 G01 X0 Y100 Z0
N160 G01 X0 Y0 Z0

• NCDecoder.eOriConv
The convention is set to ZYZ (G54, G55 parameters A, C are interpreted as rotation
angles around the z-axis, and the parameter B is interpreted as a rotation angle around
the y-axis).

• Explanation of G-code
N010: Absolute coordinate conversion is performed.

The origin of the DCS coordinate system is converted from (X0, Y0, Z0) to (X10, Y10,
Z10).
According to the rotation convention ZYZ, coordinates are rotated 180° around the z-
axis.

8.6 CNC Program Operation and Setting Method

8-134 WUME-GM1PGR-10

z

x

y
N020: Relative coordinate conversion is performed.

The origin of the DCS coordinate system is converted from (X10, Y10, Z10) to (X5, Y5,
Z15).
According to the rotation convention ZYZ, coordinates are rotated 90° around the y-axis.

- From the viewpoint of the original coordinate system, X is shifted in -X direction and
thus the relative coordinate conversion results in X = 10 - 5 = 5.

- From the viewpoint of the original coordinate system, Y is shifted in -Y direction and
thus the relative coordinate conversion results in Y = 10 - 5 = 5.

- From the viewpoint of the original coordinate system, Z is shifted in +Z direction and
thus the relative coordinate conversion results in Z = 10 + 5 = 15.

z

x

y
N030: Relative coordinate conversion is performed.

The origin of the DCS coordinate system is converted from (X5, Y5, Z15) to (X5, Y10,
Z10).

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-135

According to the rotation convention ZYZ, coordinates are rotated -90° around the z-axis.
- From the viewpoint of the original coordinate system, X is shifted in -Z direction and

thus the relative coordinate conversion results in Z = 15 - 5 = 10.
- From the viewpoint of the original coordinate system, Y is shifted in -Y direction and

thus the relative coordinate conversion results in Y = 5 - (-5) = 10.
- From the viewpoint of the original coordinate system, Z is shifted in -X direction and

thus the relative coordinate conversion results in X = 5 - 0 = 5.

z

x

y
N040 and subsequent lines: In the converted coordinate system, linear interpolation
according to the absolute coordinate system is performed.

The final motion path can be checked as shown in traces below.

X-axis: after coordinate
transformation

X-axis: before coordinate
transformation

Y-axis: after coordinate
transformation

Y-axis: before coordinate
transformation

Z-axis: after coordinate
transformation

Z-axis: before coordinate
transformation

8.6 CNC Program Operation and Setting Method

8-136 WUME-GM1PGR-10

Settings for coordinate reference point resetting

● [Setting example]

G-code example:
N00 G01 X10 Y-10 Z0 F100 E500 E-500
N10 G56 X0 Y0 Z10
N20 G01 X10 Y10 Z20 F100

• Explanation of G-code
N00: Linear interpolation according to the absolute coordinate system is performed.

Current position (X0, Y0, Z0), end point (X10, Y-10, Z0)
Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

N10: Coordinate reference point resetting is performed.
The current position in the DCS coordinate system is converted from (X10, Y-10, Z0) to
(X0, Y0, Z10).

N20: Linear interpolation is performed.
- DCS coordinate system: Current position (X0, Y0, Z10), end point (X10, Y10, Z20)
- MCS coordinate system: Current position (X10, Y-10, Z0), end point (X20, Y0, Z10)

Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

Since the current position in the reference coordinate system (MCS) is converted to the
specified coordinate position, the coordinates are converted according to the settings in the
G56 command that is executed last irrespective of the result of the immediately preceding
coordinate conversion.

Confirmation items on coordinate conversion

Note the following points when using coordinate conversion.
● Parameter settings for coordinate conversion

• When programming rotation, the angles of rotation should always be specified in A, B, and
C for all three axes.

• A missing angle of rotation causes an error when decoding.
● Effective range of coordinate conversion

Coordinate conversion is effective in the range of each CNC program (SMC_CNC_REF).
Thus, if processes of the same sort are executed, the similar processes can be generalized,
for example, by implementing a common process that includes a subprogram using a CNC
program file.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-137

8.6.14 G75: Timing Synchronization

Decoding by SMC_Ncdecoder or SMC_NCInterpreter is synchronized with the timing of
SMC_Interolator interpolation operation.

Setting rules for timing synchronization

● Specifying timing synchronization

G-code Function

G75 Timing synchronization

Example: Settings for timing synchronization

[Setting example]

G-code example:
N00 E500 E-500
N10 G01 X100 Y100 F100
N20 G75
N30 G01 Xg_x Yg_y F100

● Explanation of G-code
N00: Acceleration and deceleration (acceleration 500 [u/sec2] and deceleration -500 [u/sec2])
are set collectively.
N10: Linear interpolation (X100, Y100) is performed. (Section (1) in the figure below)
N20: Timing synchronization causes decoding to wait until CNC operation has worked
through previous objects.

The program refers to a value indicating the time at which code with defined variables is
executed at N030.

N30: Linear interpolation (g_x, g_y) is performed. (Section (2) in the figure below)
The figure shows a case in which g_x = 100 and g_y = 0.
Point: With G75 written, decoding is required to wait. This allows the final travel position to
be changed during execution of the N10 line.

8.6 CNC Program Operation and Setting Method

8-138 WUME-GM1PGR-10

End Position
(X100, Y0)

Start Position
(X0, Y0)

(X100, Y100)

(1)
(2)

timing
synchronization

● When timing synchronization is performed with G75, the program always makes a pause after
an interpolation operation that is written immediately before G75. It should be noted that if
continuous motion (P-point control) is necessary, G75 must be executed before the start of P-
point control motion.

● For an example of combined use of G75 and M-codes, refer to ""Example: Updating
variables"".

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-139

8.6.15 G90, G91: Coordinate Specification

Set any of absolute coordinate specification and relative coordinate specification.
Absolute coordinate specification is a method that specifies coordinates as absolute
coordinates based on an origin. Meanwhile, relative coordinate specification is a method that
specifies a movement distance (relative coordinates) from the current position.
A set of absolute coordinates is the default value for target position settings. Once a method of
coordinate specification is set, motion continues under the same coordinate specification unless
the other method of coordinate specification is set.

Setting rules for coordinate specification

● Specifying coordinates

G-code Function

G90 Absolute coordinates specification

G91 Relative coordinates specification

Example: Absolute coordinates specification

[Setting example]

G-code example:
N10 G90
N20 G01 X50 Y50 F100 E500 E-500
N30 G01 X100 Y50 F100 E500 E-500

● Explanation of G-code
N10: Absolute coordinate specification is set.
N20: Linear interpolation is performed according to the following values.

Current position (X0, Y0), end point (X50, Y50)
Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

N30: Linear interpolation is performed according to the following values.
Current position (X50, Y50), end point (X100, Y50)
Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

8.6 CNC Program Operation and Setting Method

8-140 WUME-GM1PGR-10

End Position
(X100, Y50)

Start Position
(X0, Y0)

Motion
trajectory

(X50, Y50)

Example: Relative coordinates specification

[Setting example]

G-code example:
N11 G91
N21 G01 X50 Y50 F100 E500 E-500
N31 G01 X50 Y0 F100 E500 E-500

● Explanation of G-code
N11: Relative coordinate specification is set.
N21: Linear interpolation is performed according to the following values.

Current position (X0, Y0), movement amount (X+50, Y+50), end point (X50, Y50)
Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

N31: Linear interpolation is performed according to the following values.
Current position (X50, Y50), movement amount (X+50, Y+0), end point (X100, Y50)
Velocity 100, Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

End Position
(X100, Y50)

Start Position
(X0, Y0)

Motion
trajectory

(X50, Y50)

X+50, Y+50

X+50, Y+0

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-141

8.6.16 G92: Start position specification

The start position of a CNC program operation is set.

Setting rules for start position specification

● Specifying start position

G-code Function

G92 Start position specification

● Parameters set for start position specification

Parameter name Input value

X-axis X xxx　 (xxx: starting coordinate)

Y-axis Y xxx　 (xxx: starting coordinate)

Z-axis Z xxx　 (xxx: starting coordinate)

Example: Setting start position

[Setting example]

G-code example:
N00 F100 E500 E-500
N10 G92 X10 Y10
N20 G1 X20 Y20
N30 G1 X30 Y0

● Explanation of G-code
N00: Velocity, acceleration, and deceleration (velocity 100 [u/sec], acceleration 500 [u/sec2]
and deceleration -500 [u/sec2]) are set collectively.
N10: The start position of the CNC program operation (X10, Y10) is set.
N20: From the start position (X10, Y10), linear interpolation (X20, Y20) is performed.
N30: Linear interpolation (X30, Y0) is performed.

8.6 CNC Program Operation and Setting Method

8-142 WUME-GM1PGR-10

Start Position
(X10, Y10)

(X20, Y20)

(X30, Y0)

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-143

8.6.17 G98, G99: Circular arc coordinate specification

Circular arc coordinates can be specified as either absolute coordinates or relative coordinates.
With circular arc coordinates set, center point coordinates can be specified by selecting relative
coordinates or absolute coordinates.
A set of relative coordinates is the default value for circular arc coordinates. Once a method of
coordinate specification is set, motion continues under the same coordinate specification unless
the other method of coordinate specification is set.

Setting rules for coordinate specification

● Specifying circular arc coordinates

G-code Function

G98 Absolute coordinate specification (center point)

G99 Relative coordinate specification (center point)

● For relative and absolute coordinate specifications, different G-codes are used for target
coordinates and center point coordinates.

● It is strongly recommended that relative coordinates (default setting) be used for center point
coordinates, as using relative coordinates makes input easier.

8.6 CNC Program Operation and Setting Method

8-144 WUME-GM1PGR-10

Example: Circular arc relative coordinate specification

Center points can be specified as relative coordinates, as shown below. Coordinates other than
center point coordinates are specified as absolute coordinates.
[Setting example]

G-code example:
N00 G90
N01 G01 X100 Y100 F100 E500 E-500
N02 G99
N03 G17
N04 G02 X200 Y100 I50 J0 F100

● Explanation of G-code
N00: The target position is specified as absolute coordinates. (This specification can be
omitted.)
N01: Movement to X100, Y100 coordinates (linear interpolation) is performed.
N02: A center point is specified as relative coordinates.
N03: An XY-plane is selected.
N04: Circular interpolation is performed in the XY-plane according to the following values.

Current value (X100, Y100), end point (X200, Y100)
Center point entered as relative coordinates (X50, Y0)
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

End Position
(X200, Y100)

Start Position
(X0, Y0)

Motion
trajectory

Center Position
(X150, Y100)

After Linear Motion
(X100, Y100)

Relative coordinate
specification X+50, Y+0

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-145

Example: Circular arc absolute coordinate specification

Center points can be specified as absolute coordinates, as shown below. Coordinates for all
movements including center point coordinates are specified as absolute coordinates.
[Setting example]

G-code example:
N00 G90
N01 G01 X100 Y100 F100 E500 E-500
N02 G98
N03 G17
N04 G02 X200 Y100 I150 J100 F100 E500 E-500

● Explanation of G-code
N00: Absolute coordinate specification is set. (This specification can be omitted.)
N01: Movement to X100, Y100 coordinates (linear interpolation) is performed.
N02: The center point is specified as absolute coordinates. (This specification can be
omitted.)
N03: An XY-plane is selected.
N04: Circular interpolation is performed in the XY-plane according to the following values.

Current value (X100, Y100), end point (X200, Y100)
Center point (X150, Y100)
Velocity 100
Acceleration 500 [u/sec2], Deceleration -500 [u/sec2]

End Position
(X200, Y100)

Start Position
(X0, Y0)

Motion
trajectory

Center Position
(X150, Y100)

After Linear Motion
(X100, Y100)

8.6 CNC Program Operation and Setting Method

8-146 WUME-GM1PGR-10

8.6.18 M-code

With M-code, you can freely program a process in a user program.
When the program reaches a line at which the M-code is executed, the iStatus status of
SMC_Interpolator changes to IPO_WAIT and the M-code number sent to wM is output.
After that, the process in the user program ends and when the bAcknM input of
SMC_Interpolator is set to TRUE, the CNC control operation restarts.

Setting rules for M-code

● Specifying M-code

M-code Function

Mxx
xx: A number from 0 to 32766 can be set.
For G75 and G04, the number is 32767. Thus, do not use it.

● If the bSuppressSystemMFunctions argument of SMC_Interpolator is set to TRUE, the wM
output is not set to 32767 but remains 0 during a pause with G04 or G75.

Example: Updating variables

This is an example of a program designed to detect when the program reaches the M-code line
during CNC control, call a separate process and then update the values of variables.
[Implementation example]
● CNC program:

(CNC program: CNC_01)
N010 G01 X0 Y0 F10
N020 G01 X10 Y10 F10
N030 M1 K1
N040 G75
N050 G01 Xg_x Yg_y
N060 M1 K2
N070 G75
N080 G01 Xg_x Yg_y

● MotionTask declaration section:

SMC_NCDecoder0 : SMC_NCDecoder;
buf : ARRAY[0..10] OF SMC_GEOINFO;
SMC_CheckVelocities0 : SMC_CheckVelocities;
SMC_Interpolator0 : SMC_Interpolator;
SMC_GetMParameters0 : SMC_GetMParameters;
SMC_TRAFO_Gantry2_0 : SMC_TRAFO_Gantry2;
SMC_ControlAxisByPos0 : SMC_ControlAxisByPos;
SMC_ControlAxisByPos1 : SMC_ControlAxisByPos;
R_TRIG_0: R_TRIG;
RS_0: RS;

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-147

bExe : BOOL:=TRUE;
bEnaGetMPara : BOOL;

● MotionTask:

// CNC Control
SMC_NCDecoder0(nSizeOutQueue:=SIZEOF(buf),
 pbyBufferOutQueue:=ADR(buf),
 ncprog:=CNC_01,
 bExecute:=bExe);
SMC_CheckVelocities0(bExecute:=bExe,
 poqDataIn:=SMC_NCDecoder0.poqDataOut,
 dAngleTol:=5);
SMC_Interpolator0(bExecute:=bExe,
 poqDataIn:=SMC_CheckVelocities0.poqDataOut,
 dwIpoTime:=1000,
 wM=>GVL.McodeNo,
 iStatus=>GVL.IntStatus,
 bAcknM:=GVL.McodeFinish);
SMC_GetMParameters0(Interpolator:=SMC_Interpolator0,
 bEnable:=bEnaGetMPara,
 dK=>GVL.ProcessNo);
SMC_TRAFO_Gantry2_0(pi:=SMC_Interpolator0.
 piSetPosition);
SMC_ControlAxisByPos0(Axis:=X_Drive,
 bEnable:=SMC_Interpolator0.bWorking,
 iStatus:=SMC_Interpolator0.iStatus,
 fSetPosition:=SMC_TRAFO_Gantry2_0.dx);
SMC_ControlAxisByPos1(Axis:=Y_Drive,
 bEnable:=SMC_Interpolator0.bWorking,
 iStatus:=SMC_Interpolator0.iStatus,
 fSetPosition:=SMC_TRAFO_Gantry2_0.dy);
IF bExe THEN
 R_TRIG_0(CLK:=(GVL.IntStatus = IPO_WAIT));
 RS_0(SET:=R_TRIG_0.Q,
 RESET1:=(GVL.McodeFinish OR NOT(GVL.IntStatus = IPO_WAIT)),
 Q1=> bEnaGetMPara);
END_IF

● Global variable declaration section:

// GVL
bStart : BOOL := FALSE;
g_x : DINT := 0;
g_y : DINT := 0;
ProcessNo : LREAL := 0;
IntStatus : SMC_INT_STATUS := IPO_INIT;
McodeNo : WORD;
McodeFinish : BOOL := FALSE;

● User task declaration section:

// Declare a task section that calls a separate process
TON0 : TON;
TON1 : TON;

8.6 CNC Program Operation and Setting Method

8-148 WUME-GM1PGR-10

bIN0 : BOOL := FALSE;
bIN1 : BOOL := FALSE;

● User task:

IF GVL.bStart THEN
 //Wait M code process
 IF GVL.IntStatus = IPO_WAIT AND GVL.McodeNo=1 AND GVL.ProcessNo = 1 TH
EN
 bIN0:=TRUE;
 ELSIF GVL.IntStatus = IPO_WAIT AND GVL.McodeNo=1 AND GVL.ProcessNo = 2
THEN
 bIN1:=TRUE;
 END_IF

 // Mcode Process (For example timer)
 TON0(IN:=bIN0, PT:=T#1S);
 TON1(IN:=bIN1, PT:=T#1S);

 IF TON0.Q AND GVL.ProcessNo = 1 THEN
 GVL.g_x:=20;
 GVL.g_y:=20;
 bIN0:=FALSE;
 GVL.McodeFinish:=TRUE;
 ELSIF TON1.Q AND GVL.ProcessNo = 2 THEN
 GVL.g_x:=30;
 GVL.g_y:=30;
 bIN1:=FALSE;
 GVL.McodeFinish:=TRUE;
 ELSE
 GVL.McodeFinish:=FALSE;
 END_IF
END_IF

● Trace results

McodeProcess

(3)

(7)

(1)

(5)

Variation of g_x, g_y
in CNC Program

Variation of ProcessNo
in CNC Program

CNC running state

During G75 &
Mcode Process

During G75 &
Mcode Process

● Outline of behavior

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-149

(CNCProgram：CNC_01)

N010 G01 X0 Y0 F10
N020 G01 X10 Y10 F10
N030M1 K1
N040 G75
N050 G01 Xg_x Yg_y
N060 M1 K2
N070 G75
N080 G01 Xg_x Yg_y

(UserTask)
IF GVL.bStart THEN

//Wait M code process
IF GVL.IntStatus = IPO_WAIT AND GVL.McodeNo=1 AND GVL.ProcessNo = 1 THEN

bIN0:=TRUE;
ELSIF GVL.IntStatus = IPO_WAIT AND GVL.McodeNo=1 AND GVL.ProcessNo = 2 THEN

bIN1:=TRUE;
END_IF

// Mcode Process (For example timer)
TON0(IN:=bIN0, PT:=T#1S);
TON1(IN:=bIN1, PT:=T#1S);

IF TON0.Q AND GVL.ProcessNo = 1 THEN
GVL.g_x:=20;
GVL.g_y:=20;
bIN0:=FALSE;
GVL.McodeFinish:=TRUE;

ELSIF TON1.Q AND GVL.ProcessNo = 2 THEN
GVL.g_x:=30;
GVL.g_y:=30;
bIN1:=FALSE;
GVL.McodeFinish:=TRUE;

ELSE
GVL.McodeFinish:=FALSE;

END_IF
END_IF

(1)

(2)
(3)

(4)

(6)

(5)

● Description of operation
1. When the programs makes a pause at N030 for M-code in the CNC table,

the status of SMC_Interpolator changes to IPO_WAIT and the M-code number from the
wM output is input. ((1) in the figure)

2. The user task side detects that the program is paused for the M-code, and then a
separate process is executed. ((2) in the figure, this example shows a simple process for
waiting the elapse of time.)

3. After the separate process ends, the g_x, g_y values are updated, and the M-code
process is completed. ((3) in the figure, The operation resumes by setting
GVL.McodeFinish(SMC_Interpolator input bAcknM):=TRUE.)

4. The rest of the program is similar to the process in (1) to (3).

8.6 CNC Program Operation and Setting Method

8-150 WUME-GM1PGR-10

8.6.19 H-Switch

By using H-switches, you can turn ON or OFF the IO output during the execution of an
interpolation operation (e.g., G01, G02, or G03) at the time when the travel distance of the
interpolation operation reaches a specified amount.
This function can be useful when processing is necessary during coating or other operation.

Setting rules for H-switch

● Specifying H-switch

Parameter name Input value Function

H-switch number Hxx

The status of switches 1 to 32 can be constantly monitored through the
dwSwitches output of SMC_Interpolator.
As for the way of writing, switch ON can be controlled with the H number
between 1 and 32, and switch OFF can be controlled with the H number
between -1 and -32.

Switch condition

Oxx

For the relative position of the switching point in the travel path, specify a
value between 0 and 1.
Switching point = start point + {(end point - start point)* percentage O}

To turn the switch function ON in the middle of the travel path, write code
as follows.
Example:　G01 X10 Y10 H1 O0.1
With X0, Y0 set as the start point, H1 switch is turned ON at the point X1,
Y1.

Lxx

You can specify the travel distance from the start point.
For L > 0, the distance from the start point is specified.

Switching point X = start point + (distance L * cosθ)
Switching point Y = start point + (distance L * sinθ)

For L < 0, the distance to the end point is specified.
Switching point X = end point + (distance L * cosθ)
Switching point Y = end point + (distance L * sinθ)

* θ is an angle formed by the path

To turn the switch function ON when the travel distance from the start
point is 2, write code as follows.
Example:　G01 X10 Y10 H1 L2
With X0, Y0 set as the start point, H1 switch is turned ON at the point
X1.4142, Y14142.

● Up to three switches can be written in one line. If four or more switches need to be written,
write it in the next line.

● Note that if a switch is written in the next line, ON/OFF control cannot be executed during
interpolation operation at the preceding line. ON/OFF control is executed with timing of
processing at the present line.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-151

Example: Specifying relative position in travel path

[Setting example]

CNC program example:
N00 F10 E100 E-100
N10 G1 X10 Y20 H4 O0.5
N20 G1 X30 Y30 H-4 O0.25

● Explanation of the CNC program
N00: Velocity, acceleration, and deceleration (velocity 10 [u/sec], acceleration 100 [u/sec2]
and deceleration -100 [u/sec2]) are set collectively.
N10: Linear interpolation (X10, Y20) is performed. H4 is switched ON at timing (X5, Y10)
when the relative position reaches 50%.

X-axis switching point = start point(0) + {travel path(10-0) * position(0.5)} = 5
Y-axis switching point = start point(0) + {travel path(20-0) * position(0.5)} = 10

N20: Linear interpolation (X30, Y30) is performed. H4 is switched OFF at timing (X15, Y225)
when the relative position reaches 25%.

X-axis switching point = start point(10) + {travel path(30 - 10) * position(0.25)} = 15
Y-axis switching point = start point(20) + {travel path(30 - 20) * position(0.25)} = 22.5

Example: Specifying travel distance

[Setting example 1] Specify a travel distance from the start point

CNC program example:
N00 F10 E100 E-100
N10 G1 X10 Y10 H4 L2

● Explanation of the CNC program
N00: Velocity, acceleration, and deceleration (velocity 10 [u/sec], acceleration 100 [u/sec2]
and deceleration -100 [u/sec2]) are set collectively.
N10: Linear interpolation (X10, Y10) is performed. H4 is switched ON at timing (X5, Y10)
when the travel distance reaches 2.

X-axis switching point = start point + (distance L * cosθ)
= start point + distance L * (travel distance / oblique side distance)

= 0 + 2*(10/√(102+10^2))
= 1.414213...

Y-axis switching point = start point + (distance L * sinθ)
= start point + distance L * (travel distance / oblique side distance)

= 0 + 2*(10/√(102+10^2))
= 1.414213...

8.6 CNC Program Operation and Setting Method

8-152 WUME-GM1PGR-10

θ

2

X Axis Switching
Position

Y Axis Switching
Position

Zoom

X Axis Switching
Position

Y Axis Switching
Position

10

10

10√2

[Setting example 2] Specify a travel distance to the end point

CNC program example:
N00 F10 E100 E-100
N10 G1 X10 Y10 H4 L-2

● Explanation of the CNC program
N00: Velocity, acceleration, and deceleration (velocity 10 [u/sec], acceleration 100 [u/sec2]
and deceleration -100 [u/sec2]) are set collectively.
N10: Linear interpolation (X10, Y10) is performed. H4 is switched ON at timing (X5, Y10)
when the distance to the end point reaches 2.

X-axis switching point = end point + (distance L * cosθ)
= end point + distance L * (travel distance / oblique side distance)

= 10 - 2*(10/√(102+10^2))
= 10 - 1.414213... = 8.585786...

Y-axis switching point = end point + (distance L * sinθ)
= end point + distance L * (travel distance / oblique side distance)

= 10 - 2*(10/√(102+10^2))
= 10 - 1.414213... = 8.585786...

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-153

θ

2Zoom10√2

10

10
Y Axis Switching
Position

Y Axis Switching
Position

Y Axis Switching
Position

Y Axis Switching
Position

8.6 CNC Program Operation and Setting Method

8-154 WUME-GM1PGR-10

8.6.20 CNC Program File

In addition to creating a CNC program with the CNC editor of the GM Programmer, you can
create a CNC program on CAD/CAM, PC, or other tools in text format and read it from an SD
card.
CNC programs read from SD cards in such a way are called CNC program files.
The following operations are possible with a CNC program file.
● G20 jump label function (refer to "8.6.9 G20, G36, G37: Jump and Loop Process")
● G53 to 56 coordinate conversion and scaling (refer to "8.6.13 G53, G54, G55, G56:

Coordinate Conversion")
● Use of subprograms
● Use of variables (global variables, local variables)
● Use of operators and functions ('+', '-', 'sin', etc.)

Coding rules for CNC program files

From one CNC program file, another CNC program file can be read and executed.
The calling CNC program file is termed a main program, and the called CNC program file is
termed a subprogram.

■ Overview of subprograms
For using a subprogram, it is necessary to configure settings in a function block and write a
main program and the subprogram in accordance with rules. A subprogram can be called from
another subprogram. Up to 12 recursive calls are permitted.

■ Location of setting in function block
Specify a directory with an absolute path where the subprogram is stored in the
aSubProgramDirs input of the SMC_ReadNCFile2 function block.
The file is searched for in the specified directories, starting with the directory that has the lowest
index in the array. A subprogram in the directory that matches first is run.
* The root directory can be specified with ‘./’ or ‘.’.

■ Coding rules for main program
N number Subprogram name {a value for argument 1, a value for argument 2,,,}
● Example of code (without argument):

N020 SUBCNC1{}
● Example of code (with argument):

N020 SUBCNC1{10, 5.5}

■ Coding rules for sub program
SUBPROGRAM Subprogram name {name of argument 1, name of argument 2,,, } RESTORE
option
　　A CNC program for the subprogram is written
END_SUBPROGRAM
● Example of code:

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-155

SUBPROGRAM SUBCNC1{#a : LREAL, #b : LREAL} RESTORE_MODES
N100 G91 F#a E100 E-100
N110 G01 X10 Y#b
N120 G01 X20 Y10
END_SUBPROGRAM

● Subprogram arguments
Following #, a variable name and a variable type are declared.
For the variable name, up to 80 half-width alphabetic characters and underscores can be
used.
The available variable types are LREAL, BOOL, and STRING(255).

■ RESTORE option
When returning to the calling program from the subprogram, modal states are restored to the
values that it had at the call.
If RESTORE_MODES is specified, the following G-code states are restored.
● Relative/Absolute coordinates specification (G90 / G91, G98 / G99)
● Plane specification and 2D / 3D mode (G15 / G16 / G17 / G18 / G19)
● Coordinate Conversion (G53 / G54 / G55 / G56)
● Velocity and acceleration F, FF, E EF
● Tool radius (D word)

■ RETURN instruction
If RETURN is written in the subprogram, the system can return to the main program before
reaching END.
Although the code after RETURN is not executed, it must conform to the coding rules.
● Example of code:

SUBPROGRAM CNC_RETURN1{}
N110 G01 X10 Y20
N120 RETURN
N130 G01 X10 Y20
END_SUBPROGRAM

● Example of code that causes an error (END_SUBPROGRAM is not at the end of the text):

SUBPROGRAM CNC_RETURN2{}
N110 G01 X10 Y20
N120 RETURN
N130 G01 X10 Y20

● Example of code that causes an error (there is a syntax error in the code after RETURN):

SUBPROGRAM CNC_RETURN2{}
N110 G01 X10 Y20
N120 RETURN
N130 G01 X10 Y20
N140 G01 X((20) Y10
END_SUBPROGRAM

8.6 CNC Program Operation and Setting Method

8-156 WUME-GM1PGR-10

Use of variables in CNC program files

When CNC control is executed using a CNC program file, variables can be used in the G-code
and values can be assigned to the variables.
Variables of the following three types can be declared.

Scope Main program Subprogram

Global variables 〇(Available) 〇(Available)

Local variables 〇(Available) 〇(Available)

Subprogram arguments ×(Not available) 〇(Available)

● Global variables
In the CNC program file, as in the CNC editor, global variables can be used and values can
be assigned to the variables while the program is in operation. For using a global variable,
you must set up the pvl argument of SMC_ReadNCFile2. For details, refer to
"8.2.2 SMC_ReadNCFile2 (Read CNC File)".

● Declaration of local variables
Variables can be used locally in main programs and subprograms on a temporary basis.
Declarations must be inserted at the beginning of the programs. Declarations of local
variables are not required in POU programs and thus are completed inside CNC programs.

● Example of declarations in main program

LET #x : LREAL :=10
LET #y : LREAL :=20
LET #b : BOOL :=FALSE
N000 G91 F10 E100 E-100
N010 G01 X#x Y#y
N030 G20 L10 K#b

● Example of declarations in subprogram

SUBPROGRAM CNC_LET3{}
LET #x : LREAL :=10
LET #y : LREAL :=20
N100 G91 F20 E100 E-100
N110 G01 X#x Y#y
END_SUBPROGRAM

Operators and functions

In CNC program files, numerical calculations can be performed using operators and functions.
● Available elements

• Numerical values and character strings
• Global variables and local variables
• Commas and parentheses
* Attention should be paid to the writing of parentheses because they are excluded from
decoding by the SMC_ReadNCFile2.bParenthesesAsComments argument.

● Available operators

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-157

Character Type Arguments

MOD LREAL LREAL, LREAL

* LREAL LREAL, LREAL

/ LREAL LREAL, LREAL

+ LREAL LREAL, LREAL

- LREAL LREAL, LREAL

= BOOL BOOL, BOOL

= BOOL LREAL, LREAL

= BOOL STRING, STRING

<> BOOL BOOL, BOOL

<> BOOL LREAL, LREAL

<> BOOL STRING, STRING

> BOOL LREAL, LREAL

< BOOL LREAL, LREAL

>= BOOL LREAL, LREAL

<= BOOL LREAL, LREAL

AND BOOL BOOL, BOOL

XOR BOOL BOOL, BOOL

OR BOOL BOOL, BOOL

● Available functions

Character Type Arguments

- LREAL LREAL

ABS LREAL LREAL

MAX LREAL LREAL, LREAL

MIN LREAL LREAL, LREAL

NOT BOOL BOOL

TRUE BOOL -

FALSE BOOL -

SIN LREAL LREAL

COS LREAL LREAL

TAN LREAL LREAL

ASIN LREAL LREAL

ACOS LREAL LREAL

ATAN LREAL LREAL

EXP LREAL LREAL

LN LREAL LREAL

SQRT LREAL LREAL

EXPT LREAL LREAL, LREAL

8.6 CNC Program Operation and Setting Method

8-158 WUME-GM1PGR-10

Character Type Arguments

FLOOR LREAL LREAL

CEIL LREAL LREAL

PI LREAL -

LEN LREAL STRING

CONCAT STRING STRING, STRING

Notes on the use of CNC program files

Check the CNC program file for any error by bEnableSyntaxChecks of NCInterpreter since build
cannot be executed in advance.
However, it should be noted that if the CNC program file is any of the following cases, a
syntactical error cannot be detected even by the bEnableSyntaxChecks error checking and
decoding remains stopped in midstream.
● G-code is not written.
● The CNC program file is empty.
● Necessary code is not written with G01.
● Command R that is not permitted for G01 is written.
● The Gvl type and the actual variable type differ.

Example: eVarType=SMC_TYPE_BYTE, ProgramNo= 1000
● More than 22 local variables and subprogram are used.
● The variable name has 81 or more characters.
● A variable type other than the supported variable types LREAL, BOOL, and STRING(255) is

used.
The following points should also be noted.
● If no default value is declared for the variable, the program runs with the default value set to

0.
● Local variables cannot be used for jump labels (x of L！x).
● If a variable name identical to that of a subprogram argument is used for a global variable or

a local variable, an error occurs.

8.6 CNC Program Operation and Setting Method

WUME-GM1PGR-10 8-159

8.7 Example of Use of CNC Control

8.7.1 Example of USE: Specifying Starting Coordinates

In CNC programs written in G-code, by default, the starting coordinates are defined as the
origin (0, 0). Normally, if the starting coordinates in the CNC program are identical with the
operation starting coordinates (current coordinates), normal operation will occur.
If the operation starting position (current coordinates) is not the origin, when operation is started
from the current coordinates, rapid movements may occur from the current coordinates through
to the origin immediately after startup, thereby preventing normal operation from being
performed.

Start Position =
Origin Position(0,0)

y

x
Movement of the Y-axis

Current Position(x≠0,y≠0)

Control command
value

time(ms)

This may result in sudden movements.
[If the start position and the current position are different]
It becomes a sudden operation immediately after the
operation starts.

100

To achieve normal operation, therefore, if the starting coordinates in the CNC program differ
from the operation starting coordinates (current coordinates), they must be matched.
Start coordinates are different for smc_cnc_ref, smc_outqueue, and CNC program files.
It can also be specified by "8.6.16 G92: Start position specification".
* In the following descriptions, the starting coordinates in the CNC program are referred to as
"starting coordinates" and the coordinates at the start of CNC control operation are referred to
as "operation starting coordinates".

● If the specified starting coordinates differ from the operation starting coordinates, there is a risk
that rapid movement may occur.

■ For SMC_CNC_REF
Specify starting coordinates in SMC_NCDecoder when decoding is executed.
[Setting example]
● Variable declaration section:

// FBs
 SMC_NCDecoder_0 : SMC_NCDecoder;
 SMC_CheckVelocities_0 : SMC_CheckVelocities;
 SMC_Interpolator_0 : SMC_Interpolator;
 SMC_ControlAxisByPos_0 : SMC_ControlAxisByPos;

8.7 Example of Use of CNC Control

8-160 WUME-GM1PGR-10

 SMC_ControlAxisByPos_1 : SMC_ControlAxisByPos;
 SMC_ReadSetPosition_0 : SMC_ReadSetPosition; //Read Current Position
 SMC_ReadSetPosition_1 : SMC_ReadSetPosition;
// Variables
 iState : INT :=0; // Case Number
 buf : ARRAY[0..10] OF SMC_GEOINFO; // Decord buffer
 piStartpos : SMC_POSINFO; // Start Position
 dwTime : DWORD :=1000;
 xAvoidgaps_0 : BOOL :=TRUE;
 xAvoidgaps_1 : BOOL :=TRUE;
 bExe : BOOL :=FALSE; // Execute for FBs
 bStart : BOOL :=FALSE; // Start Flag

● Control section:

// CNC FBs Settings
SMC_NCDecoder_0(
 ncprog:=CNC_Sample,
 bExecute:=bExe,
 piStartPosition:=piStartpos,
 nSizeOutQueue:=SIZEOF(buf),
 pbyBufferOutQueue:=ADR(buf)
);
SMC_CheckVelocities_0(
 bExecute:=bExe,
 poqDataIn:=SMC_NCDecoder_0.poqDataOut
);
SMC_Interpolator_0(
 bExecute:=bExe,
 poqDataIn:=SMC_CheckVelocities_0.poqDataOut,
 dwIpoTime:=dwTime
);
SMC_ControlAxisByPos_0(
 Axis:=Axis1,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:= SMC_Interpolator_0.bWorking,
 bAvoidGaps:=xAvoidgaps_0,
 fSetPosition:=SMC_Interpolator_0.piSetPosition.dX
);
SMC_ControlAxisByPos_1(
 Axis:=Axis2,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:= SMC_Interpolator_0.bWorking,
 bAvoidGaps:=xAvoidgaps_1,
 fSetPosition:=SMC_Interpolator_0.piSetPosition.dY
);

// When Unreasonable movement is occured
IF SMC_ControlAxisByPos_0.bError = TRUE OR SMC_ControlAxisByPos_0.bStopIpo
= TRUE OR SMC_ControlAxisByPos_1.bError = TRUE OR SMC_ControlAxisByPos_1.bS
topIpo = TRUE THEN
 SMC_Interpolator_0.bEmergency_Stop:=TRUE;
ELSE
 SMC_Interpolator_0.bEmergency_Stop:=FALSE;
END_IF

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-161

IF bStart = TRUE THEN
 CASE iState OF
 0: // Read Current Position of Axises
 SMC_ReadSetPosition_0(
 Axis:=Axis1,
 Enable:=TRUE,
 Position=>piStartPos.dX
);
 SMC_ReadSetPosition_1(
 Axis:=Axis2,
 Enable:=TRUE,
 Position=>piStartPos.dY
);
 iState:=1;

 1: // Start CNC motion
 bExe:=TRUE;
 END_CASE
END_IF

Explanation of control section
● When the bStart flag is set to TRUE, the current coordinates of each axis are read

(SMC_ReadSetPosition).
● The read current coordinates are stored in the variable piStartPos so that they are written in

the input variable piStartPosition of SMC_NCDecoder.
● CNC control is executed with the read current coordinates taken as the start position of the

path (bExe is set to TRUE).

● In the case of a CNC program file, you can set the start position by entering piStartPosition in
SMC_NCInterpreter instead of SMC_NCDecoder.

■ For SMC_OUTQUEUE
In the Properties window for the CNC program, set the start position.
In the "Start position" section, specify the respective operation starting coordinates for the X, Y,
and Z axes and then click [OK].

8.7 Example of Use of CNC Control

8-162 WUME-GM1PGR-10

[Setting example]
● Variable declaration section:

// FBs
 SMC_Interpolator_0 : SMC_Interpolator;
 SMC_ControlAxisByPos_0 : SMC_ControlAxisByPos;
 SMC_ControlAxisByPos_1 : SMC_ControlAxisByPos;
// Variables
 iState : INT :=0; // Case Number
 dwTime : DWORD :=1000;
 xAvoidgaps_0 : BOOL :=TRUE;
 xAvoidgaps_1 : BOOL :=TRUE;
 bExe : BOOL :=FALSE; // Execute for FBs
 bStart : BOOL :=FALSE; // Start Flag

● Control section:

// CNC FBs Settings
SMC_Interpolator_0(
 bExecute:=bExe,
 poqDataIn:=ADR(Queue_Sample),
 dwIpoTime:=dwTime

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-163

);
SMC_ControlAxisByPos_0(
 Axis:=Axis1,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:= SMC_Interpolator_0.bWorking,
 bAvoidGaps:=xAvoidgaps_0,
 fSetPosition:=SMC_Interpolator_0.piSetPosition.dX
);
SMC_ControlAxisByPos_1(
 Axis:=Axis2,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:= SMC_Interpolator_0.bWorking,
 bAvoidGaps:=xAvoidgaps_1,
 fSetPosition:=SMC_Interpolator_0.piSetPosition.dY
);

// When Unreasonable movement is occured
IF SMC_ControlAxisByPos_0.bError = TRUE OR SMC_ControlAxisByPos_0.bStopIpo
= TRUE OR SMC_ControlAxisByPos_1.bError = TRUE OR SMC_ControlAxisByPos_1.bS
topIpo = TRUE THEN
 SMC_Interpolator_0.bEmergency_Stop:=TRUE;
ELSE
 SMC_Interpolator_0.bEmergency_Stop:=FALSE;
END_IF

IF bStart = TRUE THEN
 CASE iState OF
 0: // Start CNC motion
 bExe:=TRUE;
 END_CASE
END_IF

■ When using G92
See "Example: Setting start position" for the use of G92.

● In the case of absolute statement specification, the set value by the G92 is used, and in the
case of a relative statement, the additional value of both sides is used.

● SMC_CNC_REF, SMC_OUTQUEUE, CNC program files can be set up with the start position
settings by POU programming and the start position settings by G92, but the operation differs
depending on the direction specification method.

8.7 Example of Use of CNC Control

8-164 WUME-GM1PGR-10

8.7.2 Example of Use: C-point Control and P-point Control

Interpolation control is basically executed by C-point Control and is executed by P-point Control
only under specific conditions.

■ C-point control
C-point control refers to control passing through a "Continuance Point". In this manual, this
control is referred to as"C-point control"for the sake of convenience. This method is used to
execute consecutive E-point controls by one-time startup.

Speed

time

C-point control

E-point control

■ P-point control
P-point control refers to control passing through a "Pass Point". In this manual, this control is
referred to as"P-point control"for the sake of convenience.
This method is used when target multi-stage velocities are specified in a sequence of motions.

Speed

time

P-point control

P-point motion is performed under any of the following conditions.
● Adjacent paths are linearly connected to each other.
● An angle that requires C-point control/P-point control is specified in the input variable

dAngleTol of SMC_CheckVelocities.
● Smoothing is performed by means of SMC_SmoothPath or SMC_RoundPath.

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-165

Even if any of the P-point motion conditions is met, the connection between paths is established
by C-point motion if the input variable bSingleStep of SMC_Interpolator is set or dwell time
(G04) is used.

● The definition of the angle θ between the paths in the GM Programmer is as follows, indicating
the angle of pass 1 and pass 2.
The angle takes a value in the range of 0° ≤ θ ≤ 180°.

θ

θ

Define: angle θ between paths

path1

path2

If θ < dAngleTol, P-point control is applied.
• Although dAngleTol allows for settings exceeding 180°, operation using such settings will be

based on the value of 360° - dAngleTol.
• Furthermore, if dAngleTol is set exceeding 360°, the remainder by dividing it by 360° is used.
• For example, assume that dAngleTol is set to 700°. Since dAngleTol exceeds 360°, a

remainder is calculated and 340° is obtained. Since the obtained value exceeds 180°, the
control motion is the same as when it is set to 20° (360° - 340°).

The angle θ between the paths used for judgment by SMC_SmoothPath or SMC_RoundPath
dAngleTol is also the same.

■ Example of operation
G-code

N000 G91 N010 G01 X5 Y10 F5 (Path 1) N020 G01 X6 Y2 (Path 2) N030 G01 X9 Y3 F
10 (Path 3) N040 G01 X3 Y3 (Path 4)

● [Setting example 1] The dAngleTol input is set to 30 (P-point motion if the angle between the
paths is 30 degrees or less)
• Variable declaration section:

// FBs ～ // Variables ～ lrAngletol : LREAL :=30; ～
• Control section:

// CNC FBs Settings ～ SMC_CheckVelocities_0(bExecute:=bExe, poqDataIn:=
SMC_NCDecoder_0.poqDataOut, dAngleTol:=lrAngletol); ～

8.7 Example of Use of CNC Control

8-166 WUME-GM1PGR-10

Path 1

Path 2
Path 3

Path 4

45deg

27deg

Path 1
Path 2

Path 3 Path 4

Axis1 Position

Axis1 Velocity

Axis2 Position

Axis2 Velocity

• In cases like Path 1-Path 2 in which the angle between the paths is the dAngleTol setting
or greater, C-point motion is performed.

• In cases like Path 2-Path 3, for no angle between the paths that forms a linear connection,
P-point motion is performed.

• In cases like Path 3-Path 4 in which the angle between the paths is the dAngleTol setting
or less, P-point motion is performed.

● [Setting example 2] The bSingleStep input of SMC_Interpolator is set to TRUE
• Control section:

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-167

// CNC FBs Settings ～ SMC_Interpolator_0(bExecute:=bExe, poqDataIn:=SMC
_CheckVelocities_0.poqDataOut, dwIpoTime:=dwTime, bSingleStep:=TRUE); ～

Path 1

Path 2
Path 3 Path 4

Axis1 Position

Axis1 Velocity

Axis2 Position

Axis2 Velocity

When the bSingleStep input of SMC_Interpolator is set to TRUE, every connection between
the paths is established by C-point motion irrespective of the dAngleTol setting or a linear
connection.

8.7 Example of Use of CNC Control

8-168 WUME-GM1PGR-10

8.7.3 Example of Use: Repeating Processes

CNC programs can be joined by setting the bAppend argument of SMC_NCDecoder to TRUE
and decoding each CNC program to be joined in order.
Motion between the joined CNC programs is performed by C-point control.

■ Joining CNC programs

CNC Program 1

+

CNC Program 2

=

Combined CNC Program

[Setting example]
● G-code: CNC_Program1

N000 G01 X10 Y10 F30
● G-code: CNC_Program2

N000 G01 X30 Y30 F50
● Variable declaration section:

// FBs
 SMC_NCDecoder_0 : SMC_NCDecoder;
 SMC_CheckVelocities_0 : SMC_CheckVelocities;
 SMC_Interpolator_0 : SMC_Interpolator;
 SMC_ControlAxisByPos_0 : SMC_ControlAxisByPos;
 SMC_ControlAxisByPos_1 : SMC_ControlAxisByPos;
 SMC_ReadSetPosition_0 : SMC_ReadSetPosition; //Read Current Position
 SMC_ReadSetPosition_1 : SMC_ReadSetPosition;
// Variables
 iState : INT :=0; // Case Number
 Ncprogin : SMC_CNC_REF;
 buf : ARRAY[0..10] OF SMC_GEOINFO; // Decord buffer
 piStartpos : SMC_POSINFO; // Start Position
 dwTime : DWORD :=1000;
 xAvoidgaps_0 : BOOL :=TRUE;
 xAvoidgaps_1 : BOOL :=TRUE;
 bExe_ncd : BOOL :=FALSE; // Execute for SMC_NCDecoder
 bExe_cv : BOOL :=FALSE; // Execute for SMC_CheckVelocities
 bExe_ip : BOOL :=FALSE; // Execute for SMC_Interpolator
 bStart : BOOL :=FALSE; // Start Flag

● Control section:

// CNC FBs Settings
SMC_NCDecoder_0(
 ncprog:=Ncprogin,
 bExecute:=bExe_ncd,
 bAppend:=TRUE,
 piStartPosition:=piStartpos,
 nSizeOutQueue:=SIZEOF(buf),

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-169

 pbyBufferOutQueue:=ADR(buf)
);
SMC_CheckVelocities_0(
 bExecute:=bExe_cv,
 poqDataIn:=SMC_NCDecoder_0.poqDataOut
);
SMC_Interpolator_0(
 bExecute:=bExe_ip,
 poqDataIn:=SMC_CheckVelocities_0.poqDataOut,
 dwIpoTime:=dwTime
);
SMC_ControlAxisByPos_0(
 Axis:=Axis1,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:= SMC_Interpolator_0.bWorking,
 bAvoidGaps:=xAvoidgaps_0,
 fSetPosition:=SMC_Interpolator_0.piSetPosition.dX
);
SMC_ControlAxisByPos_1(
 Axis:=Axis2,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:= SMC_Interpolator_0.bWorking,
 bAvoidGaps:=xAvoidgaps_1,
 fSetPosition:=SMC_Interpolator_0.piSetPosition.dY
);

// When Unreasonable movement is occured
IF SMC_ControlAxisByPos_0.bError = TRUE OR SMC_ControlAxisByPos_0.bStopIpo
= TRUE OR SMC_ControlAxisByPos_1.bError = TRUE OR SMC_ControlAxisByPos_1.bS
topIpo = TRUE THEN
 SMC_Interpolator_0.bEmergency_Stop:=TRUE;
ELSE
 SMC_Interpolator_0.bEmergency_Stop:=FALSE;
END_IF

IF bStart = TRUE THEN
 CASE iState OF
 0: // Read Current Position of Axises
 SMC_ReadSetPosition_0(
 Axis:=Axis1,
 Enable:=TRUE,
 Position=>piStartPos.dX
);
 SMC_ReadSetPosition_1(
 Axis:=Axis2,
 Enable:=TRUE,
 Position=>piStartPos.dY
);
 iState:=1;

 1: // Start decording
 Ncprogin:=CNC_Program1;
 bExe_ncd:=TRUE;
 iState:=2;

 2: // Change CNC Program

8.7 Example of Use of CNC Control

8-170 WUME-GM1PGR-10

 IF SMC_NCDecoder_0.bDone = TRUE THEN
 bExe_ncd:=FALSE;
 Ncprogin:=CNC_Program2;
 iState:=3;
 END_IF

 3: // Start CNC motion
 bExe_ncd:=TRUE;
 bExe_cv:=TRUE;
 bExe_ip:=TRUE;

 END_CASE
END_IF

● The first CNC program is specified in SMC_NCDecoder and is decoded.
● After decoding of the first CNC program is completed, the second CNC program is specified

and is decoded again. At the same time, other function blocks are performed and CNC
control starts.

■ Repeating CNC programs
To repeat an identical CNC program, decode the CNC program for a number of repetitions you
want, in a similar way to joining CNC programs together.
Motion between the joined CNC programs is performed by C-point control.
When decoding is executed, set the bAppend input of SMC_NCDecoder to TRUE.

CNC Program

× =

Repeated CNC Program

N(>0) times ・・・

[Setting example]
● G-code: CNC_Program

N000 G01 X10 Y0 F10
N010 G01 X10 Y10
N020 G01 X0 Y0

● Variable declaration section:

// FBs
～
// Variables
 iState : INT :=0; // Case Number
 iCounter : INT :=0; // Repeat counter
 iRepetition : INT :=3; // Number of repetitions
～

● Control section:

// CNC FBs Settings
SMC_NCDecoder_0(
 ncprog:=CNC_Program,
 bExecute:=bExe_ncd,
 bAppend:=TRUE,
 piStartPosition:=piStartpos,
 nSizeOutQueue:=SIZEOF(buf),

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-171

 pbyBufferOutQueue:=ADR(buf)
);
～
IF bStart = TRUE THEN
 CASE iState OF
 0: // Read Current Position of Axises
 SMC_ReadSetPosition_0(
 Axis:=Axis1,
 Enable:=TRUE,
 Position=>piStartPos.dX
);
 SMC_ReadSetPosition_1(
 Axis:=Axis2,
 Enable:=TRUE,
 Position=>piStartPos.dY
);
 iState:=1;

 1: // Start CNC motion
 bExe_ncd:=TRUE;
 bExe_cv:=TRUE;
 bExe_ip:=TRUE;
 iState:=2;

 2: // Repeat decording
 IF SMC_NCDecoder_0.bDone = TRUE THEN
 iCounter:=iCounter + 1;
 IF iCounter >= iRepetition THEN
 iState:=3;
 ELSE
 bExe_ncd:=FALSE;
 iState:=1;
 END_IF
 END_IF

 END_CASE
END_IF

● SMC_NCDecoder is executed for a number of repetitions (repeated three times in the
example above).

● Other examples include a method for repeating SMC_CheckVelocities and SMC_Interpolator
and a method for repeating programs by G20.
For repetitive motion using G20, refer to "8.6.9 G20, G36, G37: Jump and Loop Process".

● If processes are repeated by the bAppend argument, a satisfactory buffer size must bef
ensured. If the buffer size is small, a decoding error occurs.

8.7 Example of Use of CNC Control

8-172 WUME-GM1PGR-10

8.7.4 Example of use: Pre-processing and tool correction

For CNC programs written with G-codes, pre-processing such as smoothing and tool radius
correction can be performed. To perform pre-processing, use a combination of the required G-
codes and function blocks.
Pre-processing creates and inserts path elements in the elements written in the CNC program.
For example, if smoothing is performed on a linear motion path with two elements, the path will
be converted to a path with a total of three elements, which consists of straight line and a
curved line portions.
This requires more data arrays (buffers) for SMC_GEOINFO than when pre-processing is not
performed.

Smoothing

①

②

①

②
③

In addition, the buffers for the decoder and pre-processing FBs must be prepared
independently of each other. Setting the same buffer data array for different FBs will not
produce a correct path due to mixed processing data for each FB.
● Acceptable example

SMC_NCDecoder_0(
 ～
nSizeOutQueue:=SIZEOF(buf_ncd),
pbyBufferOutQueue:=ADR(buf_ncd),
 ～
SMC_SmoothPath_0(
 ～
nSizeOutQueue:=SIZEOF(buf_sp),
pbyBufferOutQueue:=ADR(buf_sp),

● Unacceptable example

SMC_NCDecoder_0(
 ～
nSizeOutQueue:=SIZEOF(buf_ncd),
pbyBufferOutQueue:=ADR(buf_ncd),
 ～
SMC_SmoothPath_0(
 ～
nSizeOutQueue:=SIZEOF(buf_ncd),
pbyBufferOutQueue:=ADR(buf_ncd),

■ Tool correction using CNC programs
As an example of pre-processing, an example of tool correction is shown below.

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-173

By using SMC_ToolRadiusCorr, which executes pre-processing for tool radius correction and
SMC_ToolLengthCorr, which executes tool length correction, it is possible to perform offset
conversion of the motion path according to the tool without making major changes to the CNC
program.
[Setting example]
● Variable declaration section:

// FBs
 SMC_NCDecoder_0 : SMC_NCDecoder;
 SMC_ToolRadiusCorr_0 : SMC_ToolRadiusCorr;
 SMC_CheckVelocities_0 : SMC_CheckVelocities;
 SMC_Interpolator_0 : SMC_Interpolator;
 SMC_ToolLengthCorr_0 : SMC_ToolLengthCorr;
 SMC_TRAFO_Gantry3_0 : SMC_TRAFO_Gantry3;
 SMC_ControlAxisByPos_0 : SMC_ControlAxisByPos;
 SMC_ControlAxisByPos_1 : SMC_ControlAxisByPos;
 SMC_ControlAxisByPos_2 : SMC_ControlAxisByPos;
 SMC_ReadSetPosition_0 : SMC_ReadSetPosition; //Read Current Position
 SMC_ReadSetPosition_1 : SMC_ReadSetPosition;
 SMC_ReadSetPosition_2 : SMC_ReadSetPosition;
// Variables
 iState : INT :=0; // Case Number
 buf_ncd : ARRAY[0..19] OF SMC_GEOINFO; // Decord buffer
 buf_trc : ARRAY[0..19] OF SMC_GEOINFO; // ToolRadiusCorr b
uffer
 piStartpos : SMC_POSINFO; // Start Position
 vStartToolLen : SMC_VECTOR3D; // Tool Length
 eOriConv : SMC_ORI_CONVENTION;
 dwTime : DWORD :=1000;
 bExe : BOOL :=FALSE; // Execute for FBs
 bStart : BOOL :=FALSE; // Start Flag

● Control section:

// CNC FBs Settings
SMC_NCDecoder_0(
 ncprog:=CNC_Sample,
 bExecute:=bExe,
 piStartPosition:=piStartpos,
 vStartToolLength:=vStartToolLen,
 nSizeOutQueue:=SIZEOF(buf_ncd),
 pbyBufferOutQueue:=ADR(buf_ncd),
 eOriConv:=eOriConv
);
SMC_ToolRadiusCorr_0(
 bExecute:=bExe,
 poqDataIn:=SMC_NCDecoder_0.poqDataOut,
 nSizeOutQueue:=SIZEOF(buf_trc),
 pbyBufferOutQueue:=ADR(buf_trc)
);
SMC_CheckVelocities_0(
 bExecute:=bExe,
 poqDataIn:=SMC_ToolRadiusCorr_0.poqDataOut
);
SMC_Interpolator_0(

8.7 Example of Use of CNC Control

8-174 WUME-GM1PGR-10

 bExecute:=bExe,
 poqDataIn:=SMC_CheckVelocities_0.poqDataOut,
 dwIpoTime:=dwTime
);
SMC_ToolLengthCorr_0(
 pi:=SMC_Interpolator_0.piSetPosition,
 adToolLength:=SMC_Interpolator_0.adToolLength,
 eOriConv:=eOriConv,
 bForwardTrafo:=FALSE
);
SMC_TRAFO_Gantry3_0(
 pi:=SMC_ToolLengthCorr_0.piOut
);
SMC_ControlAxisByPos_0(
 Axis:=Axis1,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:=SMC_Interpolator_0.bWorking,
 bAvoidGaps:=TRUE,
 fSetPosition:=SMC_TRAFO_Gantry3_0.dX,
 fGapVelocity:=5,
);
SMC_ControlAxisByPos_1(
 Axis:=Axis2,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:=SMC_Interpolator_0.bWorking,
 bAvoidGaps:=TRUE,
 fSetPosition:=SMC_TRAFO_Gantry3_0.dY,
 fGapVelocity:=5,
);
SMC_ControlAxisByPos_2(
 Axis:=Axis3,
 iStatus:=SMC_Interpolator_0.iStatus,
 bEnable:=SMC_Interpolator_0.bWorking,
 bAvoidGaps:=TRUE,
 fSetPosition:=SMC_TRAFO_Gantry3_0.dZ,
 fGapVelocity:=5,
);

// When Unreasonable movement is occured
IF SMC_ControlAxisByPos_0.bError = TRUE OR SMC_ControlAxisByPos_0.bStopIpo
= TRUE
 OR SMC_ControlAxisByPos_1.bError = TRUE OR SMC_ControlAxisByPos_1.bStop
Ipo = TRUE
 OR SMC_ControlAxisByPos_2.bError = TRUE OR SMC_ControlAxisByPos_2.b
StopIpo = TRUE THEN
 SMC_Interpolator_0.bEmergency_Stop:=TRUE;
ELSE
 SMC_Interpolator_0.bEmergency_Stop:=FALSE;
END_IF

IF bStart = TRUE THEN
 CASE iState OF
 0: // Read Current Position of Axises
 SMC_ReadSetPosition_0(
 Axis:=Axis1,
 Enable:=TRUE,

8.7 Example of Use of CNC Control

WUME-GM1PGR-10 8-175

 Position=>piStartPos.dX
);
 SMC_ReadSetPosition_1(
 Axis:=Axis2,
 Enable:=TRUE,
 Position=>piStartPos.dY
);
 SMC_ReadSetPosition_2(
 Axis:=Axis3,
 Enable:=TRUE,
 Position=>piStartPos.dZ
);
 iState:=1;

 1: // Prepare parameters
 vStartToolLen.dX:=0;
 vStartToolLen.dY:=0;
 vStartToolLen.dZ:=10;
 eOriConv:=SM3_CNC.SMC_ORI_CONVENTION.ZYZ;
 iState:=2;

 2: // Start CNC motion
 bExe:=TRUE;
 END_CASE
END_IF

Explanation of control section
● SMC_ToolRadiusCorr executes tool radius correction on the CNC program decoded by

SMC_NCDecoder.
● SMC_Interpolator executes interpolation operations on the path offset by the tool radius by

SMC_ToolRadiusCorr.
● SMC_ToolLengthCorr executes tool length correction and conversion by the kinematics

function on the interpolation data calculated by SMC_Interpolator.

8.7 Example of Use of CNC Control

8-176 WUME-GM1PGR-10

9 Motion Control Function
Blocks (Motion
Communication Control)

This section describes function blocks used to perform communication control.

9.1 RTEX/EtherCAT Common ..9-3
9.1.1 SetCommunicationState (Set Device Communication State) 9-3
9.1.2 CheckSupportedCommunicationState (Check if Device Provides

Communication State Setting) .. 9-4
9.1.3 CheckCurrentSupportedCommunicationState (Check if Device in

Current State Provides Communication State Setting)..................... 9-5
9.2 RTEX ..9-6

9.2.1 Types of Data To Be Handled by AMP Function Blocks 9-6
9.2.2 RTEX_ClearAmpAlarm (Clear Amplifier Alarm)............................... 9-6
9.2.3 RTEX_ReadAmpAlarm (Read Amplifier Alarm)............................... 9-9
9.2.4 RTEX_ReadAmpState (Amplifier Alarm Status) 9-10
9.2.5 RTEX_ReadAmpData (Amplifier Monitor).. 9-11
9.2.6 RTEX_ReadAmpParameter (Read Amplifier Parameter) 9-12
9.2.7 RTEX_WriteAmpParameter (Write Amplifier Parameter) 9-13
9.2.8 RTEX_WriteAmpEEPROM (Write Amplifier EEPROM)................... 9-14
9.2.9 RTEX_Reset (Reset RTEX)... 9-15
9.2.10 RTEX_ClearAmpMultiTurnData (Clear Amplifier Multi-turn Data) . 9-16
9.2.11 RTEX_ClearAmpPositionalDeviation (Clear Amplifier Deviation

Counter) .. 9-17
9.2.12 RTEX_GetTrackingCommandError (Read RTEX Command Send

Statistics Information) ... 9-19
9.2.13 RTEX_ReadPot (Read POT of Amplifier) 9-20
9.2.14 RTEX_ReadNot (Read NOT of Amplifier)...................................... 9-20
9.2.15 Sample example: Read the POT/NOT signal of the servo

amplifier and forcibly stop it. ... 9-21
9.3 EtherCAT ..9-22

9.3.1 ETC_CO_SdoRead (Read Slave Parameter).................................. 9-22
9.3.2 ETC_CO_SdoRead4 (Read Four Bytes of Slave Parameter) 9-23
9.3.3 ETC_CO_SdoReadDWord (Read Double Word of Slave

Parameter) .. 9-24
9.3.4 ETC_CO_SdoRead_Access (Read Slave Parameter Index) 9-25
9.3.5 ETC_CO_SdoRead_Channel (Read Priority Specification of Slave

Parameter) .. 9-27
9.3.6 ETC_CO_SdoWrite (Write Slave Parameter) 9-28
9.3.7 ETC_CO_SdoWrite4 (Write Four Bytes of Slave Parameter).......... 9-30
9.3.8 ETC_CO_SdoWriteDWord (Write Double Words of Slave

Parameter) .. 9-31
9.3.9 ETC_CO_SdoWrite_Access (Write Slave Parameter Index)........... 9-32
9.3.10 ReadIdentification (Read Slave Identification Data) 9-34

WUME-GM1PGR-10 9-1

9.3.11 ReadMemory (Read Slave Memory).. 9-35
9.3.12 ReadNbrSlaves (Read the Number of Connected Slaves)............ 9-36
9.3.13 WriteMemory (Write Slave Memory) .. 9-37
9.3.14 PETC_ClearAmpPositionalDeviation (Clear Amplifier Deviation

Counter) .. 9-38
9.4 EtherCAT Master/Slave ..9-40

9.4.1 EtherCAT Master/Slave Communication Control and Monitoring 9-40
9.4.2 IoDrvEtherCAT (Control EtherCAT Master Communication) 9-40
9.4.3 IoDrvEtherCAT.GetStatistics (Get EtherCAT Communication

Statistics Information) ... 9-41
9.4.4 IoDrvEtherCAT.ClearStatistics (Clear EtherCAT Communication

Statistics Information) ... 9-42
9.4.5 ETCSlave (Control EtherCAT Slave Communication) 9-42
9.4.6 Sample Example: Process for Monitoring EtherCAT Master

Communication... 9-43
9.4.7 Sample Example: Process for Monitoring EtherCAT Slave

Communication... 9-44
9.4.8 Sample Example: Stop/Restart EtherCAT Master Communication . 9-45

9 Motion Control Function Blocks (Motion Communication Control)

9-2 WUME-GM1PGR-10

9.1 RTEX/EtherCAT Common

9.1.1 SetCommunicationState (Set Device Communication State)

This is a method used to change the communication state of a device. The state can be
changed to any of start, stop, and reset. Add the name of the device before this method and
write like DeviceName.SetCommunicationState.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input eRequestedState DEVICE_TRAN
SITION_STATE

2(STOP) Specifies a device state to be set.

Output SetCommunicationStat
e

DED.ERROR NO_ERROR An error ID is output.
"11.16.4 DED.ERROR (Error
Code)"

■ DEVICE_TRANSITION_STATE (Enumeration type)
States to which the device transitions are shown.

Name Value Description

START 1 Puts the device in run mode.

STOP 2 Puts the device in stop mode.

RESET 3 Restarts the device and reconfigures it.

■ List of functions provided by devices
The following table shows a list of devices that support SetCommunicationState.

Scope Device name Transition to
START

Transition to STOP Transition to
RESET

ECAT EtherCAT_Master_SoftMotion 〇 〇 〇

Servo amplifier × × ×

Real axis × × ×

RTEX RTEX_Master × × ×

Servo amplifier × × ×

Real axis × × ×

9.1 RTEX/EtherCAT Common

WUME-GM1PGR-10 9-3

● To use this method, it is necessary to select “Enable diagnosis for device” checkbox on the
“PLC Settings” tab in the Device object.

● For examples of use, refer to "9.4.8 Sample Example: Stop/Restart EtherCAT Master
Communication".

9.1.2 CheckSupportedCommunicationState (Check if Device Provides
Communication State Setting)

This method is used to query a device to check whether or not it provides a transition to a
requested setting using SetCommunicationState(Method). TRUE is output if the device
supports the transition to the specified communication state. Add the name of the device before
this method and write like DeviceName.CheckSupportedCommunicationState.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input eRequestedState DEVICE_TRAN
SITION_STATE

2(STOP) Specifies a communication state
you want the device to transition to.

Output CheckSupportedComm
unicationState

BOOL FALSE TRUE: Supported
FALSE: Not supported

● To use this method, it is necessary to select “Enable diagnosis for device” checkbox on the
“PLC Settings” tab in the Device object.

● For examples of use, refer to "9.4.8 Sample Example: Stop/Restart EtherCAT Master
Communication".

9.1 RTEX/EtherCAT Common

9-4 WUME-GM1PGR-10

9.1.3 CheckCurrentSupportedCommunicationState (Check if Device in
Current State Provides Communication State Setting)

This method is used to query a device to check whether or not the device in the current state
provides a transition to a requested setting using SetCommunicationState(Method). TRUE is
output if the device supports the transition to the specified communication state. Add the name
of the device before this method and write like
DeviceName.CheckCurrentSupportedCommunicationState.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input eRequestedState DEVICE_TRAN
SITION_STATE

2(STOP) Specifies a communication state
you want the device to transition to.

Output CheckSupportedComm
unicationState

BOOL FALSE TRUE: Allowed to transition
FALSE: Not allowed to transition

● To use this method, it is necessary to select “Enable diagnosis for device” checkbox on the
“PLC Settings” tab in the Device object.

● For examples of use, refer to "9.4.8 Sample Example: Stop/Restart EtherCAT Master
Communication".

9.1 RTEX/EtherCAT Common

WUME-GM1PGR-10 9-5

9.2 RTEX

9.2.1 Types of Data To Be Handled by AMP Function Blocks

Item Description Related function blocks

AMP alarm This is an AMP alarm that occurs in AMP
operation.

RTEX_ClearAmpAlarm
RTEX_ReadAmpAlarm
RTEX_ReadAmpStateAMP warning This is an AMP warning that occurs in AMP

operation.
This occurs before the AMP alarm. If the
situation worsens, an AMP alarm occurs.

Monitor data This is monitor data (position deviation, load
percentage, etc.) of the RTEX communication
data.

RTEX_ReadAmpData

AMP parameter This is configuration data of the AMP device
itself.

RTEX_ReadAmpParameter
RTEX_WriteAmpParameter

Multi-turn data There are two types of data in the data read
by the absolute encoder (23 bit/r): one type is
single-turn data that indicates the position
within one motor rotation and the other is
multi-turn data that counts one for one turn.

RTEX_ClearAmpMultiTurnData

Deviation counter This is a processing part in the AMP that
receives move commands to the AMP.
The motor moves according to the commands
accumulated in the deviation counter.
The commands used for the motor movement
are deleted from the deviation counter.
The amount of commands accumulated in the
deviation counter is called the position
deviation.

RTEX_ClearAmpPositionalDeviation

Limit switch This data is collected to monitor the POT and
NOT states of the AMP.

RTEX_ReadNot, RTEX_ReadPot

9.2.2 RTEX_ClearAmpAlarm (Clear Amplifier Alarm)

This is a function block (FB) that clears the AMP alarm. It deletes the alarm or warning that has
occurred in the AMP.

9.2 RTEX

9-6 WUME-GM1PGR-10

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
Output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

Output Done BOOL FALSE TRUE:Clear processing completed

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE:Suspension from other FB
occurred

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorId SMC_ERROR 0 An error ID is output.

Alarm ALARM_CODE - A deleted alarm code is output.

Warning WARNING_COD
E

- A deleted warning code is output.

■ ALARM_CODE (Union)

Member Type Description

uiAlarmCode UINT Alarm code

tAlarmCodeMember ALARM_WARNING_C
ODES

Main alarm code and sub alarm code

■ WARNING_CODE (Union)

Member Type Description

uiWarningCode UINT Warning code

tWarningCodeMember ALARM_WARNING_C
ODES

Main warning code (warning number) and sub warning
code (0)

■ ALARM_WARNING_CODES (Structure)

Member Type Description

byMainCode BYTE Main code

9.2 RTEX

WUME-GM1PGR-10 9-7

Member Type Description

bySubCode BYTE Sub code

 REFERENCE
13.2.2 Alarm Codes
13.2.3 Warning Codes

9.2 RTEX

9-8 WUME-GM1PGR-10

9.2.3 RTEX_ReadAmpAlarm (Read Amplifier Alarm)

This is a function block (FB) that reads the AMP alarm. It reads the information of the alarm or
warning that has occurred in the AMP.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

AlarmIndex UINT - Specifies the history number (0 to
14).
0 is given for the latest history.

Output Done BOOL FALSE TRUE: Reading is completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from another
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorId SMC_ERROR 0 An error ID is output.

Alarm ALARM_CODE"
13.2.2 Alarm
Codes"

- A read alarm code is output.

Warning WARNING_COD
E"13.2.3 Warnin
g Codes"

- A read warning code is output.

 REFERENCE
13.2.2 Alarm Codes
13.2.3 Warning Codes

9.2 RTEX

WUME-GM1PGR-10 9-9

9.2.4 RTEX_ReadAmpState (Amplifier Alarm Status)

This is a function block (FB) that reads the AMP alarm state. It outputs the information and state
of the axis where the AMP alarm or warning has occurred.

■ Icon

■ Parameter

Scope Name Type Initial Description

Output NumberOfSlaves UDINT - The number of axes connected (1
to 32) is output.

AlarmState DWORD - The MAC-ID (0 to 31) where the
AMP alarm has occurred is output.

WarningState DWORD - The MAC-ID (0 to 31) where the
AMP warning has occurred is
output.

9.2 RTEX

9-10 WUME-GM1PGR-10

9.2.5 RTEX_ReadAmpData (Amplifier Monitor)

This is a function block (FB) that reads the monitor data of the AMP. It reads various monitor
data of the AMP.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

MonTypeCode UINT Specifies the type code for the
monitor command.

Output Valid BOOL FALSE TRUE:Monitor processing
completed

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE:Suspension from other FB
occurred

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorId SMC_ERROR 0 An error ID is output.

MonitorValue UDINT - Read monitor command

● This function block is designed specifically for RTEX 32-byte mode.
● Set the project file and servo amplifier to 32-byte mode. If they are in 16-byte mode, an error

will occur.
● Declare only one instance for this function block. Due to RTEX communication specifications,

multiple instances cannot be simultaneously called.

 REFERENCE
13.4 Monitor Commands

9.2 RTEX

WUME-GM1PGR-10 9-11

9.2.6 RTEX_ReadAmpParameter (Read Amplifier Parameter)

This is a function block (FB) that reads the AMP parameter.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

ParameterClass BYTE - Specifies the AMP parameter
classification.

ParameterID BYTE - Specifies the AMP parameter
number.

Output Done BOOL FALSE TRUE:Reading processing
completed

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE:Suspension from other FB
occurred

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorId SMC_ERROR 0 An error ID is output.

ReadValue DINT - Read AMP parameter value

 REFERENCE
13.2.1 RTEX Error ID
13.3 List of AMP Parameters

9.2 RTEX

9-12 WUME-GM1PGR-10

9.2.7 RTEX_WriteAmpParameter (Write Amplifier Parameter)

This is a function block (FB) that writes the AMP parameter.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

ParameterClass BYTE - Specifies the AMP parameter
classification.

ParameterID BYTE - Specifies the AMP parameter
number.

WriteValue DINT - Value to be written in the AMP
parameter

Output Done BOOL FALSE TRUE:Writing processing
completed

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE:Suspension from other FB
occurred

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorId SMC_ERROR 0 An error ID is output.

 REFERENCE
13.2.1 RTEX Error ID
13.3 List of AMP Parameters

9.2 RTEX

WUME-GM1PGR-10 9-13

9.2.8 RTEX_WriteAmpEEPROM (Write Amplifier EEPROM)

This is a function block (FB) that writes the servo amplifier parameters to EEPROM.
■ Icon

■ Parameter

Scope Name Type Default Description

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Output Done BOOL FALSE TRUE: Writing is completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

9.2 RTEX

9-14 WUME-GM1PGR-10

9.2.9 RTEX_Reset (Reset RTEX)

Resets the entire RTEX network.

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

Output Done BOOL FALSE TRUE: Reset done

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

9.2 RTEX

WUME-GM1PGR-10 9-15

9.2.10 RTEX_ClearAmpMultiTurnData (Clear Amplifier Multi-turn Data)

This is a function block (FB) that clears the multi-turn data of the AMP.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_RTE
X_Panasonic

- Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.
FALSE: Stops processing.

Output CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Done BOOL FALSE TRUE: Clearing is completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

The PMC_ClearAmpMultiTurnData function block outputs the following errors.

Error Description

SMC_WRONG_CONTROLLER_MODE

Executed in a mode other than the position control
mode.
Change to SMC_position using
SMC_SetControllerMode.

SMC_DI_HOMING_ERROR The encoder used is an Incremental encoder.

SMC_AXIS_NOT_READY_FOR_MOTION

The axis is in a state where
RTEX_ClearAmpMultiTurnData cannot be executed.
It can be executed only when set to Disabled or
Errorstop.

SMC_REGULATOR_OR_START_NOT_SET The axis is in a servo ON state.

SMC_AXIS_REF_CHANGED_DURING_OPERATION The Axis was changed during operation.

9.2 RTEX

9-16 WUME-GM1PGR-10

9.2.11 RTEX_ClearAmpPositionalDeviation (Clear Amplifier Deviation
Counter)

This is a function block (FB) that clears the deviation counter of the AMP. It deletes the position
deviation data in the deviation counter of the AMP.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_RTE
X_Panasonic

- Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Velocity(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Acceleration(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Deceleration(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Jerk(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Output CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Done BOOL FALSE TRUE: Clearing is completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

(Note 1) This function block internally substitutes the command position with an actual position to call
MC_MoveAbsolute and, therefore, requires parameters including Velocity, Acceleration, Deceleration,
and Jerk.

The RTEX_ClearAmpPositionalDeviation function block outputs the following errors.

Error Description

SMC_WRONG_CONTROLLER_MODE

Executed in a mode other than the position control
mode.
Change to SMC_position using
SMC_SetControllerMode.

9.2 RTEX

WUME-GM1PGR-10 9-17

Error Description

SMC_AXIS_NOT_READY_FOR_MOTION

The axis is in a state where
RTEX_ClearAmpPositionalDeviation cannot be
executed.
It can be executed only at the standstill state.

SMC_REGULATOR_OR_START_NOT_SET The axis is in a servo ON state.

SMC_PP_WRONG_AXIS_TYPE The axis is a virtual axis.

9.2 RTEX

9-18 WUME-GM1PGR-10

9.2.12 RTEX_GetTrackingCommandError (Read RTEX Command Send
Statistics Information)

The RTEX periodically sends commands. With the GM1 specifications, when the MotionTask
cycle time exceeds the control cycle, the command position for the servo amplifier is not
updated for that cycle. (This is called a lost RTEX command.) This function block measures the
number of sent RTEX commands and the number of lost RTEX commands. Using this function,
you can check if the command position is updated normally for every cycle.

■ Icon

■ Parameter

Scope Definition Value Description

Input Execute --- Execute = TRUE: Starts measurement
when triggered.
Execute = FALSE: Clears output.

ContinuousLos
sCondtion

Continuous
command loss
condition

0: Disabled
If the command loss continuously occurs at
ContinuousLossCondtion cycle,
bContinuousLossError turns TRUE.

MesurementC
ycleCondition

Command loss
statistical
measurement
cycle condition

0: Disabled If the command loss occurs as many times
as specified in LossRateCondition during
the MesurementCycleCondition period,
bLossRateError turns TRUE.LossRateCond

ition
Under
measurement 0 to 100%

Output Busy Under
measurement

NumberOfSen
dCommand

Total number
of commands
sent

Returns a value when Execute is TRUE.
Clears when Execute is FALSE.

NumberOfLoss
Command

Total number
of commands
lost

Returns a value when Execute is TRUE.
Clears when Execute is FALSE.

bContinuousLo
ssError

Occurrence of
a continuous
command loss
error

Occurrence of a condition error of
ContinuousLossCondtion

bLossRateErro
r

Occurrence of
a command
loss statistics
error

Occurrence of a condition error of
MesurementCycleCondition or
LossRateCondition

(Note 1) If the number of frames exceeds 32 bits, normal value is not returned.

9.2 RTEX

WUME-GM1PGR-10 9-19

9.2.13 RTEX_ReadPot (Read POT of Amplifier)

This is a function that reads the POT state of the amplifier.

■ Icon

■ Parameter

Type Parameter name Type Description

I/O Axis AXIS_REF_RTEX_P
anasonic

Specifies the axis.

Output RTEX_ReadPot BOOL TRUE: POT is ON.

9.2.14 RTEX_ReadNot (Read NOT of Amplifier)

This is a function that reads the NOT state of the amplifier.

■ Icon

■ Parameter

Type Parameter name Type Description

I/O Axis AXIS_REF_RTEX_P
anasonic

Specifies the axis.

Output RTEX_ReadNot BOOL TRUE: NOT is ON.

9.2 RTEX

9-20 WUME-GM1PGR-10

9.2.15 Sample example: Read the POT/NOT signal of the servo amplifier and
forcibly stop it.

This program is to forcibly stop the axis when the POT signal is detected during forward rotation
or the NOT signal is detected during reverse rotation in JOG operation.

● Description of process
In response to the start of JOG operation, monitoring of POT/NOT gets started. When the
POT or NOT signal is detected, the axis is forcibly stopped by MC_Stop.
JOG operation in the opposite direction is possible even while the POT/NOT signal is
detected.

● Implementation section

CASE Process OF
 0: // Wait for axis movement
 IF MC_Jog_0.Busy THEN
 Process := 1;
 END_IF
 1: // Monitoring POT or NOT signal
 xAxis1_POT := RTEX_ReadPot(Axis1);
 xAxis1_NOT := RTEX_ReadNot(Axis1);
 IF (xAxis1_POT = TRUE AND Axis1.nDirection = MC_Direction.positive)

 OR (xAxis1_NOT = TRUE AND Axis1.nDirection = MC_Direction.negative)
 THEN
 Process := 2;
 END_IF
 2: //Execute the MC_Stop
 xStopExe := TRUE;
 IF MC_Stop_0.Done THEN
 xStopExe := FALSE;
 Process := 0;
 END_IF
END_CASE

// Jog
MC_Jog_0(
 Axis:=Axis1,
 JogForward:=xAxis1_JogFwd AND NOT(xAxis1_POT),
 JogBackward:=xAxis1_JogBwd AND NOT(xAxis1_NOT),
 Velocity:=10,
 Acceleration:=100,
 Deceleration:=100);

// Stop
MC_Stop_0(
 Axis := Axis1,
 Execute := xStopExe,
 Deceleration := 1000);

9.2 RTEX

WUME-GM1PGR-10 9-21

9.3 EtherCAT

9.3.1 ETC_CO_SdoRead (Read Slave Parameter)

This is a function block (FB) that reads the EtherCAT slave parameters. Unlike
ETC_CO_SdoRead4, this FB supports parameters longer than 4 bytes. Specify parameters to
be read using the index and sub-index used for the object directory.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

pBuffer CAA.PVOID 0 Pointer to the buffer that stores read
data

szSize CAA.SIZE 0 Size of the buffer that stores data

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

9.3 EtherCAT

9-22 WUME-GM1PGR-10

Scope Name Type Default Description

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

szDataRead CAA.SIZE 0 Number of bytes read normally

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3.2 ETC_CO_SdoRead4 (Read Four Bytes of Slave Parameter)

This is a function block (FB) that reads the EtherCAT slave parameters. Unlike
ETC_CO_SdoRead, this FB supports only parameters with 4 bytes or less. Specify parameters
to be read using the index and sub-index used for the object directory.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 1 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

Output
xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

9.3 EtherCAT

WUME-GM1PGR-10 9-23

Scope Name Type Default Description

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

abyData ARRAY [1..4] OF
BYTE

- Read data storage location

usiDataLength USINT 0 Number of read bytes

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3.3 ETC_CO_SdoReadDWord (Read Double Word of Slave Parameter)

Just like ETC_CO_SdoRead4, this is a function block (FB) that reads the EtherCAT slave
parameters. The read data is stored in DWORD (dwData), not in an array. Since byte swapping
is automatically executed, read data can be directly used.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

9.3 EtherCAT

9-24 WUME-GM1PGR-10

Scope Name Type Default Description

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

dwData DWORD 0 Read data storage location

usiDataLength USINT 0 Number of read bytes

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3.4 ETC_CO_SdoRead_Access (Read Slave Parameter Index)

Just like ETC_CO_SdoRead, this is a function block (FB) that reads the EtherCAT slave
parameters. By setting the xCompleteAccess input to TRUE and the bySubIndex input to 0, you
can read complete indexes including all entries.

■ Icon

■ Parameter

Scope Name Type Default Description

Input
xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

9.3 EtherCAT

WUME-GM1PGR-10 9-25

Scope Name Type Default Description

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

pBuffer CAA.PVOID 0 Pointer to the buffer that stores read
data

szSize CAA.SIZE 0 Size of the buffer that stores data

xCompleteAccess BOOL FALSE TRUE: Accesses all sub-indexes
within the specified index.

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

szDataRead CAA.SIZE 0 Number of read bytes

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3 EtherCAT

9-26 WUME-GM1PGR-10

9.3.5 ETC_CO_SdoRead_Channel (Read Priority Specification of Slave
Parameter)

Just like ETC_CO_SdoRead_Access, this is a function block (FB) that reads the EtherCAT
slave parameters. By using the byChannelPriority (BYTE) input, you can specify the channel
and priority using a CoE mailbox message. Specify the channel with the first 6 bits (bit0 to bit5)
and the priority with the last 2 bits (bit6 and bit7).

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

pBuffer CAA.PVOID 0 Pointer to the buffer that stores read
data

szSize CAA.SIZE 0 Size of the buffer that stores data

xCompleteAccess BOOL FALSE TRUE: Accesses all sub-indexes
within the specified index.

byChannelPriority BYTE 0 Specifies the channel and priority
using a CoE mailbox message.

Output xDone BOOL FALSE TRUE: FB processing is completed.

9.3 EtherCAT

WUME-GM1PGR-10 9-27

Scope Name Type Default Description

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

szDataRead CAA.SIZE 0 Number of read bytes

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3.6 ETC_CO_SdoWrite (Write Slave Parameter)

This is a function block (FB) that writes the EtherCAT slave parameters. Unlike
ETC_CO_SdoWrite4, this FB supports parameters longer than 4 bytes. Specify parameters to
be written using the index and sub-index used for the object directory.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

9.3 EtherCAT

9-28 WUME-GM1PGR-10

Scope Name Type Default Description

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

pBuffer CAA.PVOID 0 Pointer to the buffer storing write
data

szSize CAA.SIZE 0 Number of written bytes

eMode ETC_CO_MODE ETC_CO_AUTO Transmission mode

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

szDataWritten CAA.SIZE 0 Number of bytes written normally

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

■ ETC_CO_ERROR (Union type)

Member Type Description

ETC_CO_NO_ERROR WORD No error

ETC_CO_FIRST_ERROR WORD Check udiSdoAbort for the cause of errors.

ETC_CO_OTHER_ERRO
R

WORD The master is not found.

ETC_CO_DATA_OVERFL
OW

WORD ETC_CO_Expedited and size exceed 4.

ETC_CO_TIMEOUT WORD The time limit is exceeded.

ETC_CO_FIRST_MF WORD Not used

ETC_CO_LAST_ERROR WORD Not used

■ ETC_CO_MODE (Union type)

Member Type Description

ETC_CO_AUTO WORD Mode is selected automatically.

ETC_CO_EXPEDITED WORD Expedited transfer

ETC_CO_SEGMENTED WORD Segmented transfer

9.3 EtherCAT

WUME-GM1PGR-10 9-29

9.3.7 ETC_CO_SdoWrite4 (Write Four Bytes of Slave Parameter)

This is a function block (FB) that writes the EtherCAT slave parameters. Unlike
ETC_CO_SdoWrite, this FB supports only parameters with 4 bytes or less. Specify parameters
to be written using the index and sub-index used for the object directory.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

abyData ARRAY [1..4] OF
BYTE

- Write data storage location

usiDataLength USINT 0 Number of written bytes

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

9.3 EtherCAT

9-30 WUME-GM1PGR-10

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3.8 ETC_CO_SdoWriteDWord (Write Double Words of Slave Parameter)

Just like ETC_CO_SdoWrite4, this is a function block (FB) that writes the EtherCAT slave
parameters. The write data is transferred in DWORD (dwData), not in an array. Since byte
swapping is automatically executed, write data can be directly used.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

dwData DWORD 0 Write data storage location

usiDataLength USINT 0 Number of written bytes

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

9.3 EtherCAT

WUME-GM1PGR-10 9-31

Scope Name Type Default Description

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3.9 ETC_CO_SdoWrite_Access (Write Slave Parameter Index)

Just like ETC_CO_SdoWrite, this is a function block (FB) that writes the EtherCAT slave
parameters. By setting the xCompleteAccess input to TRUE and the bySubIndex input to 0, you
can write complete indexes including all entries. By using the byChannelPriority (BYTE) input,
you can specify the channel and priority using a CoE mailbox message. Specify the channel
with the first 6 bits (bit0 to bit5) and the priority with the last 2 bits (bit6 and bit7).

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE TRUE: Interrupts processing and
resets output.

usiCom USINT 1 1 (Fixed)

uiDevice UINT 0 Physical slave address

usiChannel USINT 1 Reserved

wIndex WORD 0 Parameter index in the object
directory(Note 1)

9.3 EtherCAT

9-32 WUME-GM1PGR-10

Scope Name Type Default Description

bySubIndex BYTE 0 Parameter sub-index in the object
directory(Note 1)

udiTimeout UDINT 0 Timeout (Unit: ms)

pBuffer CAA.PVOID 0 Pointer to the buffer storing write
data

szSize CAA.SIZE 0 Number of written bytes

eMode ETC_CO_MODE ETC_CO_AUTO Transmission mode

xCompleteAccess BOOL FALSE TRUE: Accesses all sub-indexes
within the specified index.

byChannelPriority BYTE Specifies the channel and priority
using a CoE mailbox message.

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError ETC_CO_ERRO
R

ETC_CO_NO_E
RROR Error ID output

udiSdoAbort UDINT 0 Abort code received from the slave
device

szDataWritten CAA.SIZE 0 Number of bytes written normally

(Note 1) The parameter content differs according to the slave. Refer to the manuals of corresponding slave
devices.

9.3 EtherCAT

WUME-GM1PGR-10 9-33

9.3.10 ReadIdentification (Read Slave Identification Data)

Reads identification data from EtherCAT slaves.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE Do not use.

usiCom USINT 1 1 (Fixed)

wSlaveIndex WORD 0 Specifies EtherCAT slaves.
EtherCAT slave numbers are
allocated in ascending order from 0
to the one closest to the master.

udiTimeout UDINT 0 Timeout (Unit: ms)
When executed with the default
value 0, it will timeout immediately.

xReadReg0x12 BOOL FALSE Register 16#12 (Station alias) read
flag

xReadReg0x134 BOOL FALSE Register 16#134 (Explicit Device
ID) read flag

xReadRegAdo BOOL FALSE Register Ado read flag

wAdo WORD 0 Ado ID address

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

xAborted BOOL FALSE TRUE: An interruption has occurred
in FB processing.

wStationAlias WORD 0 Value of register 16#12

wReg134 WORD 0 Value of register 16#0x134

wAdoValue WORD 0 Value of Ado ID

9.3 EtherCAT

9-34 WUME-GM1PGR-10

9.3.11 ReadMemory (Read Slave Memory)

This is a function block (FB) that reads the EtherCAT slave memory.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE Do not use.

usiCom USINT 1 Master device index (1 onwards)

wSlaveAddress WORD 0 Either the automatic incremental
address or the device’s physical
address

xAutoIncAdr BOOL FALSE TRUE: Uses the automatic
incremental address.
When set to TRUE, specify the
automatic incremental address for
wSlaveAddress.

xBroadcast BOOL FALSE TRUE: Uses the broadcast read.
If set to TRUE, wSlaveAddress and
bAutoIncAdr are not used.

uiMemOffset UINT 0 Offset of the memory

iSize INT 0 Number of read bytes

pDest POINTER TO
BYTE

0 Pointer to the buffer that stores read
data

udiTimeOut UDINT 0 Timeout (Unit: ms)
When executed with the default
value 0, it will timeout immediately.

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

9.3 EtherCAT

WUME-GM1PGR-10 9-35

Scope Name Type Default Description

xAborted BOOL FALSE TRUE: An interruption has occurred
in FB processing.

uiWorkingCounter UINT 0 Working counter of received
commands

9.3.12 ReadNbrSlaves (Read the Number of Connected Slaves)

Reads the number of slaves currently connected.

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE Do not use.

usiCom USINT 1 1 (Fixed)

udiTimeOut UDINT 0 Timeout (Unit: ms)
When executed with the default
value 0, it will timeout immediately.

Output

xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

xAborted BOOL FALSE TRUE: An interruption has occurred
in FB processing.

wNumberSlaves WORD 0 Number of slaves connected

9.3 EtherCAT

9-36 WUME-GM1PGR-10

9.3.13 WriteMemory (Write Slave Memory)

This is a function block (FB) that writes the EtherCAT slave memory. Accesses"ESC address
space".

■ Icon

■ Parameter

Scope Name Type Default Description

Input

xExecute BOOL FALSE

TRUE: Starts execution at the rising
edge.
FALSE: Resets output after
execution is completed.

xAbort BOOL FALSE Do not use.

usiCom USINT 1 1 (Fixed)

wSlaveAddress WORD 0 When set to the physical slave
address or to
bAutoIncrementAddress, specify
the automatic incremental address.

xAutoIncAdr BOOL FALSE TRUE: Uses the automatic
incremental address.
When set to TRUE, specify the
automatic incremental address for
wSlaveAddress.

xBroadcast BOOL FALSE TRUE: Uses the broadcast read.
If set to TRUE, wSlaveAddress and
bAutoIncAdr are not used.

uiMemOffset UINT 0 Offset of the memory

iSize INT 0 Number of bytes to be written

pSrc POINTER TO
BYTE

0 Address of the data buffer to be
written

udiTimeOut UDINT 0 Timeout (Unit: ms)
When executed with the default
value 0, it will timeout immediately.

Output
xDone BOOL FALSE TRUE: FB processing is completed.

xBusy BOOL FALSE TRUE: FB is in progress.

9.3 EtherCAT

WUME-GM1PGR-10 9-37

Scope Name Type Default Description

xError BOOL FALSE TRUE: An error has occurred within
the FB.

xAborted BOOL FALSE TRUE: An interruption has occurred
in FB processing.

uiWorkingCounter UINT 0 Working counter of received
commands

9.3.14 PETC_ClearAmpPositionalDeviation (Clear Amplifier Deviation
Counter)

This is a function block (FB) that clears the deviation counter of the AMP. It deletes the position
deviation data in the deviation counter of the AMP.

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_RTE
X_Panasonic

- Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Velocity(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Acceleration(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Deceleration(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Jerk(Note 1) LREAL Information required to execute
MC_MoveAbsolute

Output Done BOOL FALSE TRUE: Clearing is completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

9.3 EtherCAT

9-38 WUME-GM1PGR-10

(Note 1) This function block internally substitutes the command position with an actual position to call
MC_MoveAbsolute and, therefore, requires parameters including Velocity, Acceleration, Deceleration,
and Jerk.

The PETC_ClearAmpPositionalDeviation function block outputs the following errors.

Error Description

SMC_WRONG_CONTROLLER_MODE

Executed in a mode other than the position control
mode.
Change to SMC_position using
SMC_SetControllerMode.

SMC_AXIS_NOT_READY_FOR_MOTION
The axis is in a state where
PMC_ClearAmpMultiTurnData cannot be executed.
It can be executed only at the standstill state.

SMC_REGULATOR_OR_START_NOT_SET The axis is in a servo OFF state.

SMC_PP_WRONG_AXIS_TYPE The axis is a virtual axis.

9.3 EtherCAT

WUME-GM1PGR-10 9-39

9.4 EtherCAT Master/Slave

9.4.1 EtherCAT Master/Slave Communication Control and Monitoring

With the GM1 controller, you can control EtherCAT master communication and monitor
communication between the EtherCAT master and the slave.

With GM Programmer, the following four function blocks and methods are available in checking
the EtherCAT state.
● IoDrvEtherCAT(FB): This FB provides functions for the restart or the bus stop of the

EtherCAT master, allowing you to check a transition to normal communication through the
completion of the master configuration and the completion of synchronization with the slave.

● IoDrvEtherCAT.GetStatistics(METH): This enables you to get EtherCAT frame statistics
information. Through the number of lost EtherCAT frames (udiLostFrameCount), you can
monitor if communication is properly performed.

● IoDrvEtherCAT.ClearStatistics(METH): This enables you to clear EtherCAT frame statistics
information.

● ETCSlave(FB): This enables you to check the communication state of EtherCAT slaves.

● For an example process for monitoring the communication state of the EtherCAT master, refer
to "9.4.6 Sample Example: Process for Monitoring EtherCAT Master Communication".

● For an example process for monitoring the communication state of EtherCAT slave devices,
refer to "9.4.7 Sample Example: Process for Monitoring EtherCAT Slave Communication".

● For an example process for stopping/restarting EtherCAT master device communication, refer
to "9.4.8 Sample Example: Stop/Restart EtherCAT Master Communication".

9.4.2 IoDrvEtherCAT (Control EtherCAT Master Communication)

This is a function block that controls EtherCAT master communication. Since the EtherCAT
master FB (EtherCAT_Master_SoftMotion) is automatically created, no declaration is required.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xRestart BOOL FALSE Rising edge: Restarts the EtherCAT
master communication.

xStopBus BOOL FALSE TRUE: Stops the EtherCAT master
communication.

9.4 EtherCAT Master/Slave

9-40 WUME-GM1PGR-10

Scope Name Type Default value Description

Output xConfigFinished BOOL FALSE TRUE: Configuration has been
completed successfully

xDistributedClockInSyn
c

BOOL FALSE TRUE: Synchronization with the
EtherCAT slave with the DC option
activated has been completed
successfully.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

xSyncInWindow BOOL FALSE Do not use.

9.4.3 IoDrvEtherCAT.GetStatistics (Get EtherCAT Communication Statistics
Information)

This method is used to get statistics information such as the number of sent frames, the number
of lost frames or error counts during EtherCAT communication. Write
EtherCAT_Master_SoftMotion.GetStatistics. Through the acquired lost EtherCAT frame count,
you can monitor whether communication is properly performed.

■ Icon

■ Parameter

Scope Name Type Description

Output udiSendFrameCount UDINT Number of total EtherCAT frames sent

udiFramesPerSecond UDINT Number of EtherCAT send frames per
second

udiLostFrameCount UDINT Number of lost EtherCAT frames

udiTxErrorCount UDINT Number of send errors

udiRxErrorCount UDINT Number of receive errors

9.4 EtherCAT Master/Slave

WUME-GM1PGR-10 9-41

9.4.4 IoDrvEtherCAT.ClearStatistics (Clear EtherCAT Communication
Statistics Information)

This method is used to clear statistics information about EtherCAT communication. Write
EtherCAT_Master_SoftMotion.ClearStatistics to set every statistics information counter to zero.
This has no argument.

■ Icon

9.4.5 ETCSlave (Control EtherCAT Slave Communication)

This is a function block designed to start establishing EtherCAT slave communication and
monitor the state of communication. An FB instance is automatically generated for each
EtherCAT slave. With DeviceName.wState, the communication state of the slave can be
acquired.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xSetOperational BOOL FALSE Rising edge: An attempt is made to
switch to the
ETC_SLAVE_OPERATIONAL
mode.

Output wState ETC_SLAVE_ST
ATE

3(ETC_SLAVE_
BOOT)

Outputs the communication state of
the slave device.

■ ETC_SLAVE_STATE (Enumeration type)
The states of the EtherCAT slave dependent on the EtherCAT State Machine (ESM) are shown.

Name Value Description

ETC_SLAVE_BOOT 3 Bootstrap state

ETC_SLAVE_INIT 1 Init state

ETC_SLAVE_PREOPERATION
AL

2 Pre-Operational state

ETC_SLAVE_SAVEOPERATION
AL

4 Safe-Operational state

ETC_SLAVE_OPERATIONAL 8 Operational state

9.4 EtherCAT Master/Slave

9-42 WUME-GM1PGR-10

9.4.6 Sample Example: Process for Monitoring EtherCAT Master
Communication

This is a program coded to monitor the communication state of the master via
EtherCAT_Master_SoftMotion.

● Description of process
In response to the start of operation, the process for monitoring the communication gets
started to acquire statistics information. The program for communication monitoring
determines a communication error when the number of lost EtherCAT frames gets greater
than or equal to a specified number.
After the occurrence of the communication error, if xClear is set to TRUE, the statistics
information is cleared and communication of the EtherCAT master can be monitored again.

● Declaration section

VAR
// Execution of ClearStatistics
xClear : BOOL := FALSE;
// communication check flag
xCommunicateOK : BOOL := FALSE;
xCommunicateNG : BOOL := FALSE;

// Variables
udiECAT_SendFrameCount : UDINT := 0; //sending frame count
udiECAT_FramesPerSecond : UDINT := 0; //sending frame count per second
udiECAT_LostFrameCount : UDINT := 0; //lost frame count
udiECAT_TxErrorCount : UDINT := 0; //Tx Error frame count
udiECAT_RxErrorCount : UDINT := 0; //Rx Error frame count
END_VAR

VAR CONSTANT
udiECAT_ERRORCOUNT : UDINT := 3; //threshold of abnormal Communicate
END_VAR

● Implementation section

// Get EtherCAT communication log statistics
EtherCAT_Master_SoftMotion.GetStatistics(
 udiSendFrameCount => udiECAT_SendFrameCount,
 udiFramesPerSecond => udiECAT_FramesPerSecond,
 udiLostFrameCount => udiECAT_LostFrameCount,
 udiTxErrorCount => udiECAT_TxErrorCount,
 udiRxErrorCount => udiECAT_RxErrorCount);

// EtherCAT communication check
IF (udiECAT_LostFrameCount > udiECAT_ERRORCOUNT) THEN
 xCommunicateNG := TRUE;
 xCommunicateOK := FALSE;
ELSE
 xCommunicateOK := TRUE;
 xCommunicateNG := FALSE;
END_IF

// Clear EtherCAT communication log statistics

9.4 EtherCAT Master/Slave

WUME-GM1PGR-10 9-43

IF (xClear=TRUE) THEN
 EtherCAT_Master_SoftMotion.ClearStatistics();
 xClear := False;
END_IF

9.4.7 Sample Example: Process for Monitoring EtherCAT Slave
Communication

This is a program coded to monitor the communication state of the slave devices connected to
the EtherCAT master. This program allows you to check how many slave devices are properly
communicating.

● Description of process
When the case number (iStep) is set to 1, the communication monitoring process starts. A
description of the process is given with the following two execution results taken as
examples.

Errors can be detected as shown below from the execution result 1 and execution result 2.
• The case of execution result 1

If three slave devices are connected to the EtherCAT master, they are properly
communicating.

• The case of execution result 2
If three slave devices are connected to the EtherCAT master, the first device is properly
communicating, whereas a communication error is detected in the second and succeeding
devices.
A failure in LAN cable connection between the first and second devices or the occurrence
of an error in the second slave can be detected.

● Declaration section

VAR
// Change to 1 : To Start
iStep : INT := 0;
// Finish Flag
xFinish : BOOL := FALSE;

// Variables
pSlave : POINTER TO ETCSlave; //Pointer of slave information
xECAT_SlaveOK : BOOL := FALSE; //All slave state OK
iECAT_SlaveCount : INT := 0; //Number of slaves
axSlaveState : ARRAY[1..32] OF BOOL; //Slave state

END_VAR

9.4 EtherCAT Master/Slave

9-44 WUME-GM1PGR-10

● Implementation section

// Communication check of EtherCAT_Slave
CASE iStep OF
 1: // Initial setting
 xECAT_SlaveOK := TRUE;
 iECAT_SlaveCount := 0;
 pSlave := EtherCAT_Master_SoftMotion.FirstSlave;
 iStep := 2;
 2: // Check of EtherCAT_Slave
 WHILE (pSlave <> 0) DO
 iECAT_SlaveCount := iECAT_SlaveCount + 1;
 pSlave^();
 IF (EtherCAT_Master_SoftMotion.xDistributedClockInSync = TRUE) AND
 (pSlave^.wState = ETC_SLAVE_STATE.ETC_SLAVE_OPERATIONAL) THEN
 axSlaveState[iECAT_SlaveCount] := TRUE;
 ELSE
 axSlaveState[iECAT_SlaveCount] := FALSE;
 xECAT_SlaveOK := FALSE;
 END_IF
 pSlave := pSlave^.NextInstance;
 END_WHILE
 iStep := 3;
 3: // Check completed
 xFinish := TRUE;
 iStep := 0;
END_CASE

9.4.8 Sample Example: Stop/Restart EtherCAT Master Communication

This program is designed to stop or restart the communication of the EtherCAT master.

To use this program, it is necessary to select “Enable diagnosis for device” checkbox on the
“PLC Settings” tab in the Device object.
The communication automatically restarts after the communication is stopped unless the
“Automatically Start Slaves” checkbox is deselected in the general settings of
EtherCAT_Master_SoftMotion.
● Description of process

When the case number (iStep) is set to 1, the communication stops. When the stop
processing is completed, the xStop_Communication parameter goes TRUE.
When the case number (iStep) is set to 4, the communication restarts. When the restart
processing is completed, the xRestart_Communication parameter goes TRUE.

● Declaration section

VAR
// Change to 1 or 4 : To Start
iStep : INT := 0;
// Finish Flag
xStop_Communication : BOOL := FALSE;
xRestart_Communication : BOOL := FALSE;
END_VAR

9.4 EtherCAT Master/Slave

WUME-GM1PGR-10 9-45

● Implementation section

// Stop and restart communication of EtherCAT_Master_SoftMotion
CASE iStep OF
 1: // Stop communication Bus
 EtherCAT_Master_SoftMotion(xStopBus := TRUE);
 iStep := 2;
 2: // Stopping communication
 EtherCAT_Master_SoftMotion(xStopBus := FALSE);
 IF (EtherCAT_Master_SoftMotion.xDistributedClockInSync=FALSE) THEN
 iStep := 3;
 END_IF
 3: // Chaging Device state to STOP from RUN.
 IF (EtherCAT_Master_SoftMotion.CheckCurrentSupportedCommunicationStat
e(eRequestedState:=DEVICE_TRANSITION_STATE.STOP))
 AND (EtherCAT_Master_SoftMotion.CheckSupportedCommunicationState(eRequ
estedState:=DEVICE_TRANSITION_STATE.STOP)) THEN
 EtherCAT_Master_SoftMotion.SetCommunicationState(eRequestedState:=DEV
ICE_TRANSITION_STATE.STOP);
 ELSE
 // Complete stop process
 IF (EtherCAT_Master_SoftMotion.xDistributedClockInSync=FALSE) THEN
 xStop_Communication := TRUE;
 iStep := 0;
 END_IF
 END_IF
 4: //Restart communication of EtherCAT_Master_SoftMotion
 EtherCAT_Master_SoftMotion(xRestart := TRUE);
 //If complete communication
 IF (EtherCAT_Master_SoftMotion.xDistributedClockInSync=TRUE) THEN
 EtherCAT_Master_SoftMotion(xRestart := FALSE);
 xRestart_Communication := TRUE;
 iStep := 0;
 END_IF
END_CASE

9.4 EtherCAT Master/Slave

9-46 WUME-GM1PGR-10

10 Motion Control Function
Blocks (Auxiliary Function)

10.1 Motion Auxiliary Function (Monitoring)..10-2
10.1.1 MC_ReadActualPosition (Read Current Position) 10-2
10.1.2 MC_ReadActualVelocity (Read Current Velocity) 10-2
10.1.3 PMC_ReadActualTorque (Read Current Torque) 10-3
10.1.4 MC_ReadActualTorque (Read Current Torque)............................. 10-4
10.1.5 MC_ReadAxisError (Read Axis Error) ... 10-5
10.1.6 MC_ReadStatus (Read Status) ... 10-6
10.1.7 SMC_InPosition (In-position Judgment) .. 10-8
10.1.8 SMC_ReadFBError (Read Oldest Error) 10-10
10.1.9 SMC_ClearFBError (Clear Oldest Error) 10-11
10.1.10 SMC_CheckAxisCommunication (Check Axis Communication

Status)... 10-12
10.1.11 SMC_CheckLimits (Check Exceeding Limits) 10-13
10.1.12 SMC_GetMaxSetAccDec (Measure Maximum Acceleration /

Deceleration)... 10-14
10.1.13 SMC_GetMaxSetVelocity (Measure Maximum Velocity) 10-15
10.1.14 SMC_GetTrackingError (Measure Tracking Error)....................... 10-16
10.1.15 SMC_MeasureDistance (Measure Turnaround Travel Distance) 10-17
10.1.16 SMC_ReadSetPosition (Read Axis Set Position) 10-18

10.2 Motion Auxiliary Function (Change / Reset)10-19
10.2.1 MC_Reset (Axis Error Reset) .. 10-19
10.2.2 SMC3_ReinitDrive (Reinitialize Axis) ... 10-20
10.2.3 MC_SetPosition (Change Current Position) 10-21
10.2.4 SMC_ChangeDynamicLimits(Dynamic limit change) 10-21
10.2.5 SMC_ChangeGearingRatio(Gear ratio and axis type change)...... 10-23
10.2.6 SMC_SetMovementType(Virtual axis type change)....................... 10-26
10.2.7 SMC_SetRampType(Velocity ramp type change).......................... 10-28
10.2.8 SMC_SetSoftwareLimits(Soft limit change) 10-29

10.3 Motion Auxiliary Function (Other Functions).....................................10-31
10.3.1 PMC_ReadLatchPosition (Amplifier Latch Monitor)....................... 10-31
10.3.2 PMC_StopLatchPosition (Stop Amplifier Latch) 10-33
10.3.3 MC_TouchProbe (Enable AMP Latch Monitoring) 10-36
10.3.4 MC_AbortTrigger (Disable AMP Latch Monitoring)........................ 10-38
10.3.5 MC_DigitalCamSwitch (Enable Digital Cam Switch) 10-39
10.3.6 SMC_BacklashCompensation (Compensate Backlash)................ 10-43

WUME-GM1PGR-10 10-1

10.1 Motion Auxiliary Function (Monitoring)

10.1.1 MC_ReadActualPosition (Read Current Position)

This is a function block (FB) that reads the actual position data of the axis.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE Reads the actual position while
Enable is set to TRUE.

Output Valid BOOL FALSE TRUE: Valid output

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

Position LREAL 0 Actual position (u) that is read out

10.1.2 MC_ReadActualVelocity (Read Current Velocity)

This is a function block (FB) that reads the actual velocity of the axis.

■ Icon

10.1 Motion Auxiliary Function (Monitoring)

10-2 WUME-GM1PGR-10

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE Reads the actual velocity while
Enable is set to TRUE.

Output Valid BOOL FALSE TRUE: Valid output

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

Velocity LREAL 0 Current actual velocity (u/s) that is
read out

10.1.3 PMC_ReadActualTorque (Read Current Torque)

This is a function block (FB) that reads the actual torque value of the axis.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE Reads the actual torque value while
Enable is set to TRUE.

Output Valid BOOL FALSE TRUE: Valid output

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

Torque LREAL 0 Current actual torque (%) that is
read out

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-3

10.1.4 MC_ReadActualTorque (Read Current Torque)

This is a function block (FB) that reads the current torque value of the axis.

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE Reads the actual torque value while
Enable is set to TRUE.

Output Valid BOOL FALSE TRUE: Valid output

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

Torque LREAL 0 Current actual torque that is read
out (N∙m, N)

10.1 Motion Auxiliary Function (Monitoring)

10-4 WUME-GM1PGR-10

10.1.5 MC_ReadAxisError (Read Axis Error)

This is a function block that gets general axis errors not related to function blocks.

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE Reads the state while Enable is set
to TRUE.

Output

Valid BOOL FALSE TRUE: Valid output

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

AxisError BOOL FALSE TRUE: An axis error has occurred.

AxisErrorID DWORD 0 Axis error ID
Servo amplifier alarms can be
acquired from AxisErrorID. If an
Err27.4 error occurs when
connected to the MINAS, 27
(16#1B) is set and AxisErrorID
becomes 16#0000FF1B.

SWEndSwitchActive BOOL FALSE TRUE: The software limit has been
exceeded.

● Do not execute MC_ReadAxisError while SMC3_ReinitDrive is running.

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-5

10.1.6 MC_ReadStatus (Read Status)

This is a function block (FB) that reads the status information of the axis. It reads detailed
information about the axis state.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE Reads the status information while
the input is TRUE.

Output Valid BOOL FALSE TRUE: Valid output

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

Disabled BOOL FALSE TRUE: The axis is in the Disabled
state.

ErrorStop BOOL FALSE TRUE: The axis is in the ErrorStop
state.

Stopping BOOL FALSE TRUE: The axis is in the Stopping
state.

StandStill BOOL FALSE TRUE: The axis is in the StandStill
state.

DiscreteMotion BOOL FALSE TRUE: The axis is in the
DiscreteMotion state.

ContinuousMotion BOOL FALSE TRUE: The axis is in the
ContinuousMotion state.

10.1 Motion Auxiliary Function (Monitoring)

10-6 WUME-GM1PGR-10

Scope Name Type Initial Description

SynchronizedMotion BOOL FALSE TRUE: The axis is in the
SynchronizedMotion state.

Homing BOOL FALSE TRUE: The axis is in the Homing
state.

ConstantVelocity BOOL FALSE TRUE: The axis is moving at a
constant velocity.

Accelerating BOOL FALSE TRUE: The axis is moving in
acceleration.

Decelerating BOOL FALSE TRUE: The axis is moving in
deceleration.

FBErrorOccured BOOL FALSE TRUE: An FB error has occurred.

■ Axis state
The following section describes state transition diagram of the axis when the motion function
blocks are executed.

State transition diagram
● The blue frame indicates the state.
● When the function block indicated above the state is executed, the state transitions to the

direction indicated by the solid-line arrow.
● When the execution is completed or when an error occurs, the state transitions to the state

indicated at the tip of the broken-line arrow.
● The terms in parentheses are defined in PLCopen.

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-7

Num
ber

Transition conditions

(1) Regardless of the state, when an error occurs in the axis

(2) Regardless of the state, when Enable of MC_Power is TRUE, bRegulator is FALSE, and there is no
error in the axis

(3) When Status of MC_Reset and Status of MC_Power are FALSE

(4) When Enable of MC_Reset and Enable of MC_Power are TRUE, bRegulator is TRUE, and Status is
TRUE

(5) When Enable of MC_Power is TRUE, bRegulator is TRUE, and Status is TRUE

(6) When Done of MC_Stop is TRUE and Execute of MC_Stop is FALSE

10.1.7 SMC_InPosition (In-position Judgment)

This is a function block (FB) that compares the actual position of the AMP with the command
value and judges whether the position is within the specified range. The maximum difference
between the actual position of the AMP and the command value as well as the dwell time are
specified to judge (in-position judgment) whether the specified values are satisfied.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: Executes the FB.

fPosWindow LREAL 0 The maximum difference between
the actual position and the
command value to judge whether
the target position has been
reached.

fPosTime LREAL 0 The dwell time (s) to judge whether
the axis has reached the position

fTimeOut LREAL 0 The time (s) from when the FB is
enabled to when judgment is made
that timeout has occurred
When the value is “0”, the timeout
judgment is not made yet.

Output bInPosition BOOL FALSE TRUE: The target position is
reached.
While the difference between the
actual position and the command

10.1 Motion Auxiliary Function (Monitoring)

10-8 WUME-GM1PGR-10

Scope Name Type Initial Description
value is within the time specified in
fPosTime, it is within the
fPosWindow.

bBusy BOOL FALSE TRUE: The FB is in operation.

bTimeOut BOOL FALSE TRUE: Timeout has occurred.

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-9

10.1.8 SMC_ReadFBError (Read Oldest Error)

This is a function block (FB) that reads the oldest function block error information.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: The FB can be executed.

Output bValid BOOL FALSE TRUE: Error information is
acquired.

bBusy BOOL FALSE TRUE: The FB is in operation.

bFBError BOOL FALSE TRUE: An error has occurred within
the FB.

nFBErrorID SMC_ERROR 0 An error ID is output.

pbyErrorInstance POINTER TO
BYTE

0 FB instance of the error acquisition
source

strErrorInstance STRING '' FB instance name of the error
acquisition source

tTimeStamp TIME TIME#0ms Time stamp of the error information

● The error information is cleared when SMC_ClearFBError is executed. When and error occurs
again, SMC_ReadFBError reads the error.

 REFERENCE
10.1.9 SMC_ClearFBError (Clear Oldest Error)

10.1 Motion Auxiliary Function (Monitoring)

10-10 WUME-GM1PGR-10

10.1.9 SMC_ClearFBError (Clear Oldest Error)

This function clears the oldest FB error information.

■ Icon

■ Parameter

Type Parameter
name Type Default Description

Input pDrive POINTER TO
AXIS_REF_SM3

- Specifies the axis.

Return SMC_ClearFBE
rror

BOOL This function always returns FALSE even for
normal completion.

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-11

10.1.10 SMC_CheckAxisCommunication (Check Axis Communication Status)

This is a function block (FB) that checks the communication state of the axis.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: The FB can be executed.

Output bValid BOOL FALSE TRUE: The output value is valid.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

eErrorID SMC_ERROR 0 An error ID is output.

bOperational BOOL FALSE TRUE: Communication state is
operational. (100)

eComState SMC_Communic
ationState

SMC_COMSTAT
E_NOT_START
ED

Communication state

wComState WORD 0 Internal value of the communication
state

■ SMC_CommunicationState (Enumeration type)

Name Value Description

SMC_COMSTATE_NOT_STARTED 0 Stop

SMC_COMSTATE_VARIABLE_INITIALIZA
TION

1 Initialization of variables

SMC_COMSTATE_BASE_COM_INITIALIZ
ATION

2 Initialization of base communication
settings

SMC_COMSTATE_DRIVE_INITIALIZATIO
N

3 Initialization of drive settings

SMC_COMSTATE_DRIVE_WAITING_FOR
_SYNC

4 Waiting for drive synchronization

SMC_COMSTATE_INITIALIZATION_DON
E

5 Initialization completed

SMC_COMSTATE_OPERATIONAL 6 Operational

SMC_COMSTATE_REINITIALIZATION 7 Re-initialization

10.1 Motion Auxiliary Function (Monitoring)

10-12 WUME-GM1PGR-10

Name Value Description

SMC_COMSTATE_ERROR 8 Error

SMC_COMSTATE_UNKNOWN 9 Unknown

10.1.11 SMC_CheckLimits (Check Exceeding Limits)

This is a function block (FB) that checks whether the velocity, acceleration, or deceleration is in
excess of the dynamic limit set value of the device.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: The FB can be executed.

bCheckVel BOOL TRUE TRUE: Checks the velocity setting.

bCheckAccDec BOOL FALSE TRUE: Checks the acceleration and
deceleration settings.

Output bBusy BOOL FALSE TRUE: The FB is in operation.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

iErrorID SMC_ERROR 0 An error ID is output.

bLimitsExceeded BOOL FALSE TRUE: Limits are exceeded.

● Reference manual
GM1 Controller RTEX User's Manual (Operation Edition)
GM1 Controller EtherCAT User’s Manual (Operation Edition)

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-13

10.1.12 SMC_GetMaxSetAccDec (Measure Maximum Acceleration /
Deceleration)

This is a function block (FB) that measures the maximum value of the axis acceleration/
deceleration command.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: The FB can be executed.

dwTimeStamp DWORD 0 Time stamp

Output bValid BOOL FALSE TRUE: The output value is valid.

bBusy BOOL FALSE TRUE: The FB is in operation.

fMaxAcceleration LREAL 0 Maximum acceleration (u/s2).

dwTimeAtMax DWORD 0 dwTimeStamp value at the
maximum acceleration

● It is possible to check when the maximum acceleration or deceleration has occurred by
entering a call counter value in the input variable "dwTimeStamp".

10.1 Motion Auxiliary Function (Monitoring)

10-14 WUME-GM1PGR-10

10.1.13 SMC_GetMaxSetVelocity (Measure Maximum Velocity)

This is a function block (FB) that measures the maximum value of the axis velocity command.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: The FB can be executed.

dwTimeStamp DWORD 0 Time stamp

Output bValid BOOL FALSE TRUE: The output value is valid.

bBusy BOOL FALSE TRUE: The FB is in operation.

fMaxVelocity LREAL 0 Maximum velocity (u/s).

dwTimeAtMax DWORD 0 dwTimeStamp value at the
maximum acceleration

● It is possible to check when the maximum velocity has occurred by entering a call counter
value in the input variable "dwTimeStamp".

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-15

10.1.14 SMC_GetTrackingError (Measure Tracking Error)

This is a function block (FB) that measures the tracking error of the actual position for the axis
command position.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bEnable BOOL FALSE TRUE: The FB can be executed.

byDeadTimeCycles BYTE 2 Number of dead time cycles
Compares the command position
and actual position between the
specified cycles.

dwTimeStamp DWORD 0 Time stamp

Output bValid BOOL FALSE TRUE: The output value is valid.

bBusy BOOL FALSE TRUE: The FB is in operation.

fActTrackingError LREAL 0 Actual tracking error

fMaxTrackingError LREAL 0 Maximum tracking error while the
function block is being executed

dwTimeAtMax DWORD 0 dwTimeStamp value when the
maximum tracking error is detected

● It is possible to check when the maximum tracking error has occurred by entering a call counter
value in the input variable "dwTimeStamp".

10.1 Motion Auxiliary Function (Monitoring)

10-16 WUME-GM1PGR-10

10.1.15 SMC_MeasureDistance (Measure Turnaround Travel Distance)

This is a function block (FB) that measures the travel distance. For the modulo axis, the cover
distance can be measured considering the laps.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bExecute BOOL FALSE TRUE: Starts measurement at the
rising edge.
FALSE: Ends measurement.

Output fDistance LREAL 0 Distance traveled from the start of
measurement

bBusy BOOL FALSE TRUE: The FB is in operation.

bError BOOL 0 TRUE: An error has occurred within
the FB.

nErrorID SMC_ERROR 0 An error ID is output.

10.1 Motion Auxiliary Function (Monitoring)

WUME-GM1PGR-10 10-17

10.1.16 SMC_ReadSetPosition (Read Axis Set Position)

This is a function block (FB) that acquires the command position of the axis.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Enable BOOL FALSE TRUE: Executes the FB.

Output Valid BOOL FALSE TRUE: The output value is valid.

Busy BOOL FALSE TRUE: The FB is in operation.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

Position LREAL 0 Axis position

10.1 Motion Auxiliary Function (Monitoring)

10-18 WUME-GM1PGR-10

10.2 Motion Auxiliary Function (Change / Reset)

10.2.1 MC_Reset (Axis Error Reset)

This is a function block (FB) that resets the state transition error of the axis. It reset the axis
error and transitions the state from the ErrorStop state to the StandStill state.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Output Done BOOL FALSE TRUE: Reset done

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

10.2 Motion Auxiliary Function (Change / Reset)

WUME-GM1PGR-10 10-19

10.2.2 SMC3_ReinitDrive (Reinitialize Axis)

This is a function block that restarts the drive / axis. It means that the startup phase is executed
again and the application cannot control the drive until bDone of the FB is set to TRUE.

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input
bExecute BOOL FALSE Starts execution at the rising edge.

bVirtual BOOL FALSE If bVirtual is set to TRUE, the axis is
set to the virtual mode.

Output

bDone BOOL FALSE TRUE: Reset is completed.

bBusy BOOL FALSE TRUE: Execution of the FB is not
completed.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

nErrorID SMC_ERROR 0 Error ID output

● Do not execute MC_ReadAxisError while SMC3_ReinitDrive is running.
● If MC_ReadAxisError is running, set Enable of MC_ReadAxisError to FALSE to stop the

processing and then execute SMC3_ReinitDrive.

10.2 Motion Auxiliary Function (Change / Reset)

10-20 WUME-GM1PGR-10

10.2.3 MC_SetPosition (Change Current Position)

This is a function block (FB) that changes the current command position of the axis.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE Starts execution at the rising edge.

Position LREAL 0 Specifies the position when the
mode is set to ABSOLUTE.
Specifies the distance when the
mode is set to RELATIVE.

Mode BOOL FALSE TRUE: RELATIVE (Relative
position)
FALSE: ABSOLUTE (Absolute
position)

Output Done BOOL FALSE TRUE: Position change is
completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred.

ErrorID SMC_ERROR 0 An error ID is output.

10.2.4 SMC_ChangeDynamicLimits(Dynamic limit change)

This is a function block that changes the dynamic limits (velocity, acceleration, deceleration,
jerk) of the real and virtual axes.When the axis state is power_off or standstill,this FB can be
used.

■ Icon

10.2 Motion Auxiliary Function (Change / Reset)

WUME-GM1PGR-10 10-21

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.

fMaxVelocity LREAL 0 Dynamic limit velocity to set [u / s]
(Note 1)

fMaxAcceleration LREAL 0 Dynamic limit acceleration to set
[u / s^2] (Note 1)

fMaxDeceleration LREAL 0 Dynamic limit deceleration to set
[u / s^2] (Note 1)

fMaxJerk LREAL 0 Dynamic limit Jerk to set[u / s^3]
(Note 1)

Output bDone BOOL FALSE TRUE：FB execution completed

bError BOOL FALSE TRUE: An error has occurred.

bBusy BOOL FALSE TRUE：The FB is in operation.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

(Note 1) An error occurs when 0 is set for each argument. Set a positive value.

■ Setting location
The dynamic limit in the figure below can be changed while GM1 is running.

● When the GM1 is powered off, cold reset, or warm reset, it returns to the previous setting
value.

● For dynamic restrictions, refer to the GM1 Series Reference Manual (Operation).

10.2 Motion Auxiliary Function (Change / Reset)

10-22 WUME-GM1PGR-10

10.2.5 SMC_ChangeGearingRatio(Gear ratio and axis type change)

This is a function block that changes the gear ratio and Axis type (Finite / Modulo) of the real
and virtual axes.On change, the axis must be restarted by SMC3_ReinitDrived.When the axis
state is power_off ,this FB can be used.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.

dwRatioTechUnitsDeno
m

DWORD 0 use the multiplication of three
parameters in the figures (1) and
(3) below. (Note 1)

iRatioTechUnitsNum DINT 0 use the multiplication of three
parameters in the figures (2) and
(4) below. (Note 2)

fPositionPeriod LREAL 0 Effective for the modulo value and
the modulo axis. (Note 3)

iMovementType SMC_MOVEME
NTTYPE

0 Specify axis type

Output bDone BOOL FALSE TRUE：FB execution completed.

bBusy BOOL FALSE TRUE：The FB is in operation.

bError BOOL FALSE TRUE：An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

(Note 1) Set other than 0.
When iMovementType is 0, do not set a value higher than 16 # 7FFFFF.

(Note 2) Set other than 0.When a negative value is set, the axis is reversed.
When iMovementType is 0, set a multiple of 360.

(Note 3) Set a positive value.
When iMovementType is 0, set a multiple of 360.

■ SMC_MOVEMENTTYPE（Enumeration type）

Name Value Description

rotary 0 the modulo axis

10.2 Motion Auxiliary Function (Change / Reset)

WUME-GM1PGR-10 10-23

Name Value Description

linear 1 the finite axis<

● When the execution is completed, the axis must be restarted by SMC3_ReinitDrived.

■ Setting location
The axis type, the modulo value and the scaling value in the figure below can be changed while
GM1 is running.
● In the case of the modulo axis

● In the case of the finite axis

10.2 Motion Auxiliary Function (Change / Reset)

10-24 WUME-GM1PGR-10

● When the GM1 is powered off, cold reset, or warm reset, it returns to the previous setting
value.

● For scaling settings (gear ratio, encoder resolution), refer to the GM1 Series Reference Manual
(Operation).

● When setting the modulo axis, set as follows.

dwRatioTechUnitsDenom = "increments"×"motor turns"×"gear output turns" …in
the figure below(1)
 = 16#800000 × 5 × 1 = 41943040
iRatioTechUnitsNum = "motor turns"×"gear output turns"×"units in
application" …in the figure below(2)
 = 1 × 1 × 360 = 360
fPositionPeriod = the module value= 360
iMovementType = 0(modulo)

● When setting the finite axis, set as follows.

dwRatioTechUnitsDenom = "increments"×"motor turns"×"gear output turns" …in
the figure below(3)
 = 16#800000 × 5 × 1 = 41943040
iRatioTechUnitsNum = "motor turns"×"gear output turns"×"units in
application" …in the figure below(4)
 = 1 × 1 × 3 = 3
iMovementType = 1(finite)
fPositionPeriod is the same as the modulo value.

10.2 Motion Auxiliary Function (Change / Reset)

WUME-GM1PGR-10 10-25

10.2.6 SMC_SetMovementType(Virtual axis type change)

This is a function block that changes the axis type and modulo value of a virtual axis.When the
axis state is power_off or standstill,this FB can be used.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.(Note 1)

Input bExecute BOOL FALSE Starts execution at the rising edge.

iMovementType INT 0 Specify the axis type.0 is modulo.1
is finite.Other than error.

fPositionPeriod LREAL 1 the modululo value (Note 2)

Output bDone BOOL FALSE TRUE：The FB is in operation.

bError BOOL FALSE TRUE：An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

(Note 1) Supports the virtual axes. If used on the real axis, an error will occur.
When using on real axis, enable virtual mode.

(Note 2) Set a positive value.

■ Setting location
The axis type, the modulo value and the scaling value in the figure below can be changed while
GM1 is running.

10.2 Motion Auxiliary Function (Change / Reset)

10-26 WUME-GM1PGR-10

● When the GM1 is powered off, cold reset, or warm reset, it returns to the previous setting
value.

● For the axis type, refer to the GM1 Series Reference Manual (Operation).

10.2 Motion Auxiliary Function (Change / Reset)

WUME-GM1PGR-10 10-27

10.2.7 SMC_SetRampType(Velocity ramp type change)

This is a function block that changes the velocity ramp type of the real and virtual axes.When
the axis state is power_off or standstill,this FB can be used.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.

eRampType SMC_RAMPTYP
E

0 Specifies the velocity ramp type.

Output bDone BOOL FALSE TRUE：The FB is in operation.

bError BOOL FALSE TRUE：An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

■ SMC_RAMPTYPE（Enumeration type）

Name Value Description

trapez 0 Trapezoid

sinsquare 1 sin^2

quadratic_ramp 2 Quadratic

quadratic_smooth_ramp 3 Quadratic (smooth)

■ Setting location
The velocity ramp type in the figure below can be changed while GM1 is running.

10.2 Motion Auxiliary Function (Change / Reset)

10-28 WUME-GM1PGR-10

● When the GM1 is powered off, cold reset, or warm reset, it returns to the previous setting
value.

● When CNC controlled by SMC_Interpolator, This FB has no effect.
● Check the GM1 Controller User’s Manual (Operation Edition) for Axis operation specifications

of the velocity ramp type.

10.2.8 SMC_SetSoftwareLimits(Soft limit change)

This is a function block that changes the enable / disable of soft limit of the real and virtual
axes. It can be set without depending on the state of the axis.When the axis type is finite, the
soft limit function is effective.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.

SWL_Activated BOOL FALSE TRUE：Soft limit is valid. FALSE：
Soft limit is invalid.

SWL_Positive LREAL 0 Soft limit for the positive direction[u]
(Note 1)

SWL_Negative LREAL 0 Soft limit for negative direction[u]
(Note 1)

SWL_Error_Decelerate BOOL FALSE Please do not use it.

SWL_Error_Decelerati
on

LREAL 0 Deceleration when software error
occurs[u /s²](Note 2)

SWL_Error_MaxDistan
ce

LREAL 0 Maximum distance when a software
error occurs[u](Note 2)

Output bDone BOOL FALSE TRUE：The FB is in operation.

bError BOOL FALSE TRUE：An error has occurred.

ErrorID SMC_ERROR SMC_NO_ERR
OR

An error ID is output.

10.2 Motion Auxiliary Function (Change / Reset)

WUME-GM1PGR-10 10-29

(Note 1) Set SWL_Positive to be larger than SWL_Negative.
(Note 2) Set a positive value.

When SWL_Error_Deceleration and WL_Error_MaxDistance are 0, Deceleration is fMaxDeceleration
of SMC_ChangeDynamicLimits.

■ Setting location
The velocity ramp type in the figure below can be changed while GM1 is running.

● When the GM1 is powered off, cold reset, or warm reset, it returns to the previous setting
value.

● For the soft limit, refer to the GM1 series reference manual (operation).

10.2 Motion Auxiliary Function (Change / Reset)

10-30 WUME-GM1PGR-10

10.3 Motion Auxiliary Function (Other Functions)

10.3.1 PMC_ReadLatchPosition (Amplifier Latch Monitor)

This is a function block (FB) that monitor the AMP latch position. It reads the axis position when
a trigger signal occurs.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.
FALSE: Stops processing.

nStartCancelState IoDRVRTEX.LAT
CH_STATE

MONITOR_LAT
CH

Specifies the start and cancellation
of the latch mode.

nLatchTrg1 IoDRVRTEX.LAT
CH_TRIGGER

Z_PHASE Selects the trigger signal for latch
position 1

nLatchTrg2 IoDRVRTEX.LAT
CH_TRIGGER

- Selects the trigger signal for latch
position 2

nMonitorSel IoDRVRTEX.MO
NITOR_SELECT

Selects the latch position to be
output as the output MonitorData.

Output Done BOOL FALSE TRUE: Output is completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

MonitorData LREAL Axis position is output.

bLatchComp1 BOOL FALSE TRUE：Latch completed at latch
position 1 (CH1).

10.3 Motion Auxiliary Function (Other Functions)

WUME-GM1PGR-10 10-31

Scope Name Type Initial Description

bLatchComp2 BOOL FALSE TRUE：Latch completed at latch
position 2 (CH2).

■ IoDRVRTEX.LATCH_STATE (Enumeration type)

Name Value Description

MONITOR_LATCH 80 Monitors the position latch state.
Monitors the state without newly starting or canceling.

START_LATCH1 81 Starts the position latch 1 (CH1).

START_LATCH2 82 Starts the position latch 2 (CH2).

START_LATCH1_AND2 83 Starts the position latch 1 (CH1) and position latch 2
(CH2).

CANCEL_LATCH1 84 Cancels the position latch 1 (CH1).

CANCEL_LATCH2 88 Cancels the position latch 2 (CH2).

CANCEL_LATCH1_AND2 92 Cancels the position latch 1 (CH1) and position latch 2
(CH2).

■ IoDRVRTEX.LATCH_TRIGGER (Enumeration type)

Name Value Description

Z_PHASE 0 Z phase

EXT1_RISING_EDGE 1 Rising edge of EXT1

EXT2_RISING_EDGE 2 Rising edge of EXT2

EXT3_RISING_EDGE 3 Rising edge of EXT3

PR7_111_RISING_EDGE 7 Not used for this FB.

EXT1_FALLING_EDGE 9 Falling edge of EXT1

EXT2_FALLING_EDGE 10 Falling edge of EXT2

EXT3_FALLING_EDGE 11 Falling edge of EXT3

PR7_111_FALLING_EDGE 15 Not used for this FB.

■ IoDRVRTEX.MONITOR_SELECT (Enumeration type)

Name Value Description

LPOS1 9 Latch position 1

LPOS2 10 Latch position 2

10.3 Motion Auxiliary Function (Other Functions)

10-32 WUME-GM1PGR-10

■ Operations when the function block is executed

The PMC_ReadLatchPosition function block outputs the following error.

Error Description

SMC_WRONG_CONTROLLER_MODE

Executed in a mode other than the position control
mode.
Change to SMC_position using
SMC_SetControllerMode.

SMC_RP_DRIVE_PARAMETER_NOT_MAPPED

Specified nLatchTrg1 and nLatchTrg2 to not use.

Allocation of EXT1, EXT2, and EXT3 to the servo
amplifier is faulty.
Change the settings for Pr4.04 to Pr4.06.

As the PMC_ReadLatchPosition function block uses the RTEX home return command, it cannot
be executed together with PMC_Home.
If PMC_ReadLatchPosition is executed while PMC_Home is being executed, the
CommandAborted parameter of PMC_ReadLatchPosition becomes TRUE.
When using EXT1, EXT2, and EXT3 for nLatchTrg1 and nLatchTrg2, set amplifier parameters
as shown in the following table.

Parameter Parameter name Settings

Pr4.04 SI5 input selection EXT1

Pr4.05 SI6 input selection EXT2

Pr4.06 SI7 input selection EXT3

10.3.2 PMC_StopLatchPosition (Stop Amplifier Latch)

This is a function block (FB) that stops the axis at the AMP latch position. Stops the axis when a
trigger event occurs.

10.3 Motion Auxiliary Function (Other Functions)

WUME-GM1PGR-10 10-33

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.
FALSE: Stops processing.

nLatchTrg1 IoDRVRTEX.LAT
CH_TRIGGER

EXT1_RISING_
EDGE

Selects the trigger signal for latch
position

Velocity LREAL 0 Specifies the velocity (u/s).

Acceleration LREAL 0 Specifies the acceleration (u/s2).

Jerk LREAL 0 Specifies the jerk (u/s3).

nDirection MC_Direction negative Specifies the traveling direction of
the axis.

Output InVelocity BOOL FALSE TRUE: The axis has reached the
specified velocity for the first time.

CommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Done BOOL FALSE TRUE: Stopping is completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 An error ID is output.

MonitorData LREAL 0 Axis position is output.

■ IoDRVRTEX.LATCH_TRIGGER (Enumeration type)

Name Value Description

Z_PHASE 0 Not used for this FB.

EXT1_RISING_EDGE 1 Rising edge of EXT1

EXT2_RISING_EDGE 2 Rising edge of EXT2

EXT3_RISING_EDGE 3 Rising edge of EXT3

10.3 Motion Auxiliary Function (Other Functions)

10-34 WUME-GM1PGR-10

Name Value Description

PR7_111_RISING_EDGE 7 Condition set by MINAS amplifier parameter Pr7.111

EXT1_FALLING_EDGE 9 Falling edge of EXT1

EXT2_FALLING_EDGE 10 Falling edge of EXT2

EXT3_FALLING_EDGE 11 Falling edge of EXT3

PR7_111_FALLING_EDGE 15 Condition set by MINAS amplifier parameter Pr7.111

■ MC_Direction (Enumeration type)

Name Value Description

positive 1 Travels in the positive direction.

negative -1 Travels in the negative direction.

shortest 0 Not available. Do not specify this.

fastest 3 Not available. Do not specify this.

current 2 Travels to the current direction.
Possible to use only for the modulo axis.

■ Operations when the function block is executed

● Execute = TRUE: Starts the latch mode. Execute = FALSE: Ends the latch, however, the axis
operation continues as long as PMC_StopLatchPosition is called. Stop the axis using either
MC_Stop or MC_Halt.

● When a trigger signal is input, the PMC_StopLatchPosition function block ignores the
command value from the GM1 and stops at the latch position.

10.3 Motion Auxiliary Function (Other Functions)

WUME-GM1PGR-10 10-35

● Inertia causes a difference between the detected and stopped position of the latch. This FB
does not perform compensation operation to the latch detected position.

■ Execution errors
The PMC_StopLatchPosition function block outputs the following error.

Error Description

SMC_WRONG_CONTROLLER_MODE

Executed in a mode other than the position control
mode.
Change to SMC_position using
SMC_SetControllerMode.

SMC_RP_DRIVE_PARAMETER_NOT_MAPPED

Specified nLatchTrg1 to not use.

Allocation of EXT1, EXT2, and EXT3 to the servo
amplifier is faulty.
Change the settings for Pr4.04 to Pr4.06.

SMC_DI_HOMING_ERROR Servo amplifier version is lower than V1.24.

SMC_AXIS_NOT_READY_FOR_MOTION The axis is in a state (Stopping, Disabled, or Errorstop)
where PMC_StopLatchPosition cannot be executed.

SMC_REGULATOR_OR_START_NOT_SET The servo OFF or brake is applied.

SMC_3SH_INVALID_VELACC_VALUES The input (Velocity, Acceleration, or Deceleration) is
faulty.

SMC_AXIS_REF_CHANGED_DURING_OPERATION The Axis was changed during operation.

■ Execution conditions
● As the PMC_StopLatchPosition function block uses the RTEX home return command, it

cannot be executed together with PMC_Home.
● To use the PMC_StopLatchPosition function block, the MINAS version must be V1.23 or

higher.
● The function block supports only the control cycle of 1.0 ms and communication cycle of 0.5

ms.

■ Amplifier parameter conditions
When using EXT1, EXT2, and EXT3 for nLatchTrg1, set amplifier parameters as shown in the
following table.

Parameter Parameter name Settings

Pr4.04 SI5 input selection EXT1

Pr4.05 SI6 input selection EXT2

Pr4.06 SI7 input selection EXT3

10.3.3 MC_TouchProbe (Enable AMP Latch Monitoring)

This a function block (FB) that reads the axis position when a trigger signal occurs.

10.3 Motion Auxiliary Function (Other Functions)

10-36 WUME-GM1PGR-10

■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

TriggerInput TRIGGER_REF 0 Specifies the trigger signal.

Input

Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

WindowOnly BOOL FALSE
TRUE: The trigger event is
accepted only in the specified
window.

FirstPosition LREAL 0
The trigger event is accepted from
the start position (in the positive
direction). (Unit: [u])

LastPosition LREAL 0 The last position up to which the
trigger event is accepted. (Unit: [u])

Output

Done BOOL FALSE TRUE: Halt is completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

RecordedPosition LREAL 0 The position where the trigger event
has occurred. (Unit: [u])

CommandAborted BOOL FALSE TRUE: An interruption is caused by
another FB.

■ TRIGGER_REF (Structure)

Member Type Default Description

iTriggerNumber INT -1 Trigger channel: Defined by the driver. (Used only
when bFastLatching is TRUE.)

bFastLatching BOOL TRUE When bFastLatching is set to TRUE, latch is
performed by the servo amplifier. When bFastLatching
is set to FALSE, bInput is used as the trigger signal.

bInput BOOL When bFastLatching is set to FALSE, the trigger signal
is input.

bActive BOOL FALSE Internal variable. Do not set the value.

When using the MINAS, set iTriggerNumber as follows.

10.3 Motion Auxiliary Function (Other Functions)

WUME-GM1PGR-10 10-37

iTriggerNumber Description

0 Rising edge of EXT1

1 Falling edge of EXT1

2 Rising edge of EXT2

3 Falling edge of EXT2

As for pin assignment, assign EXT1 to SI5 and EXT2 to SI6.
The range where the trigger event is accepted (WindowOnly) is as follows (in case of the
modulo).

Note that hardware latch (EXT1 or EXT2 trigger) is not supported. Only software latch (bInput
trigger) is supported.

10.3.4 MC_AbortTrigger (Disable AMP Latch Monitoring)

This is a function block (FB) that aborts the trigger event (MC_TouchProbe).
■ Icon

■ Parameter

Scope Name Type Default Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis.

TriggerInput TRIGGER_REF 0 Specifies the trigger signal.

Input Execute BOOL FALSE TRUE: Starts execution at the rising
edge.

Output
Done BOOL FALSE TRUE: Stopping is completed.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

10.3 Motion Auxiliary Function (Other Functions)

10-38 WUME-GM1PGR-10

Scope Name Type Default Description

Error BOOL FALSE TRUE: An error has occurred within
the FB.

ErrorID SMC_ERROR 0 Error ID output

10.3.5 MC_DigitalCamSwitch (Enable Digital Cam Switch)

This is a function block (FB) that performs ON / OFF control on the digital output according to
the axis position. It assigns digital cam switches to tracks (maximum of 32). Switching
operations can be controlled by specifying the ON / OFF position for each digital camp switch.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Axis AXIS_REF_SM3 - Specifies the axis where the switch
is connected.

Switches MC_CAMSWITC
H_REF

- Specifies the switching operation.

Outputs MC_OUTPUT_R
EF

- ON or OFF of the switch is output.
ARRAY [1..32] OF BOOL

TrackOptions MC_TRACK_RE
F

- Specifies the property of the track.
ARRAY [1..32] OF MC_TRACK_TR

Input Enable BOOL FALSE TRUE: The FB can be executed.

EnableMask DWORD 16#FFFFFFFF Specifies the track to be enabled.
1: Enabled, 0: Disabled
The least significant bit is the 1st
track.
The most significant bit is the 32nd
track.

TappetMode MC_TAPPETMO
DE

tp_mode_auto Specifies the tappet mode.

Output InOperation BOOL FALSE TRUE: The track is enabled.

Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Error BOOL FALSE TRUE: An error has occurred within
the FB.

10.3 Motion Auxiliary Function (Other Functions)

WUME-GM1PGR-10 10-39

Scope Name Type Initial Description

ErrorID SMC_ERROR 0 An error ID is output.

SwitchCorrupted INT -1 Index output of a faulty switch
-1: No problem
0 to 31: A problem has occurred in
switches 1 to 32.

■ MC_CAMSWITCH_REF (Structure)

Member Type Description

NoOfSwitches BYTE Number of switches
Specifies the number of switches to be enabled when the
FB is executed in the MC_CAMSWITCH_TR type array (1
to 32).

CamSwitchPtr POINTER TO
MC_CAMSWITCH_TR

Pointer to the first element of the MC_CAMSWITCH_TR
type array

■ MC_CAMSWITCH_TR (Structure)

Member Type Description

TrackNumber INT Switch track number (1 to 32)

FirstOnPosition LREAL Position where the switch turns ON when the axis is
moving in the positive direction

LastOnPosition LREAL Position where the switch turns OFF when the axis is
moving in the positive direction
Not used when CamSwitchMode is set to 1.

AxisDirection INT Movement direction where the switch is enabled
0: Both positive and negative directions
1: Only positive direction
2: Only negative direction

CamSwitchMode INT Control method that performs switch ON / OFF control
0: ON and OFF are both controlled by the position.
1: ON is controlled by the position and OFF is controlled
by the time.

Duration TIME Specifies the time during which the switch remains ON for
when CamSwitchMode is set to 1.

bOn BOOL Used within the FB.

CounterOff INT Used within the FB.

■ MC_TRACK_REF (Structure)

Member Type Description

OnCompensation LREAL Specifies the switch ON delay time in seconds.
When a positive value is specified, the switch turns ON
later by the time specified.
When a negative value is specified, the switch turns ON
earlier by the time specified.

OffCompensation LREAL Specifies the switch OFF delay time in seconds.

10.3 Motion Auxiliary Function (Other Functions)

10-40 WUME-GM1PGR-10

Member Type Description
When a positive value is specified, the switch turns OFF
after a delay of the time specified.
When a negative value is specified, the switch turns OFF
earlier by the time specified.

Hysteresis LREAL Specifies the hysteresis value (position).

■ MC_TAPPETMODE (Enumeration type)

Name Value Description

tp_mode_auto 0 Automatically determined according to the state.
Servo ON state: Command position (fSetPosition) of the
master axis
Servo OFF state: Actual position (fActPosition) of the
master axis

tp_mode_demandposition 1 Command state (fSetPosition) of the master axis

tp_mode_actualposition 2 Actual state (fActPosition) of the master axis

Regarding the method for entering defaults for variables of the MC_CAMSWITCH_TR type
structure, refer to “Default Setting for Variables of the MC_TP_REF Type Structure”.

■ Operations when the function block is executed
The following sections shows switching operations (Outputs) of each track when the function
block is executed after setting the parameter as follows. The axis is set to the modulo (modulo
value: 1000).

Function block input parameters
Five switches (CamSwitchPtr) are set.

Switch Index Track
Number

FirstOn
Position

LastOn
Position

Axis Direction Cam
SwitchMode

Duration

(1) 1 1 100 200 0 (Both) 0 (Position) T#0ms

(2) 2 1 500 700 0 (Both) 0 (Position) T#0ms

(3) 3 2 300 500 1 (Positive
direction)

0 (Position) T#0ms

(4) 4 2 700 800 2 (Negative
direction)

0 (Position) T#0ms

(5) 5 3 400 0 0 (Both) 1 (Time) T#5s

Switching operations when the axis is moved in the positive direction
(1) to (5) are switch numbers.

10.3 Motion Auxiliary Function (Other Functions)

WUME-GM1PGR-10 10-41

Switching operations when the axis is moved in the negative direction

■ Detection of faulty switch operation (SwitchCorrupted)
SwitchCorrupted occurs when the switch does not turn ON/OFF as set.

 REFERENCE
5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure

10.3 Motion Auxiliary Function (Other Functions)

10-42 WUME-GM1PGR-10

10.3.6 SMC_BacklashCompensation (Compensate Backlash)

This is a function block (FB) that compensates the backlash.

■ Icon

■ Parameter

Scope Name Type Initial Description

Input /
output

Master AXIS_REF_SM3 - Specifies the master axis.

Slave AXIS_REF_SM3 - Specifies the slave axis.

Input bExecute BOOL FALSE Starts execution at the rising edge.
Remains enabled until the slave
axis is interrupted by another
operation or until an error occurs.

fBacklash LREAL 0 Distance to compensate (backlash)

fCompensationVel LREAL 0 Additional velocity used when
compensation is performed
(A value to be added to the master
axis velocity)

fCompensationAcc LREAL 0 Additional acceleration used when
compensation is performed
(A value to be the maximum
acceleration when compensation is
performed)

fCompensationDec LREAL 0 Additional deceleration used when
compensation is performed.
(A value to be the maximum
deceleration when compensation is
performed)

fCompensationJerk LREAL 0 Additional jerk used when
compensation is performed
(Even if any value is set, the setting
is disabled.)

eBacklashMode SMC_BACKLAS
H_MODE

SMC_BL_AUTO Backlash compensation mode

eBacklashStartState SMC_BACKLAS
H_STARTSTATE

SMC_BL_STAR
T_NONE

Specifies the start conditions
whether compensation is required
or not when starting the backlash
compensation.

10.3 Motion Auxiliary Function (Other Functions)

WUME-GM1PGR-10 10-43

Scope Name Type Initial Description

Output bBusy BOOL FALSE TRUE: The FB is in operation.

bCommandAborted BOOL FALSE TRUE: An interruption from other
FB has occurred.

bError BOOL FALSE TRUE: An error has occurred within
the FB.

iErrorID SMC_ERROR 0 An error ID is output.

bCompensating BOOL FALSE TRUE: Backlash compensation in
operation

■ MC_BACKLASH_MODE (Enumeration type)

Name Value Description

SMC_BL_AUTO 2 Compensation in the traveling direction of
the master axis

SMC_BL_POSITIVE 1 Compensation in the positive direction

SMC_BL_NEGATIVE -1 Compensation in the negative direction

SMC_BL_OFF 0 No backlash compensation

■ SMC_BACKLASH_STARTSTATE (Enumeration type)

Name Value Description

SMC_BL_START_NEGATIVE -1 If the slave axis is driven in the negative
direction when compensation is started:
● To make the axis travel in the positive

direction, compensation is required for
the backlash distance (fBacklash).

● No compensation is required for the
travels in the negative direction.

SMC_BL_START_NONE 0 If the slave axis is not driven in either
direction when compensation is started:
To make the axis travel in the positive or
negative direction, compensation is
required for half the amount of the backlash
distance (fBacklash).

SMC_BL_START_POSITIVE 1 If the slave axis is driven in the positive
direction when compensation is started:
● No compensation is required for the

travels in the positive direction.
● To make the axis travel in the negative

direction, compensation is required for
the backlash distance (fBacklash).

● When starting operation, make sure that both the master axis and slave axis are in the
same position. If they are not set at the same position, the slave axis travels to the master
axis position at the moment when SMC_BacklashCompensation is executed.

● SMC_BacklashCompensation functions in the same way as the phase synchronous
operation (MC_Phasing) and the phase depends on the master axis direction.

10.3 Motion Auxiliary Function (Other Functions)

10-44 WUME-GM1PGR-10

11 Other Function Blocks

11.1 COM Port (General-purpose Communication)..................................11-5
11.1.1 COM.Open (Open COM port) .. 11-5
11.1.2 COM.Close (Close COM Port) ... 11-8
11.1.3 COM.Read (Read COM Port) .. 11-9
11.1.4 COM.Write (Write COM Port) ... 11-10
11.1.5 COM.ERROR (Error ID) ... 11-11

11.2 COM port (Modbus COM) ...11-12
11.2.1 IoDrvModbusComPort.. 11-12
11.2.2 IoDrvModbus.ModbusChannel(Start Sending Modbus Command)11-12
11.2.3 IoDrvModbus.ModbusRequest (Modbus Request) 11-13
11.2.4 IoDrvModbus.ModbusRequest 2 (Modbus Request 2) 11-15
11.2.5 IoDrvModbus.ModbusSlaveComPort ... 11-16
11.2.6 IoDrvModbus.MB_ErrorCodes (Error Codes) 11-17

11.3 LAN port (IoDrvEthernet) ..11-18
11.3.1 IoDrvEthernet ... 11-18
11.3.2 IoDrvEthernet.IPARRAY_TO_INADDR (Array Type to Union

Type) ... 11-18
11.3.3 IoDrvEthernet.IPARRAY_TO_IPSTRING (Array Type to

Character String Type).. 11-19
11.3.4 IoDrvEthernet.IPARRAY_TO_UDINT (Array Type to UDINT Type) 11-19
11.3.5 IoDrvEthernet.IPSTRING_TO_UDINT (Character String Type to

UDINT Type) ... 11-20
11.3.6 IoDrvEthernet.UDINT_TO_IPARRAY (UDINT Type to Array Type) 11-20
11.3.7 IoDrvEthernet.UDINT_TO_IPSTRING (UDINT Type to Character

String Type)... 11-21
11.4 LAN Port (General-purpose Communication)11-22

11.4.1 NBS.TCP_Client (Connect to TCP Client) 11-22
11.4.2 NBS.TCP_Connection (Connect TCP)... 11-23
11.4.3 NBS.TCP_Read (Receive TCP Data) .. 11-24
11.4.4 NBS.TCP_Server (Connect TCP Server)....................................... 11-25
11.4.5 NBS.TCP_Write (Send TCP Data)... 11-26
11.4.6 NBS.UDP_Peer (Open UDP Port) ... 11-27
11.4.7 NBS.UDP_Receive (Receive UDP Data)....................................... 11-28
11.4.8 NBS.ERROR (Error Code) ... 11-29
11.4.9 NBS.UDP_Send (Send UDP Data) .. 11-30
11.4.10 Program example: General communication (Ethernet) TCP

CLIENT processing... 11-30
11.4.11 Program example: General communication (Ethernet) TCP

SERVER processing... 11-34

WUME-GM1PGR-10 11-1

11.4.12 Program example: General communication (Ethernet) UDP
processing... 11-37

11.4.13 Program example:General-purpose Communication(Serial)COM
transmission / reception processing ... 11-40

11.5 LAN Port (Modbus TCP) ...11-43
11.5.1 IoDrvModbusTCP... 11-43
11.5.2 IoDrvModbusTCP.ModbusChannel (Start Sending Modbus

Command) .. 11-43
11.5.3 IoDrvModbusTCP.ModbusRequest (Modbus Request) 11-44
11.5.4 IoDrvModbusTCPSlave.. 11-46
11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes) 11-47

11.6 LAN Port (EtherNet/IP)..11-48
11.6.1 IoDrvEtherNetIP (EtherNet/IP Scanner Device)............................. 11-48
11.6.2 RemoteAdapter (Remote Adapter Device)..................................... 11-49
11.6.3 IoDrvEtherNetIPAdapter (EtherNet/IP adapter device) 11-51
11.6.4 Module (EtherNet/IP Module Device)... 11-53
11.6.5 Apply_Attributes (Apply_Attributes Service)................................... 11-54
11.6.6 Generic_Service (Generic Service Execution) 11-55
11.6.7 Get_Attribute_Single (Inquire Specific Attributes of a Specific

Instance) ... 11-57
11.6.8 Get_Attributes_All (Inquire All Attributes of a Specific Instance).... 11-58
11.6.9 Set_Attribute_Single (Set Specific Attributes of a Specific

Instance) ... 11-59
11.6.10 Set_Attributes_All (Set All Attributes of a Specific Instance)........ 11-60
11.6.11 NOP (NOP Service).. 11-61
11.6.12 Reset (Reset Service) .. 11-62
11.6.13 Start (Start Service).. 11-63
11.6.14 Stop (Stop Service) .. 11-64
11.6.15 ENIP.ERROR (Message Service Instruction Error Code) 11-65
11.6.16 ENIP.CIPClass (Service Class Code) .. 11-68

11.7 LAN Port (MQTT) ..11-71
11.7.1 What is MQTT? .. 11-71
11.7.2 MQTT Client Specifications.. 11-72
11.7.3 Overview of MQTT Functions... 11-75
11.7.4 MQTT.MQTTClient (MQTT Client Connection) 11-77
11.7.5 MQTT.MQTTPublish (MQTT Publish Function) 11-83
11.7.6 MQTT.MQTTSubscribe (MQTT Subscribe Function) 11-86
11.7.7 MQTT.MQTT_REASON_CODE (Reason Code) 11-88
11.7.8 MQTT.MQTT_ERROR (Error Code) .. 11-90
11.7.9 Sample Example: MQTT Communication 11-92
11.7.10 Example: MQTT Communication Using Filter Mode 11-94
11.7.11 MQTT Communication: Request/Response Type

Communication... 11-96
11.7.12 Example: MQTT Communication Using Topic Alias..................... 11-100

11.8 LAN Port (DNS)...11-103
11.8.1 What is DNS?... 11-103
11.8.2 DNS_GetIPAddress (Name Resolution)... 11-103
11.8.3 DNS_CLI_ERROR (Enumeration Type)... 11-104
11.8.4 Sample Example: DNS Name Resolution 11-105

11 Other Function Blocks

11-2 WUME-GM1PGR-10

11.9 SD Card Operation (File Operation)..11-107
11.9.1 FILE.Open (Open File) ... 11-107
11.9.2 FILE.Close (Close File) .. 11-108
11.9.3 FILE.Read (Read File) ... 11-109
11.9.4 FILE.Write (Write File) .. 11-110
11.9.5 FILE.Flush (Flush File) ... 11-111
11.9.6 FILE.Copy (Copy File).. 11-112
11.9.7 FILE.Rename (Rename File) ... 11-113
11.9.8 FILE.Delete (Delete File).. 11-114
11.9.9 FILE.EOF (End of File)... 11-115
11.9.10 FILE.GetAttribute (Get File Attribute) ... 11-116
11.9.11 FILE.GetPos (Get File Offset) .. 11-117
11.9.12 FILE.GetSize (Get File Size) .. 11-118
11.9.13 FILE.GetTime (Get File Update Time).. 11-119
11.9.14 FILE.SetPos (Set File Offset) ... 11-120
11.9.15 FILE.ERROR (Error ID).. 11-121
11.9.16 Program example:SD CardFile write processing 11-121
11.9.17 Program example:SD CardFile read processing.......................... 11-123

11.10 SD Card Operation (Directory Operation)11-126
11.10.1 FILE.DirCreate (Create Directory).. 11-126
11.10.2 FILE.DirOpen (Open Directory).. 11-127
11.10.3 FILE.DirClose (Close Directory) ... 11-128
11.10.4 FILE.DirCopy (Copy Directory)... 11-129
11.10.5 FILE.DirRename (Rename Directory) .. 11-130
11.10.6 FILE.DirRemove (Delete Directory).. 11-131
11.10.7 FILE.DirList (Directory List) .. 11-132

11.11 SD Card Operation (CSV File Operation)11-133
11.11.1 Overview of CSV File Reading ... 11-133
11.11.2 CSV.CSVReaderInit (Specify Target CSV File To Be Read) 11-134
11.11.3 CSV.ReadAll (Read All File Data by Batch).................................. 11-136
11.11.4 CSV.NextElement (Read One Element) 11-138
11.11.5 CSV.NextLine (Read One Line).. 11-139
11.11.6 CSV.CSV_ERROR (Reading Error Code).................................... 11-141
11.11.7 Overview of CSV File Writing ... 11-141
11.11.8 CSV.Init (Specify Target CSV File To Write) 11-143
11.11.9 CSV.Add’Type’ (Add Data to Internal Buffer)................................ 11-145
11.11.10 CSV.NewLine (Add Line Separator to Internal Buffer)................ 11-147
11.11.11 CSV.WriteFile (Write, Save Data to CSV File) 11-148
11.11.12 CSV.NewFile (Change Target To Write to New CSV File) 11-149
11.11.13 CSV.CSVWriter... 11-151
11.11.14 CSV.ERROR (Writing Error Code) ... 11-151
11.11.15 Example of Process for Reading All Data from CSV File 11-152
11.11.16 Example of Process for Reading Data from Multiple CSV Files. 11-153
11.11.17 Example of Process for Writing Log Data to CSV File 11-156

11.12 Clock Setting ...11-160
11.12.1 SYS_GetTime (Get Time) .. 11-160
11.12.2 SYS_SetTime (Set Time) ... 11-161
11.12.3 SYS_GetTimezone (Get Time Zone Information) 11-162

11 Other Function Blocks

WUME-GM1PGR-10 11-3

11.12.4 SYS_SetTimezone (Set Time Zone Information) 11-163
11.12.5 SYS_DateConcat (Convert from UINT Type to DATE Type)........ 11-163
11.12.6 SYS_DateSplit (Convert from DATE Type to UINT Type) 11-164
11.12.7 SYS_DTConcat (Convert from UINT Type to DT Type) 11-165
11.12.8 SYS_DTSplit (Convert from DT Type to UINT Type) 11-166
11.12.9 SYS_GetDayOfWeek (Get Day of the Week) 11-167
11.12.10 SYS_TODConcat (Convert from UINT Type to TOD Type) 11-168
11.12.11 SYS_TODSplit (Convert from TOD Type to UINT Type) 11-169
11.12.12 ERROR (Clock Instruction Error Code)...................................... 11-170
11.12.13 SNTP.SNTPGetUTCTime (Get SNTP Time).............................. 11-170
11.12.14 SNTP.ERROR (SNTP Error Code)... 11-171
11.12.15 Example of SNTP Time Synchronization 11-172

11.13 System Data..11-174
11.13.1 SYS_GetSystemError (Get System Error) 11-174
11.13.2 SYS_ClearSystemError (Clear System Error).............................. 11-174

11.14 PID Control..11-175
11.14.1 PD (PD Control) ... 11-175
11.14.2 PID (PID Control) ... 11-176
11.14.3 PID_FIXCYCLE ［PID Control (Any Cycle Time)］ 11-177

11.15 Recipe function ...11-179
11.15.1 CreateRecipe (Create Recipe) ... 11-180
11.15.2 DeleteRecipe (Delete Recipe)... 11-183
11.15.3 LoadFromAndWriteRecipe (Load and Write Recipe File) 11-184
11.15.4 ReadAndSaveRecipe (Recipe File Overwrite Save) 11-186
11.15.5 prvCompareRecipe (Compare Recipes) 11-187
11.15.6 ReloadRecipes (Load Recipe File in SD Card) 11-189
11.15.7 GetRecipeCount (Count Recipes)... 11-190
11.15.8 GetRecipeNames (Get Recipe Names) 11-191
11.15.9 GetLastError (Get Last ReturnValues) .. 11-193
11.15.10 GetLastInfo (Get Last InfoValues) ... 11-195
11.15.11 ResetLastError (GetLastError Reset) .. 11-197
11.15.12 ResetLastInfo (GetLastInfo Reset).. 11-198

11.16 Enable/Disable Devices ..11-199
11.16.1 Overview of Device Enable/Disable Settings 11-199
11.16.2 INode.Enable (Enable/Disable Setting).. 11-200
11.16.3 Reconfigure (Reconfigure Devices) ... 11-201
11.16.4 DED.ERROR (Error Code)... 11-201
11.16.5 Sample Example: Changing EtherCAT Slave Enable/Disable

Setting... 11-202
11.17 Project Management Function ..11-204

11.17.1 What is Project Management Function? 11-204
11.17.2 SYS_PRJBackup (Project Backup).. 11-206
11.17.3 SYS_PRJRestore (Restore Project)... 11-208
11.17.4 PRJMNG_ERROR (Error Code) .. 11-210
11.17.5 SYS_GetPRJRestoreResult (Project Restoration Results).......... 11-211

11 Other Function Blocks

11-4 WUME-GM1PGR-10

11.1 COM Port (General-purpose Communication)

This section describes function blocks that are used to perform general-purpose communication
with the COM port.

11.1.1 COM.Open (Open COM port)

This is a function block that opens a COM port. It reads from and writes to the COM port using
the output handle. Close the opened COM port using the COM.Close instruction.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

usiListLengt
h

USINT Number of pParameterList entries

pParameter
List

COM.CAA.P
VOID

A pointer to the communication setting parameter list for the COM
port.
Specifies the pointer to the COM.PARAMETER structure array.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError COM.ERRO
R

An error ID is output.
Refer to "11.1.5 COM.ERROR (Error ID)".

hCom COM.CAA.
HANDLE

Handle of the opened COM port.

■ COM.PARAMETER (Structure)

Member Type Description

udiParameterId UDINT Parameter ID to be set in the COM port.
For a list of parameters, refer to
"COM.CAA_Parameter_Constants
(Constants)".

udiValue UDINT Value to be set in the COM port

11.1 COM Port (General-purpose Communication)

WUME-GM1PGR-10 11-5

■ COM.CAA_Parameter_Constants (Constants)

Name Value Support Description

udiPort 16#1 Supported Port number (Fixed to 1.)

udiStopBits 16#2 Supported Stop bit
Refer to "COM.STOPBIT
(Enumeration type)".

udiParity 16#3 Supported Parity
Refer to "COM.PARITY
(Enumeration type)".

udiBaudrate 16#4 Supported Baud rate (Can be selected from
9600, 19200, 38400, 57600, and
115200)

udiTimeout 16#5 Not supported Timeout

udiBufferSize 16#6 Not supported Buffer size parameter
Specifies a serial buffer size.

udiByteSize 16#7 Supported Byte size parameter
Sets the number of data bits to 4 to
8. (Specify 7 or 8 for the GM1
Controller.)

udiBinary 16#8 Not supported Binary parameter
Enables the binary mode. (With the
GM1 Controller, it is fixed to 0
(binary mode).)

udiOutxCtsFlow (Note 1) 16#9 Not supported CTS handshake for the output
parameter

udiOutxDsrFlow (Note 1) 16#A Not supported DSR handshake for the output
parameter

udiDtrControl (Note 1) 16#B Not supported DTR flow control parameter

udiDsrSensitivity (Note 1) 16#C Not supported DSR sensitivity parameter

udiRtsControl (Note 1) 16#D Not supported Rts flow control parameter

udiTXContinueOnXoff (Note 1) 16#E Not supported XOFF continues Tx parameter.

udiOutX (Note 1) 16#F Not supported XON / XOFF output flow control
parameter

udiInX (Note 1) 16#10 Not supported XON / XOFF of the flow control
parameter

udiXonChar (Note 1) 16#11 Not supported Tx AND Rx XON character
parameter

udiXoffChar (Note 1) 16#12 Not supported Tx AND Rx XOFF character
parameter

udiXonLim (Note 1) 16#13 Not supported Sends XON threshold parameter

udiXoffLim (Note 1) 16#14 Not supported Sends XOFF threshold parameter

(Note 1) The GM1 Controller does not support the flow control.

11.1 COM Port (General-purpose Communication)

11-6 WUME-GM1PGR-10

■ COM.STOPBIT (Enumeration type)

Name Value Description

ONESTOPBIT 0 1 stop bit

ONE5STOPBITS 1 1.5 stop bit (Not available)

TWOSTOPBITS 2 2 stop bit

■ COM.PARITY (Enumeration type)

Name Value Description

EVEN 0 Even

ODD 1 Odd

NONE 2 None

■ ST Program Example

Declaration section

VAR
Open : COM.Open;
OpenParam : ARRAY [1..7] OF COM.PARAMETER := [
 (udiParameterID := COM.CAA_Parameter_Constants.udiPort, udiValue := 2
),
 (udiParameterID := COM.CAA_Parameter_Constants.udiBaudrate, udiValue := 1
15200),
 (udiParameterID := COM.CAA_Parameter_Constants.udiParity, udiValue := I
NT_TO_UDINT(COM.PARITY.ODD)),
 (udiParameterID := COM.CAA_Parameter_Constants.udiStopBits, udiValue := I
NT_TO_UDINT(COM.STOPBIT.ONESTOPBIT)),
 (udiParameterID := COM.CAA_Parameter_Constants.udiTimeout, udiValue := 0
),
 (udiParameterID := COM.CAA_Parameter_Constants.udiByteSize, udiValue := 8
),
 (udiParameterID := COM.CAA_Parameter_Constants.udiBinary, udiValue := 1
)
];
END_VAR

Implementation section

Open(xExecute := TRUE , pParameterList := ADR(OpenParam) , usiListLength :=
SIZEOF(OpenParam) / SIZEOF(COM.PARAMETER));

11.1 COM Port (General-purpose Communication)

WUME-GM1PGR-10 11-7

11.1.2 COM.Close (Close COM Port)

This is a function block that closes the COM port.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hCom COM.CAA.
HANDLE

Handle of the COM port to be closed

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError COM.ERRO
R

An error ID is output.
Refer to "11.1.5 COM.ERROR (Error ID)".

11.1 COM Port (General-purpose Communication)

11-8 WUME-GM1PGR-10

11.1.3 COM.Read (Read COM Port)

This is a function block that reads data from the COM port.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

udiTimeOut UDINT Timeout time until the execution is stopped (μs)

hCom COM.CAA.
HANDLE

Handle of the COM port

pBuffer CAA.PVOID Pointer to the buffer that acquires data read from the COM port

szBuffer CAA.SIZE Maximum byte of pBuffer

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user.

eError COM.ERRO
R

An error ID is output.
Refer to "11.1.5 COM.ERROR (Error ID)".

szSize COM.CAA.S
IZE

Data size (bytes) acquired by the pBuffer

11.1 COM Port (General-purpose Communication)

WUME-GM1PGR-10 11-9

11.1.4 COM.Write (Write COM Port)

This is a function block that writes data to the COM port.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

udiTimeOut UDINT Timeout time until the execution is stopped (μs)

hCom COM.CAA.
HANDLE

Handle of the COM port

pBuffer CAA.PVOID Pointer to the buffer of the data written to the COM port

szSize COM.CAA.S
IZE

Data size (bytes) of the pBuffer to be written to the COM port

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user.

eError COM.ERRO
R

An error ID is output.
Refer to "11.1.5 COM.ERROR (Error ID)".

11.1 COM Port (General-purpose Communication)

11-10 WUME-GM1PGR-10

11.1.5 COM.ERROR (Error ID)

This is an enumeration type error ID that is output when the COM port (general-purpose
communication) function block is executed.

■ COM .ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

TIME_OUT 5001 Timeout error

ABORT 5002 xAbort input enabled

HANDLE_INVALID 5003 Invalid handle

ERROR_UNKNOWN 5004 Unknown error

WRONG_PARAMETER 5005 Wrong parameter

WRITE_INCOMPLETE 5006 Incomplete write

11.1 COM Port (General-purpose Communication)

WUME-GM1PGR-10 11-11

11.2 COM port (Modbus COM)

This section describes the instructions that are used to perform ModbusRTU communication
with the COM port.

11.2.1 IoDrvModbusComPort

This is a function block that controls the Modbus_Master_COM_Port device.

■ Icon

■ Parameter

Scope Name Type Description

Input xStop BOOL TRUE: Stops sending a new request to the slave.
FALSE: Continues the current request.

xResetCom
Port

BOOL Closes the COM port at a rising edge.

Output uiNumberOf
Communicat
ingSlaves

UINT Number of remote slaves under communication.

xAllSlavesO
k

BOOL TRUE: All slaves are communicating normally.
FALSE: An error has occurred in one of the slaves.

11.2.2 IoDrvModbus.ModbusChannel(Start Sending Modbus Command)

This is a function block that sends the commands set in the Modbus Slave channel of the
ModbusSlaveCOM_Port device.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts sending commands at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

11.2 COM port (Modbus COM)

11-12 WUME-GM1PGR-10

Scope Name Type Description

iChannelInd
ex

INT Channel number where commands to be sent are set

I/O slave ModbusSlav
eComPort

Handle of the ModbusSlaveComPort device

Output xBusy BOOL TRUE: Processing of the FB is not completed.

xDone BOOL TRUE: Processing is completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user’s xAbort input.

ModbusErro
r

MB_ErrorCo
des

An error code is output.
Refer to "11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes)".

11.2.3 IoDrvModbus.ModbusRequest (Modbus Request)

This is a function block that processes the Modbus command specified by I/O without using the
ModbusMasterComPort device.

■ Supported commands
● Command 1 (Read multi-point coil state)
● Command 2 (Read multi-point input state)
● Command 3 (Read multi-point holding register)
● Command 4 (Read multi-point input register)
● Command 5 (Write single-point coil)
● Command 6 (Write single-point holding register)
● Command 15 (Write multi-point coil)
● Command 16 (Write multi-point holding register)
● Command 23 (Read / write multi-point holding register)

■ Icon

11.2 COM port (Modbus COM)

WUME-GM1PGR-10 11-13

■ Parameter

Scope Name Type Description

Input hComPort RTS_IEC_H
ANDLE

COM port handle acquired by COM.Open

xExecute BOOL Starts sending commands at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

usiSlaveAdd
r

USINT Slave address 1 to 247

uiFunctionC
ode

UINT Modbus function code

uiReadOffse
t

UINT Read address offset (0 to 65535)

uiReadLen UINT Read length (1 to 125)

uiWriteOffse
t

UINT Write address offset (0 to 65535)

uiWriteLen UINT Write length (1 to 121)

tTimeout UINT Timeout value (in ms units)

pWriteBuf POINTER
TO BYTE

Pointer to the send buffer.

pReadBuf POINTER
TO BYTE

Pointer to the receive buffer

transmission MB_Transmi
ssion

Transmission type (RTU / ASCII)
* Supports only RTU.

Output xBusy BOOL TRUE: Processing of the FB is not completed.

xDone BOOL TRUE: Processing is completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user’s xAbort input.

byModbusEr
rorCode

BYTE An error code is output.
Refer to "11.2.6 IoDrvModbus.MB_ErrorCodes (Error Codes)".

11.2 COM port (Modbus COM)

11-14 WUME-GM1PGR-10

11.2.4 IoDrvModbus.ModbusRequest 2 (Modbus Request 2)

This is a function block that processes, like the ModbusRequest, the Modbus command
specified by I/O without using the ModbusMasterComPort device. It is different from
ModbusRequest in that the structure type is used to specify the Modbus command.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts sending commands at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

hComPort RTS_IEC_H
ANDLE

COM port handle acquired by COM.Open

usiSlaveAdd
r

USINT Slave address 1 to 247

modbusCo
mmand

ModbusCo
mmnad

Modbus command

tResponseTi
meout

TIME Timeout (in ms units) of the response for a request

uiSendTime
out

UINT Transmission timeout

pSendData UINT Pointer to the send data

pRecvData UINT Pointer to the receive data

transmission MB_Transmi
ssion

Transmission type (RTU / ASCII)
* Supports only RTU.

Output xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user’s xAbort input.

uiDataLengt
h

BYTE Received data length (byte)

byModbusEr
ror

MB_ErrorCo
des

An error code is output.
Refer to "11.2.6 IoDrvModbus.MB_ErrorCodes (Error Codes)".

11.2 COM port (Modbus COM)

WUME-GM1PGR-10 11-15

■ ModbusCommand (Structure)

Name Type Description

uiFunctionCode UINT Modbus command code

uiReadOffset UINT Read address 0 to 65535

uiReadLen UINT Range in the number of read instances
varies depending on commands.

uiWriteOffset UINT Write address 0 to 65535

uiWriteLen UINT Range in the number of write instances
varies depending on commands.

11.2.5 IoDrvModbus.ModbusSlaveComPort

This is a function block that controls the Modbus_Slave_COM_Port device.

■ Icon

■ Parameter

Scope Name Type Description

Input xTrigger BOOL Sends all the commands of the Modbus channel at the rising edge.

xReset BOOL Resets xError and byModbusError and resumes communication.

xAcknowled
ge

BOOL Resumes communication without resetting xError and byModbusError.

xDoInit BOOL TRUE: Sends a slave initialization command when communication is
resumed.

Output xInitDone BOOL TRUE: Modbus slave initialization command is fully completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xDone BOOL TRUE: Processing is completed.

xError BOOL TRUE: An error has occurred within the FB.

byModbusEr
ror

MB_ErrorCo
des

An error code is output.
Refer to "11.2.6 IoDrvModbus.MB_ErrorCodes (Error Codes)".

iChannelInd
ex

INT Channel index

11.2 COM port (Modbus COM)

11-16 WUME-GM1PGR-10

11.2.6 IoDrvModbus.MB_ErrorCodes (Error Codes)

This is an enumeration type error code that is output when the function block for Modbus
communication instruction that uses the COM port is executed.

■ IoDrvModbus.MB_ErrorCodes (Enumeration type)

Name Value Description

RESPONSE_SUCCESS 16#0 Succeeded

ILLEGAL_FUNCTION 16#1 Function code not supported by the slave

ILLEGAL_DATA_ADDRESS 16#2 Register offset not supported by the slave

ILLEGAL_DATA_VALUE 16#3 Illegal data writing

SLAVE_DEVICE_FAILURE 16#4 Non-recoverable error

ACKNOWLEDGE 16#5 Start operation

SLAVE_DEVICE_BUSY 16#6 During operation

MEMORY_PARITY_ERROR 16#8 Memory parity error

GATEWAY_PATH_UNAVAILABLE 16#A Gateway path unavailable

GATEWAY_DEVICE_FAILED_TO_RES
POND

16#B Gateway device failed to respond

RESPONSE_TIMEOUT 16#A1 Timeout

RESPONSE_CRC_FAIL 16#A2 CRC error

RESPONSE_WRONG_SLAVE 16#A3 Wrong response

RESPONSE_WRONG_FUNCTIONCO
DE

16#A4 Wrong function code in the response

REQUEST_FAILED_TO_SEND 16#A5 Request not sent

RESPONSE_INVALID_DATA 16#A6 Invalid response data

RESPONSE_INVALID_PROTOCOL 16#A7 Invalid response protocol

RESPONSE_INVALID_HEADER 16#A8 Invalid response header

UNDEFINED 16#FF Undefined

11.2 COM port (Modbus COM)

WUME-GM1PGR-10 11-17

11.3 LAN port (IoDrvEthernet)

This section describes the library functions that are used for the network interface to perform
communication with the LAN port.

11.3.1 IoDrvEthernet

This is a function block that acquires the status of the LANPort device.

■ Icon

■ Parameter

Scope Name Type Description

Output eState EthernetStat
e

Ethernet state
Refer to "EthernetState (Enumeration type)".

■ EthernetState (Enumeration type)

Name Value Description

NOT_CONFIGURED 0 Before configuration

CONFIGURED 1 After configuration

DISCONNECTED 2 Disconnected

RUNNING 3 Being executed

ERROR 4 An error has occurred.

SET_IP_ERROR 5 An IP error has occurred.

11.3.2 IoDrvEthernet.IPARRAY_TO_INADDR (Array Type to Union Type)

This is a function that converts an array type IP address to an INADDR (union type).

■ Icon

■ Parameter

Scope Name Type Description

Input abyIPAddres
s

ARRY[0..3]
OF BYTE

IP address array

11.3 LAN port (IoDrvEthernet)

11-18 WUME-GM1PGR-10

Scope Name Type Description

Output IPARRAY_T
O_INADDR

SysSocket.I
NADDR

Union type IP address

11.3.3 IoDrvEthernet.IPARRAY_TO_IPSTRING (Array Type to Character String
Type)

This is a function that converts an array type IP address to a character string type.

■ Icon

■ Parameter

Scope Name Type Description

Input abyIPAddres
s

ARRY[0..3]
OF BYTE

IP address array

Output IPARRAY_T
O_STRING

STRING Character string type IP address

11.3.4 IoDrvEthernet.IPARRAY_TO_UDINT (Array Type to UDINT Type)

This is a function that converts an array type IP address to a UDINT type.

■ Icon

■ Parameter

Sc
op
e

Name Type Description

Inp
ut

abyIPAddress ARRY[0..3] OF
BYTE

IP address array

Out
put

IPARRAY_TO_UDINT UDINT UDINT type IP address

11.3 LAN port (IoDrvEthernet)

WUME-GM1PGR-10 11-19

11.3.5 IoDrvEthernet.IPSTRING_TO_UDINT (Character String Type to UDINT
Type)

This is a function that converts a character string type IP address to a UDINT type.

■ Icon

■ Parameter

Scope Name Type Description

Input abyIPAddres
s

STRING Character string type IP address

Output IPARRAY_T
O_UDINT

UDINT UDINT type IP address

11.3.6 IoDrvEthernet.UDINT_TO_IPARRAY (UDINT Type to Array Type)

This is a function that converts a UDINT type IP address to an array type.

■ Icon

■ Parameter

Scope Name Type Description

Input abyIPAddres
s

UDINT UDINT type IP address

Output UDINT_TO_
IPARRAY

ARRY[0..3]
OF BYTE

IP address array

11.3 LAN port (IoDrvEthernet)

11-20 WUME-GM1PGR-10

11.3.7 IoDrvEthernet.UDINT_TO_IPSTRING (UDINT Type to Character String
Type)

This is a function that converts a UDINT type IP address to an array type.

■ Icon

■ Parameter

Scope Name Type Description

Input abyIPAddres
s

UDINT UDINT type IP address

Output UDINT_TO_
STRING

STRING Character string type IP address

11.3 LAN port (IoDrvEthernet)

WUME-GM1PGR-10 11-21

11.4 LAN Port (General-purpose Communication)

This section describes the library functions that are used to perform general-purpose
communication with the LAN port using the TCP or UDP protocol.

11.4.1 NBS.TCP_Client (Connect to TCP Client)

This is a function block that connects to the TCP/IP client.

■ Icon

■ Parameter

Scope Name Type Description

Input xEnable BOOL TRUE: Active

udiTimeOut UDINT Connection timeout (us)
No timeout when set to 0.

ipAddr NBS.IP
ADDR

Server IP address (character string type)

uiPort UINT Server port No.

Output xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

xActive BOOL TRUE: Connection is established.

hConnection CAA.HAND
LE

Connection handle (Valid when xActive = TRUE)

11.4 LAN Port (General-purpose Communication)

11-22 WUME-GM1PGR-10

11.4.2 NBS.TCP_Connection (Connect TCP)

This is a function block that establishes the connection of the client connecting to the
connection port opened by TCP_Server.

■ Icon

■ Parameter

Scope Name Type Description

Input xEnable BOOL TRUE: Active

hServer CAA.HAND
LE

Connection port handle acquired by TCP_Server

Output xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

xActive BOOL TRUE: Connection is established.(Note 1)

hConnection CAA.HAND
LE

Connection handle (Valid when xActive = TRUE)

(Note 1) To detect a disconnection from the client after the line is connected, it is necessary to periodically call
TCP_Read.

● When multiple clients are connected simultaneously to the same port, multiple
TCP_Connection instances are created.

● The hServer handle acquired by one TCP_Server is set to the multiple TCP_Connection
instances.

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-23

11.4.3 NBS.TCP_Read (Receive TCP Data)

This is a function block that acquires data received by the connection port that is established by
TCP_Connection.

■ Icon

■ Parameter

Scope Name Type Description

Input xEnable BOOL TRUE: Active

hConnection CAA.HAND
LE

Connection port handle acquired by TCP_Connection

szSize CAA.SIZE Received buffer size (byte)

pData CAA.PVOID Pointer to the receive buffer

Output xDone BOOL Always FALSE

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

xReady BOOL TRUE: Data is received.

szCount CAA.SIZE Received data size (byte)

11.4 LAN Port (General-purpose Communication)

11-24 WUME-GM1PGR-10

11.4.4 NBS.TCP_Server (Connect TCP Server)

This is a function block that opens the specified port as a TCP/IP connection port.

■ Icon

■ Parameter

Scope Name Type Description

Input xEnable BOOL TRUE: Active

ipAddr NBS.IP_AD
DR

Home IP address (character string), LANPort1 or LANPort2 IP address

uiPort UINT Home waiting port number

Output xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

hServer CAA.HAND
LE

Connection handle used by TCP_Connection

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-25

11.4.5 NBS.TCP_Write (Send TCP Data)

This is a function block that sends data to the connection port that is established by
TCP_Connection.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL TRUE: Send started (edge)
FALSE: Processing ended (edge)

udiTimeOut UDINT Timeout (us)

hConnection CAA.HAND
LE

Connection port handle acquired by TCP_Connection

szSize CAA.SIZE Send data size (byte)

pData CAA.PVOID Pointer to the send data buffer.

Output xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

11.4 LAN Port (General-purpose Communication)

11-26 WUME-GM1PGR-10

11.4.6 NBS.UDP_Peer (Open UDP Port)

This is a function block that opens the UDP/IP port.

■ Icon

■ Parameter

Scope Name Type Description

Input xEnable BOOL TRUE: Active
FALSE: Stop (xDone, xBusy, and xError are reset.)

ipAddr NBS.IP_AD
DR

Home IP address (character string), LANPort1 or LANPort2 IP address

uiPort UINT Home port number; Not possible to set to 0

ipMultiCast NBS.IP_AD
DR

Multicast address
("255.255.255.255"=> INADDR_NONE)

Output xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

xActive BOOL TRUE: Connection is established.

hPeer CAA.HAND
LE

Connection handle (Valid when xActive = TRUE)

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-27

11.4.7 NBS.UDP_Receive (Receive UDP Data)

This is a function block that receives data to the connection handle acquired by UDP_Peer.

■ Icon

■ Parameter

Scope Name Type Description

Input xEnable BOOL TRUE: Active
FALSE: Stop (xDone, xBusy, and xError are reset.)

hPeer CAA.HAND
LE

Connection handle acquired by UDP_Peer

szSize CAA.SIZE Receive data buffer size (byte)

pData CAA.PVOID Pointer to the receive data buffer

Output xDone BOOL Always FALSE

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

xReady BOOL TRUE: Data acquired, FALSE: No received data

ipFrom NBS.IP_AD
DR

Data sending source IP address

uiPortFrom UINT Data sending source port No.

szCount CAA.SIZE Received data size (byte)

(Note 1) If the szSize (receive data buffer size) is smaller than the received data size, only the data equivalent
to the size specified by szSize is stored in pData and the data exceeding the size specified by szSize
is discarded.

11.4 LAN Port (General-purpose Communication)

11-28 WUME-GM1PGR-10

11.4.8 NBS.ERROR (Error Code)

This is an enumeration type error code that is output when the function block for communication
instruction that uses the LAN port is executed.

■ NBS.ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error is occurring.

FIRST_ERROR 6000 Reserved

TIME_OUT 6001 Reserved

INVALID_ADDR 6002 IP address is invalid.

INVALID_HANDLE 6003 Handle is invalid.

INVALID_DATAPOINTER 6004 Data pointer is invalid.

INVALID_DATASIZE 6005 Data size is invalid.

UDP_RECEIVE_ERROR 6006 UDP datagram cannot be received.

UDP_SEND_ERROR 6007 UDP datagram cannot be sent.

UDP_SEND_NOT_COMPLETE 6008 Reserved

UDP_OPEN_ERROR 6009 Port cannot be opened.

UDP_CLOSE_ERROR 6010 Port cannot be released.

TCP_SEND_ERROR 6011 TCP message cannot be sent.

TCP_RECEIVE_ERROR 6012 TCP message cannot be received.

TCP_OPEN_ERROR 6013 TCP port cannot be created.

TCP_CONNECT_ERROR 6014 TCP connection cannot be established.

TCP_CLOSE_ERROR 6015 TCP port cannot be released.

TCP_SERVER_ERROR 6016 Reserved

WRONG_PARAMETER 6017 The parameter contains an invalid value.

ERROR_UNKNOWN 6018 Reserved

TCP_NO_CONNECTION 6019 There is no TCP connection.

IOCTL_ERROR 6020 Internal error (IOCTL is not supported.)

FIRST_MF 6050 Reserved

LAST_ERROR 6099 Reserved

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-29

11.4.9 NBS.UDP_Send (Send UDP Data)

This is a function block that sends data to the connection handle acquired by UDP_Peer.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL TRUE: Send started (edge)
FALSE: Processing ended (edge)

udiTimeOut UDINT Timeout (us)

hPeer CAA.HAND
LE

Connection port handle acquired by UDP_Peer

ipAddr NBS.IP_AD
DR

Destination IP address

uiPort UINT Destination port No.

szSize CAA.SIZE Send data size (byte)

pData CAA.PVOID Pointer to the send data buffer.

Output xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError NBS.ERRO
R

Connection result
Refer to "11.4.8 NBS.ERROR (Error Code)".

11.4.10 Program example: General communication (Ethernet) TCP CLIENT
processing

■ TCP CLIENT processing example
The following is a processing example of data transmission / reception via TCP when the local
unit is TCP CLIENT.
This processing example assumes the following operating environment.

11.4 LAN Port (General-purpose Communication)

11-30 WUME-GM1PGR-10

Processing for data transmission / reception
The processing for data transmission / reception is as follows:
● TCP client connection processing
● Reception start processing
● Transmission processing
Explanation of variables
Process

When the value is rewritten, the following processing is executed. After the execution is
completed, the variable is set to 0 (invalid value).
1 = TCP client connection processing
2 = Reception start processing
3 = Transmission processing

Result
The result of processing execution is stored. (TRUE: Error occurrence, FALSE: Normal
termination)
If the result of processing execution is abnormal, check the error code of each processing.
● NBS_ClientError: Result of TCP client connection processing
● NBS_WriteError: Result of transmission processing
● NBS_ReadError: Result of reception start processing

Operation example
The TCP client connects to the TCP server.
● The value of "Process" is changed to 1.
The local unit is ready to receive data. In this state, the local unit can receive data from the
destination unit.
● The value of "Process" is changed to 2.
The local unit sends data to the destination unit. 10-byte data is sent to the destination unit.
● The value of "Process" is changed to 3.

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-31

Declaration section

11.4 LAN Port (General-purpose Communication)

11-32 WUME-GM1PGR-10

Implementation section (ST programming language)

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-33

11.4.11 Program example: General communication (Ethernet) TCP SERVER
processing

■ TCP SERVER processing example
The following is a processing example of data transmission / reception via TCP when the local
unit is TCP SERVER.
This processing example assumes the following operating environment.

Processing for data transmission / reception
The processing for data transmission / reception is as follows:
● TCP server open processing
● TCP connection processing
● Reception start processing
● Transmission processing
Explanation of variables
Process

When the value is rewritten, the following processing is executed. After the execution is
completed, the variable is set to 0 (invalid value).
1 = TCP server open processing
2 = TCP connection processing
3 = Reception start processing
4 = Transmission processing

Result
The result of processing execution is stored. (TRUE: Error occurrence, FALSE: Normal
termination)
If the result of processing execution is abnormal, check the error code of each processing.
● NBS_ServError: Result of TCP server open processing
● NBS_ConErrorr: Result of TCP connection processing
● NBS_ReadError: Result of reception start processing
● NBS_WriteError: Result of transmission processing

Operation example
The TCP server is opened and connected to the TCP client.
● The value of "Process" is changed from 1 to 2.
The local unit is ready to receive data. In this state, the local unit can receive data from the
destination unit.
● The value of "Process" is changed to 3.
The local unit sends data to the destination unit. 10-byte data is sent to the destination unit.
● The value of "Process" is changed to 4.

11.4 LAN Port (General-purpose Communication)

11-34 WUME-GM1PGR-10

Declaration section

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-35

Implementation section (ST programming language)

11.4 LAN Port (General-purpose Communication)

11-36 WUME-GM1PGR-10

When multiple clients are connected simultaneously to the same port, multiple TCP_Connection
instances are created. The hServer handle acquired by one TCP_Server is set to the multiple
TCP_Connection instances.
Example: When two clients are connected simultaneously to the same port
Declaration section

iServer: NBS.TCP_Server;// TCP_Server instance
iConnection: ARRAY [0..1] OF NBS.TCP_Connection;　// TCP_Connection instance (two
instances)

Implementation section
iServer(xEnable:=TRUE , ipAddr:=ipAddr , uiPort:=uiPort);　// Server opened
// Omitted (Waiting for TCP_Server completion)
iConnection[0](xEnable := TRUE , hServer := iServer.hServer);　// For 1st client
iConnection[1](xEnable := TRUE , hServer := iServer.hServer);　// For 2nd client

11.4.12 Program example: General communication (Ethernet) UDP
processing

■ UDP processing example
An example of processing for data transmission / reception via UDP is as follows:
This processing example assumes the following operating environment.

Processing for data transmission / reception
The processing for data transmission / reception is as follows:
● Port open processing
● Reception start processing
● Transmission processing
Explanation of variables
Process

When the value is rewritten, the following processing is executed. After the execution is
completed, the variable is set to 0 (invalid value).
1 = Port open processing
2 = Reception start processing
3 = Transmission processing

Result
The result of processing execution is stored. (TRUE: Error occurrence, FALSE: Normal
termination)
If the result of processing execution is abnormal, check the error code of each processing.
● NBS_PeerError: Result of port open processing
● NBS_RecError: Result of reception start processing
● NBS_ReadError: Result of transmission processing

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-37

Operation example
The port is opened and the local unit is ready to receive data. In this state, the local unit can
receive data from the destination unit.
● The value of "Process" is changed from 1 to 2.
The local unit sends data to the destination unit. 10-byte data is sent to the destination unit.
● The value of "Process" is changed to 3.

Declaration section

11.4 LAN Port (General-purpose Communication)

11-38 WUME-GM1PGR-10

Implementation section (ST programming language)

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-39

11.4.13 Program example:General-purpose Communication(Serial)COM
transmission / reception processing

■ COM transmission / reception processing example
Send and receive data via SerialCom.
Specify communication settings as below.

COM number 1

Baud rate 115200bps

Data bits 8

Parity bit odd

Stop bit 1

Processing for data transmission / reception
The processing for data transmission / reception is as follows:
● Serial port open processing
● Serial port close processing
● Reception processing
● Transmission processing
Explanation of variables
Process

When the value is rewritten, the following processing is executed. After the execution is
completed, the variable is set to 0 (invalid value).
1 = Serial port open processing
2 = Reception processing
3 = Transmission processing
4 = Serial port close processing

Result
The result of processing execution is stored. (TRUE: Error occurrence, FALSE: Normal
termination)
If the result of processing execution is abnormal, check the following error code.
● ComErr: COM processing result

Operation example
Serial port is opened.
● The value of "Process" is changed to 1.
Received data is read.
● The value of "Process" is changed to 2.
10-byte data is sent.
● The value of "Process" is changed to 3.
Serial port is closed.
● The value of "Process" is changed to 4.

11.4 LAN Port (General-purpose Communication)

11-40 WUME-GM1PGR-10

Declaration section

11.4 LAN Port (General-purpose Communication)

WUME-GM1PGR-10 11-41

Implementation section (ST programming language)

11.4 LAN Port (General-purpose Communication)

11-42 WUME-GM1PGR-10

11.5 LAN Port (Modbus TCP)

This section describes the library functions that are used to perform ModbusTCP
communication with the LAN port.
It is created from Modbus master TCP available in the device tree.

11.5.1 IoDrvModbusTCP

This is a function block that controls the Modbus_TCP_Master device.

■ Icon

■ Parameter

Scope Name Type Description

I/O xStop BOOL TRUE: Stops sending commands to the slave.

Output xSlaveError BOOL There is an error in the slave function

uiConnectes
Slaves

UINT Number of slaves connected via TCP/IP

11.5.2 IoDrvModbusTCP.ModbusChannel (Start Sending Modbus Command)

This is a function block that sends the commands set in the Modbus Slave channel of the
ModbusTCP_Slave device.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts sending commands at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

iChannelInd
ex

INT Channel number where commands to be sent are set

I/O slave ModbusTCP
SlaveBase

Handle of the Modbus_TCP_Slave device
Output

11.5 LAN Port (Modbus TCP)

WUME-GM1PGR-10 11-43

Scope Name Type Description

Output xBusy BOOL TRUE: Processing of the FB is not completed.

xDone BOOL TRUE: Processing is completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user’s xAbort input

ModbusErro
r

MB_ErrorCo
des

An error code is output.
Refer to "11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes)".

11.5.3 IoDrvModbusTCP.ModbusRequest (Modbus Request)

This is a function block that processes the Modbus command specified by I/O without using the
Modbus_TCP_Slave device.

■ Supported commands
● Command 1 (Read multi-point coil state)
● Command 2 (Read multi-point input state)
● Command 3 (Read multi-point holding register)
● Command 4 (Read multi-point input register)
● Command 5 (Write single-point coil)
● Command 6 (Write single-point holding register)
● Command 15 (Write multi-point coil)
● Command 16 (Write multi-point holding register)
● Command 23 (Read / write multi-point holding register)

■ Icon

■ Parameter

Scope Name Type Description

Input slave ModbusTCP
Slave

Handle of the Modbus_TCP_Slave device

xExecute BOOL Starts sending commands at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

usiUnitID USINT Slave address 1 to 247

ModbusCo
mmand

ModbusCo
mmnand

Structure that stores parameters of the commands issued.

11.5 LAN Port (Modbus TCP)

11-44 WUME-GM1PGR-10

Scope Name Type Description

pSendData POINTER
TO BYTE

Pointer to the send data buffer.

pRecvData POINTER
TO BYTE

Pointer to the receive data buffer

Output xBusy BOOL TRUE: Processing of the FB is not completed.

xDone BOOL TRUE: Processing is completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user’s xAbort input

ModbusErro
r

BYTE An error code is output.
Refer to "11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes)".
Also possible to convert the type and use as enumeration type
MB_ErrorCodes.

■ ModbusCommand (Structure)

Name Type Description

uiFunctionCode UINT Modbus command code

uiReadOffset UINT Read address 0 to 65535

uiReadLen UINT Range in the number of read instances
varies depending on commands.

uiWriteOffset UINT Write address 0 to 65535

uiWriteLen UINT Range in the number of write instances
varies depending on commands.

11.5 LAN Port (Modbus TCP)

WUME-GM1PGR-10 11-45

11.5.4 IoDrvModbusTCPSlave

This is a function block that controls the Modbus_TCP_Slave device.

■ Icon

■ Parameter

Scope Name Type Description

Input xConfirmErr
or

BOOL Resets xError and byModbusError and resumes communication.

xDoInit BOOL TRUE: Sends a slave initialization command when communication is
resumed.

Output xInitDone UINT TRUE: Modbus slave initialization command is fully completed.

xDone BOOL TRUE: Processing is completed.

xBusy BOOL TRUE: Processing of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

byModbusEr
ror

MB_ErrorCo
des

An error code is output.
Refer to "11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes)".

ComSetting
s

ModbusTCP
ComSetting
s

IP address and port number registered in the Modbus_TCP_Slave
device.

ComState ModbusTCP
ComState

Communication status

iChannelInd
ex

INT Channel number

11.5 LAN Port (Modbus TCP)

11-46 WUME-GM1PGR-10

11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes)

This is an enumeration type error code that is output when the function block for Modbus
communication instruction that uses the COM port is executed.

■ IoDrvModbus.MB_ErrorCodes (Enumeration type)

Name Value Description

RESPONSE_SUCCESS 16#0 Succeeded

ILLEGAL_FUNCTION 16#1 Function code not supported by the slave

ILLEGAL_DATA_ADDRESS 16#2 Register offset not supported by the slave

ILLEGAL_DATA_VALUE 16#3 Illegal data writing

SLAVE_DEVICE_FAILURE 16#4 Non-recoverable error

ACKNOWLEDGE 16#5 Start operation

SLAVE_DEVICE_BUSY 16#6 During operation

MEMORY_PARITY_ERROR 16#8 Memory parity error

GATEWAY_PATH_UNAVAILABLE 16#A Gateway path unavailable

GATEWAY_DEVICE_FAILED_TO_RES
POND

16#B Gateway device failed to respond

RESPONSE_TIMEOUT 16#A1 Timeout

RESPONSE_CRC_FAIL 16#A2 CRC error

RESPONSE_WRONG_SLAVE 16#A3 Wrong response

RESPONSE_WRONG_FUNCTIONCO
DE

16#A4 Wrong function code in the response

REQUEST_FAILED_TO_SEND 16#A5 Request not sent

RESPONSE_INVALID_DATA 16#A6 Invalid response data

RESPONSE_INVALID_PROTOCOL 16#A7 Invalid response protocol

RESPONSE_INVALID_HEADER 16#A8 Invalid response header

UNDEFINED 16#FF Undefined

11.5 LAN Port (Modbus TCP)

WUME-GM1PGR-10 11-47

11.6 LAN Port (EtherNet/IP)

This section describes the instructions that are used to control EtherNet/IP scanner and adapter
functions using the SMC.

11.6.1 IoDrvEtherNetIP (EtherNet/IP Scanner Device)

This is a function block (FB) that controls the EtherNet/IP scanner device.

This function block is automatically generated by adding an EtherNet/IP scanner device and the
name of the device that is added is used as the instance name.

Example
Adding an EtherNet/IP scanner device named "EtherNet_IP_Scanner" to LANPort2

■ Icon

■ Parameter

Scope Name Type Description

Input xReset BOOL Resets the scanner function at the rising edge

Output eState ScannerStat
e

EtherNet/IP scanner device state

eError ERROR Error state code of EtherNet/IP scanner

■ ScannerState (EtherNet/IP scanner device state)

Name Description

INITIALIZING The device is setting up a CIP object. It is continuing
IP_CONFIG.

IP_CONFIG The device creates an IP configuration for Ethernet interface and
waits until it enters a RUNNING state.

UDP_CONFIG The device opens the socket for UDP default port 2222.

ENCAPSULATION_CONFIG The encapsulation server for the scanner is started via the
default TCP port (44818).

ADAPTER_CONFIG The device is in an empty state. It is continuing
OPEN_CONNECTIONS.

OPEN_CONNECTIONS The CIP ID status is set to "configured" and the RUNNING state
continues.

RUNNING The device opens a connection to the adapter and processes
explicit messages with I/O communication.

11.6 LAN Port (EtherNet/IP)

11-48 WUME-GM1PGR-10

Name Description

DIAGNOSTIC_AVAILABLE There are diagnostic messages from the configurator or editor.

BUS_ERROR The UDP or TCP port failed to open.

RESET xReset for the CIP ID object was received.

ERROR When the network interface is in a continued state, the scanner
enters the INITIALIZING state.

■ ERROR (Error state code of EtherNet/IP scanner)

Name Description

NO_ERROR No error is occurring.

INVALID_COMMAND The command is invalid.

OUT_OF_MEMORY A memory shortage occurred.

INVALID_DATA The data is invalid.

INVALID_SESSION_HANDLE The session handle is invalid.

INVALID_LENGTH The data length is invalid.

UNSUPPORTED_PROTOCOL_VERSION The protocol version is unsupported.

NBS_ERROR An NBS error occurred.

NBS_RCV_ERROR Data cannot be received via NBS.

NBS_SND_ERROR Data cannot be sent via NBS.

ENCAPSULATION_ERROR An encapsulation error occurred.

TCPIP_CONFIG_ERROR TCP IP settings are incorrect.

UDP_CONFIG_ERROR UDP settings are incorrect.

UDP_RECV_ERROR UDP datagrams cannot be received.

UDP_SEND_ERROR UDP datagrams cannot be sent.

UDP_CLOSE_ERROR UDP ports cannot be released.

NULL_POINTER This is a null pointer.

DEVICE_STATE_ERROR An error is occurring on the device.

RECONFIGURATION_FAILED Reconfiguration failed.

PERFORMANCE_MONITOR_DISABLED The performance monitor is disabled.

INVALID_MEASURING_POINT Measuring points are invalid.

IP_CONFIG_ERROR IP settings are faulty.

11.6.2 RemoteAdapter (Remote Adapter Device)

This is a function block (FB) for the remote adapter device linked to the EtherNet/IP scanner
device.

This function block is automatically generated by adding an EtherNet/IP remote adapter device
and the name of the device that is added is used as the instance name.

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-49

Example
Adding a remote adapter device named "FP7CPU_UNIT_AFP7CPS41ES" to
EtherNet_IP_Scanner

■ Icon

■ Parameter

Scope Name Type Description

Input xReset BOOL Resets the remote adapter function at the rising edge

xAcknowled
ge

BOOL Acknowledges the diagnostic information at the rising edge

Output eState Adapter
State

Remote adapter state

xDiagnostic
Available

BOOL The output remains TRUE when there is diagnostic information

sDiagString STRING Diagnosis string

■ AdapterState (Adapter device state)

Name Description

DISABLED The device is disabled in device tree

NOT_CONFIGURED Parameters are being loaded

IP_CONFIG The device has configured a TCP object and is waiting for an
Ethernet node

ENCAPSULATION_CONFIG Encapsulation is being configured

LIST_SERVICES List services are being executed

REGISTER_SESSION Register session is in progress

PARAMETER_CONFIG Parameters are being configured

CONFIGURED The device is in configuration completion state

RUNNING The device is in running state

IDLE The device is in idle state

RESET UDP and TCP connection is closing

RESET_SERVICE Reset service is being executed

CONNECTIVITY_CHECK Connectivity check is in progress

BUS_ERROR Bus error is occurring

11.6 LAN Port (EtherNet/IP)

11-50 WUME-GM1PGR-10

Name Description

ERROR Error is occurring

11.6.3 IoDrvEtherNetIPAdapter (EtherNet/IP adapter device)

This is a function block (FB) that controls the EtherNet/IP adapter device.

This function block is automatically generated by adding an EtherNet/IP adapter device and the
name of the device that is added is used as the instance name.

Example
Adding an EtherNet/IP adapter device named "EtherNet_IP_Adapter" to LANPort2

■ Icon

■ Parameter

Scope Name Type Description

Input xReset BOOL Resets the adapter function at the rising edge

Output eState ADAPTERS
TATE

EtherNet/IP adapter device state

eError ERROR Error state code of EtherNet/IP adapter

■ ADAPTERSTATE (EtherNet/IP adapter device state)

Name Description

UPDATE_CONFIGURATION Startup phase

NOT_CONFIGURED Parameters are being loaded

DISABLED The device is disabled in device tree

CONFIGURED A CIP object has been created

IP_CONFIG The device has configured a TCP object and is waiting for an
Ethernet node

IMPLICITMESSAGING_CONFIG UDP port has been opened

EXPLICITMESSAGING_CONFIG TCP port has been opened

NO_CONNECTION The protocol stack has been started, but the scanner is
unconnected.

RUNNING The protocol stack is running, and the scanner is connected.

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-51

Name Description

STOPPED The Ethernet node is inactive, and the device is waiting for the
Ethernet node to return.

RESET UDP and TCP connection is closing.

SCANNER_EXTENSION If the scanner registered this adapter as an I/O extension, the
adapter is active in this state.

ERROR Critical error

BUS_ERROR Ethernet is not ready yet or is unavailable.

■ ERROR (EtherNet/IP adapter error state)

Name Description

NO_ERROR No error

TIME_OUT Timeout

CONFIGURATION_FAILED Failed to initialize resources, load connector parameters, or
communicate with sub-connectors (modules)

IP_CONFIG_FAILED The Ethernet node issued an error

IMPLICITMESSAGING_CONFIG_FAILED Failed to create UDP port
"CIP_ENC.ParameterList.gc_uiUDPPort" (default: 2222)

EXPLICITMESSAGING_CONFIG_FAILED Failed to create TCP / UDP port
"IP_ENC.ParameterList.gc_uiTCPPort" (default: 44818)

EXPLICITMESSAGE_RECEIVE_FAILED Problem related to TCP or UDP port socket |
CIP_ENC.ParameterList.gc_uiTCPPort | (default: 44818)

EXPLICITMESSAGE_SEND_FAILED Problem related to TCP or UDP port socket |
CIP_ENC.ParameterList.gc_uiTCPPort | (default: 44818)

LICENSE_MISSING No license

11.6 LAN Port (EtherNet/IP)

11-52 WUME-GM1PGR-10

11.6.4 Module (EtherNet/IP Module Device)

This is a function block (FB) that controls the EtherNet/IP module device.

This function block is automatically generated by adding an EtherNet/IP module device and the
name of the device that is added is used as the instance name.

Example
Adding an EtherNet/IP module device named "EtherNet_IP_Module" to EtherNet/IP adapter
device

■ Icon

■ Parameter

Scope Name Type Description

Output eState MODULEST
ATE

Module device state

■ MODULESTATE (EtherNet/IP module device state)

Name Description

NOT_CONFIGURED Parameters are being loaded.

CONFIGURED A CIP object has been created.

NO_CONNECTION The protocol stack has been started, but the scanner is
unconnected.

RUNNING The protocol stack is running, and the scanner is connected.

STOPPED The Ethernet node is inactive, and the device is waiting for the
Ethernet node to return.

DISABLED The device is disabled in device tree.

ERROR Critical error

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-53

11.6.5 Apply_Attributes (Apply_Attributes Service)

This is a function block (FB) that calls the "Apply_Attributes" service of the CIP object instance.

The attribute set in "Get_Attribut_Single" or "Get_Attribut_All" is adopted and saved in the
adapter.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

11.6 LAN Port (EtherNet/IP)

11-54 WUME-GM1PGR-10

11.6.6 Generic_Service (Generic Service Execution)

This is a function block (FB) that executes generic services with the EtherNet/IP adapter.

Messages are sent as unconnected explicit message requests.

● The endianness of data to be sent or received must be exchanged by devices.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

wAttribute WORD Attribute corresponding to the service

eService ENIP.CIPCo
mmonServic
e

CIPCommonService member service code or vendor-specific service
code

pWriteData POINTER
TO BYTE

Pointer to data to be written to the EtherNet/IP adapter. The parameter
is set to 0 when no data is sent.

udiWriteDat
aSize

UDINT Size of data to be written to the EtherNet/IP adapter. The parameter is
set to 0 when no data is sent.

pReadData POINTER
TO BYTE

Storage pointer to data received from the EtherNet/IP adapter. The
parameter is set to 0 when no data is received.

udiReadDat
aSize

UDINT Size of storage buffer for data received from the EtherNet/IP adapter.
The parameter is set to 0 when no data is received.

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-55

Scope Name Type Description

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

udiReceived
DataSize

UDINT Size of received data

■ ENIP.CIPCommonService (CIPCommonService member service code)

Name Value

None 16#0

GET_ATTRIBUTES_ALL 16#1

SET_ATTRIBUTES_ALL 16#2

RESET 16#5

START 16#6

STOP 16#7

APPLY_ATTRIBUTES 16#D

GET_ATTRIBUTE_SINGLE 16#E

SET_ATTRIBUTE_SINGLE 16#10

NO_OPERATION 16#17

11.6 LAN Port (EtherNet/IP)

11-56 WUME-GM1PGR-10

11.6.7 Get_Attribute_Single (Inquire Specific Attributes of a Specific Instance)

This is a function block (FB) that inquires specific attributes of a specific instance of the CIP
object.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

wAttribute WORD Attribute corresponding to the service

pData POINTER
TO BYTE

Storage pointer to data received from the EtherNet/IP adapter

udiDataSize UDINT Size of storage buffer for data received from the EtherNet/IP adapter

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

udiReceived
DataSize

UDINT Size of received data

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-57

11.6.8 Get_Attributes_All (Inquire All Attributes of a Specific Instance)

This is a function block (FB) that inquires all attributes of a specific instance of the CIP object.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

pData POINTER
TO BYTE

Storage pointer to data received from the EtherNet/IP adapter

udiDataSize UDINT Size of storage buffer for data received from the EtherNet/IP adapter

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

udiReceived
DataSize

UDINT Size of received data

11.6 LAN Port (EtherNet/IP)

11-58 WUME-GM1PGR-10

11.6.9 Set_Attribute_Single (Set Specific Attributes of a Specific Instance)

This is a function block (FB) that sets specific attributes of a specific instance of the CIP object

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

wAttribute WORD Attribute corresponding to the service

pData POINTER
TO BYTE

Pointer to data to be written

udiDataSize UDINT Size of data to be written

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-59

11.6.10 Set_Attributes_All (Set All Attributes of a Specific Instance)

This is a function block (FB) that sets all attributes of a specific instance of the CIP object.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

pData POINTER
TO BYTE

Pointer to data to be written

udiDataSize UDINT Size of data to be written

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

11.6 LAN Port (EtherNet/IP)

11-60 WUME-GM1PGR-10

11.6.11 NOP (NOP Service)

This is a function block (FB) that executes the NOP service of a specific instance of the CIP
object.

Normally, this service is used to check whether the adapter can still be used in the network.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-61

11.6.12 Reset (Reset Service)

This is a function block (FB) that executes the Reset service of a specific instance of the CIP
object.

The effects of this service differ according to the CIP object.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

11.6 LAN Port (EtherNet/IP)

11-62 WUME-GM1PGR-10

11.6.13 Start (Start Service)

This is a function block (FB) that executes the Start service of a specific instance of the CIP
object.

The effects of this service differ according to the CIP object.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-63

11.6.14 Stop (Stop Service)

This is a function block (FB) that executes the Stop service of a specific instance of the CIP
object.

The effects of this service differ according to the CIP object.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Execution flag

itfEtherNetI
PDevice

IEtherNetIP
Service

EtherNet/IP device that implements the EtherNet/IP service

eClass ENIP.CIPCla
ss

Class that executes the service

dwInstance DWORD Instance that executes the service
(0: Class level, 1-x: Instance level)

Output xDone BOOL Completion flag

xBusy BOOL Busy flag

xError BOOL Error flag

eError ENIP.ERRO
R

Error
(0-255: CIP error, 256-x: Library error)

11.6 LAN Port (EtherNet/IP)

11-64 WUME-GM1PGR-10

11.6.15 ENIP.ERROR (Message Service Instruction Error Code)

Name Value Description

NO_ERROR 0 The service was executed normally by the specified
object.

CONNECTION_FAILURE 16#1 The connection-related service failed due to the
connection path.

RESOURCE_UNAVAILABLE 16#2 The object was unable to use the resources that it
required to execute the requested service.

INVALID_PARAM_VALUE 16#3 Refer to status code 16#20 that is an appropriate value to
be used in this situation.

PATH_SEGMENT_ERROR 16#4 The path segment identifier or segment syntax was not
recognized by the processing node.
Path processing stops when a path segment error occurs.

PATH_DESTINATION_UNKNOWN 16#5 The path refers to an object class, instance, or structure
element that is unknown or not included in the processing
node. If an unknown path destination error occurs, path
processing will stop.

PARTIAL_TRANSFER 16#6 Only part of the expected data was transferred.

CONNECTION_LOST 16#7 The messaging connection was lost.

SERVICE_NOT_SUPPORTED 16#8 The requested service is not implemented or defined for
this object class or instance.

INVALID_ATTRIBUTE_VALUE 16#9 Invalid attribute data was detected.

ATTRIBUTE_LIST_ERROR 16#A The status of the attribute of Get_Attribute_List or
Set_Attribute_List response is other than zero.

ALREADY_IN_REQUEST_STATE 16#B The object is already in the mode or state requested by
the service.

OBJECT_STATE_ERROR 16#C The object cannot execute the requested service in the
current mode or state.

OBJECT_ALREADY_EXISTS 16#D An instance requested for the object to be created
already exists.

ATTRIBUTE_NOT_SETTABLE 16#E A request to change a read-only attribute was received.

PRIVILEGE_VIOLATION 16#F An authority / privilege check failed.

DEVICE_STATE_ERROR 16#10 The current mode or state of the device prohibits the
requested service from being executed.

REPLY_DATA_TOO_LARGE 16#11 The size of data to be sent via a response buffer is larger
than the capacity of the allocated response buffer.

FRAGMENTATION_OF_VALUE 16#12 The service specifies an operation that fragmentates half
of primitive data values which are a REAL　data type.

NOT_ENOUGH_DATA 16#13 The service did not provide enough data to execute the
specified operation.

ATTRIBUTE_NOT_SUPPORTED 16#14 The attribute specified in the request is not supported.

TOO_MUCH_DATA 16#15 The service provided more data than expected.

OBJECT_DOES_NOT_EXIST 16#16 The specified object does not exist in the device.

SERVICE_FRAGMENTATION_
SEQUENCE_NOT_IN_PROGRESS

16#17 The fragmentation sequence of this service is currently
not active for this data.

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-65

Name Value Description

NO_STORED_ATTRIBUTE_DATA 16#18 The attribute data of this object has not been saved
before the requested service is executed.

STORE_OPERATION_FAILURE 16#19 The attribute data of this object has not been saved
because an error occurred during the attempt to save the
data.

ROUTING_FAILURE_REQUEST_
PACKET_TOO_LARGE

16#1A The service request packet was too large to send through
the network existing in the path to the destination. The
routing device forcibly canceled the service.

ROUTING_FAILURE_RESPONSE_
PACKET_TOO_LARGE

16#1B The service response packet was too large to send
through the network existing in the path from the
destination. The routing device forcibly canceled the
service.

MISSING_ATTRIBUTE_LIST_
ENTRY_DATA

16#1C The service did not provide attributes in the list of
attributes that it requires to execute the requested
operation.

INVALID_ATTRIBUTE_VALUE_LIST 16#1D The service returned a list of provided attributes together
with status information of invalid attributes.

EMBEDDED_SERVICE_ERROR 16#1E An error occurred in the embedded service.

VENDOR_SPECIFIC_ERROR 16#1F A vendor-specific error occurred. The additional code
field for error response is used to define a specific error
that occurred. Use this field only if the error in question
does not apply to any of the error codes shown in these
tables or those shown in the object class definition.

INVALID_PARAMETER 16#20 The parameter associated with the request is invalid. This
code is used when the parameter does not meet the
requirements of this specification or the requirements
defined in the application object specification.

WRITE_ONEC_VALUE_OR_
MEDIUM_ALREADY_WRITTEN

16#21 An attempt was made to write to a write-once medium
(such as WORM drive or PROM) to which data has
already been written or to change a value that cannot be
changed once set.

INVALID_REPLY_RECEIVED 16#22 An invalid response was received (for example, the
response service code does not match the request
service code or the response message is shorter than the
expected minimum response size). This status code is
useful to investigate other causes of invalid responses.

BUFFER_OVERFLOW 16#23 The size of the received message exceeds the maximum
size of messages that can be handled by the receiver
buffer. The entire message was discarded.

MESSAGE_FORMAT_ERROR 16#24 The format of the received message is not supported by
the server.

KEY_FAILURE_IN_PATH 16#25 The key segment included as the first segment of the
path does not match the destination module. The object-
specific status indicates which part of the key check has
failed.

PATH_SIZE_INVALID 16#26 The size of the path sent with the service request is not
large enough to route the request to the object or routing
data included in the path is too much.

UNEXPECTED_ATTRIBUTE_IN_LIST 16#27 An attempt was made to set an attribute that cannot
currently be set.

INVALID_MEMBER_ID 16#28 The member ID specified in the request does not exist in
the specified class, instance, or attribute.

11.6 LAN Port (EtherNet/IP)

11-66 WUME-GM1PGR-10

Name Value Description

MEMBER_NOT_SETTABLE 16#29 A request to change an unchangeable member was
received.

GROUP_2_ONLY_SERVER_
GENERAL_FAILURE

16#2A This error code is issued only by DeviceNet Group 2 Only
servers with 4K or less code space and is supported only
instead of the server. Attributes are not supported and
cannot be set.

UNKNOWN_MODBUS_ERROR 16#2B The program for conversion from CIP to Modbus received
an unknown Modbus exception code.

ATTRIBUTE_NOT_GETTABLE 16#2C A request to read an unreadable attribute was received.

INSTANCE_NOT_DELETABLE 16#2D The requested object instance cannot be deleted.

SERVICE_NOT_SUPPORTED_
FOR_SPECIFIED_PATH

16#2E The object supports the service but does not support the
specified application path (such as attributes). Note: Do
not use this code for the set service. (Instead, use
general status code 16#0E or 16#29.)

TIME_OUT 16#100 The request has timed out.

INTERFACE_MISSING IEtherNetIPService is not implemented.

REMOTE_CALL_FAILED There is no physical connection.

NULL_POINTER A null value was entered by mistake.

INVALID_DATA_SIZE The data size is invalid.

WRONG_INTERFACE_VERSION The versions do not match. The device is not equipped
with the same version of interface as the called method.

NO_MEMORY There is not enough memory.

UNKNOWN_ERROR An unknown error occurred.

ABORTED The service was aborted.

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-67

11.6.16 ENIP.CIPClass (Service Class Code)

Name Value

IdentityObject 16#1

MessageRouterObject 16#2

DeviceNetObject 16#3

AssemblyObject 16#4

ConnectionObject 16#5

ConnectionManagerObject 16#6

RegisterObject 16#7

DiscreteInputPointObject 16#8

DiscreteOutputPointObject 16#9

AnalogInputPointObject 16#A

AnalogOutputPointObject 16#B

PresenceSensingObject 16#E

ParameterObject 16#F

ParameterGroupObject 16#10

GroupObject 16#12

DiscreteInputGroupObject 16#1D

DiscreteOutputGroupObject 16#1E

DiscreteGroupObject 16#1F

AnalogInputGroupObject 16#20

AnalogOutputGroupObject 16#21

AnalogGroupObject 16#22

PositionSensorObject 16#23

PositionControllerSupervisorObject 16#24

PositionControllerObject 16#25

BlockSequencerObject 16#26

CommandBlockObject 16#27

MotorDataObject 16#28

ControlSupervisorObject 16#29

ACDCDriveObject 16#2A

AcknowledgeHandlerObject 16#2B

OverloadObject 16#2C

SoftstartObject 16#2D

SelectionObject 16#2E

S_DeviceSupervisorObject 16#30

S_AnalogSensorObject 16#31

11.6 LAN Port (EtherNet/IP)

11-68 WUME-GM1PGR-10

Name Value

S_AnalogActuatorObject 16#32

S_SingleStageControllerObject 16#33

S_GasCalibrationObject 16#34

TripPointObject 16#35

FileObject 16#37

S_PartialPressureObject 16#38

SafetySupervisorObject 16#39

SafetyValidatorObject 16#3A

SafetyDiscreteOutputPointObject 16#3B

SafetyDiscreteOutputGroupObject 16#3C

SafetyDiscreteInputPointObject 16#3D

SafetyDiscreteInputGroupObject 16#3E

SafetyDualChannelOutputObject 16#3F

S_SensorCalibrationObject 16#40

EventLogObject 16#41

MotionDeviceAxisObject 16#42

TimeSyncObject 16#43

ModbusObject 16#44

OriginatorConnectionListObject 16#45

ModbusSerialLinkObject 16#46

DeviceLevelRingObject 16#47

QoSObject 16#48

SafetyAnalogInputPointObject 16#49

SafetyAnalogInputGroupObject 16#4A

SafetyDualChannelAnalogInputObject 16#4B

SERCOSIIILinkObject 16#4C

TargetConnectionListObject 16#4D

EnergyObject 16#4E

ElectricalEnergyObject 16#4F

Non_ElectricalEnergyObject 16#50

BaseSwitchObject 16#51

SNMPObject 16#52

PowerManagementObject 16#53

ControlNetObject 16#F0

ControlNetKeeperObject 16#F1

ControlNetSchedulingObject 16#F2

ConnectionConfigurationObject 16#F3

11.6 LAN Port (EtherNet/IP)

WUME-GM1PGR-10 11-69

Name Value

PortObject 16#F4

TCPIPInterfaceObject 16#F5

EthernetLinkObject 16#F6

CompoNetLink 16#F7

CompoNetRepeater 16#F8

11.6 LAN Port (EtherNet/IP)

11-70 WUME-GM1PGR-10

11.7 LAN Port (MQTT)

This section describes the instructions that are used to perform communication with the LAN
port using the MQTT protocol.

11.7.1 What is MQTT?

MQTT stands for Message Queuing Telemetry Transport. It is a simple and lightweight publish/
subscribe messaging protocol.
This protocol allows asynchronous many-to-many communication by a mechanism called
“topic” designed to identify messages. Messages are sent and received through an intermediary
called a broker server, and thus MQTT enables a device to communicate with another device
on the opposite side without being conscious of the opposite device. In addition, since the
intermediary is responsible for most of message management, the number of connected client
devices can be readily increased. Another feature is that client devices can be freely connected
to and disconnected from the broker server. Generally, the amount of information necessary for
exchange is small, and this helps to reduce the burden on CPUs and power consumption.
Because of these features, MQTT is widely adopted for IoT applications and is a protocol
effective in a system for control among a large number of devices, as well as data logging,
traceability, and other communication with a host system.

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-71

11.7.2 MQTT Client Specifications

MQTT client specifications with the GM1 controller are described below.
● MQTT Client Specifications

Item Details

Usable port LAN ports 1, 2

MQTT protocol version Version 3.1.1
Version 5.0

Data size Max. 6000 bytes per packet（payload part Max. 4096 Bytes）(Note 1)

Topic Topic name：Max.1024 characters
Topic level：Max.10

Communication constraints Max. 20 publishes/subscribes per connection
Max. 3 connections

Supported QoS ● QoS0 (publish at most once)
● QoS1 (publish at least once)
● QoS2 (publish exactly once)

(Note 1) This applies to the MQTT protocol packet size out of the total packet.

● List of supported functions

Type Function Overview MQTT Version

3.1.1 5.0

Connect
ion

KeepAlive Specifies an interval during which
connection closing is judged

○ ○

Will Message Specifies a message that is sent when
connection is closed

○ ○

Will Retain Specifies if the Will Message is to be
retained

○ ○

Will QoS Specifies the QoS level for the Will
Message

○ ○

Clean Session Specifies a session used for connection
with the broker server

○ ○

User authentication Connection using a user name and
password

○ ○

Client ID Specifies a client identifier ○ ○

Ping Interval Specifies an interval at which a ping
request (existance check) is sent

○ ○

TLS connection Connection encrypted by TLS × ×

WebSocket connection Connection using WebSocket × ×

Reason Code An output value of the detailed result of an
operation

× ○

Session Expiry Interval Specifies how long to retain the session
after a disconnect

× ○

Enhanced authentication Using other forms of authentication × ×

11.7 LAN Port (MQTT)

11-72 WUME-GM1PGR-10

Type Function Overview MQTT Version

3.1.1 5.0

Request Problem Information Specifies the way an operation result is
received

× ○

Request Response Information Requests the server to return Response
Information (runs on request/response
format)

× ×

Receive Maximum Specifies the number of messages that the
client can process concurrently

× ○

Topic Alias Maximum Specifies the number of Topic Aliases that
the client can receive

× ×

Maximum Packet Size Specifies a Maximum Packet Size value × ○

Payload Format Indicator Specifies a format for the Will Message × ○

Message Expiry Interval Specifies an interval for the expiry of the
message

× ○

Content Type Specifies a type of the content of the Will
Message

× ×

Response Topic The topic name for a response message
(runs on request/response format)

× ○

Correlation Data Specifies correlation data (runs on
request/response format)

× ○

Will Delay Interval Specifies a delay that occurs before the
Will Message is sent

× ○

User Property User-defined properties × ○

Publish Re Delivery Specifies the re-delivery flag (DUP Flag) ○ ○

Retain Specifies a message store setting ○ ○

Payload Format Indicator Specifies a format for the message × ○

Message Expiry Interval Specifies an interval for the expiry of the
message

× ○

Content Type Specifies a type of the content of the
message

× ×

Response Topic The topic name for a response message
(runs on request/response format)

× ○

Correlation Data Specifies correlation data (runs on
request/response format)

× ○

Subscription ID The identifier of the subscription (for the
broker)

× ×

Topic Alias Specifies a Topic Alias value × ○

User Property User-defined properties × ○

Subscri
be

Subscription ID Specifies the identifier of the subscription × ○

Correlation Data Reception of correlation data (runs on
request/response format)

× ○

No Local Option The setting of reception of messages from
the same client

× ○

Retain As Published The setting of the Retain flag in a
forwarded message

× ×

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-73

Type Function Overview MQTT Version

3.1.1 5.0

RetainHandling Setting of whether or not to receive
retained messages at the time of
subscribing

× ○

User Property User-defined properties × ○

11.7 LAN Port (MQTT)

11-74 WUME-GM1PGR-10

11.7.3 Overview of MQTT Functions

Main MQTT functions will be introduced.
The GM1 controller supports MQTT protocol versions 3.1.1 and 5.0 and allows you to readily
implement message publishing and subscribing using function blocks.

Key MQTT functions are described below.
● Topic

Topic refers to a string used to filter messages. The publisher creates or specifies a topic
related to a message and sends the message. The subscriber(s) specifies a topic it wants to
receive and receives messages. Topics can be specified like the path of a file using the
forward slash (/) as a delimiter. Sections separated by a forward slash are topic levels.

Factory/Area_A/Room1
Factory/Area_A/Room2
Factory/Area_B/Room1

A client can use two types of wildcards "+” and "#” to subscribe to topics.
"+” is used to specify any name for a specific topic level. If the "Factory/+/Room1” topic filter
is used for the three topics above, the subscriber can receive messages related to the
"Factory/Area_A/Room1” and "Factory/Area_B/Room1” topics.
"#" is used to specify any topic levels following a specific topic level pattern. If the "Factory/#"
topic filter is used for the three topics above, the subscriber can receive messages related to
all the topics.

● QoS（Quality of Service）
QoS in MQTT refers to the quality of service when exchanging messages with the broker
server. MQTT defines three levels of QoS: 0 to 2, which can be set individually for each
subscription and for each broker server. Please refer to "11.7.4 MQTT.MQTTClient (MQTT
Client Connection)" for the characteristics of each QoS level.
Note that if the QoS levels differ between the publishing client and the subscribing client, the
QoS level at which the subscribing client receives messages is less than or equal to the QoS
level used by the publishing client.

QoS settings Actual operation at subscribing
client

Publishing client Subscribing client

QoS0 QoS0 QoS0

QoS1 QoS0

QoS2 QoS0

QoS1 QoS0 QoS0

QoS1 QoS1

QoS2 QoS1

QoS2 QoS0 QoS0

QoS1 QoS1

QoS2 QoS2

● Retain function
The Retain function is a function used to allow the broker server to keep the last message
per topic. A basic MQTT operation is to forward a message to subscribers that are
connected when the message is sent. Thus, you cannot receive messages sent before you

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-75

subscribe. If a publisher sends a message with the Retain flag set to true, subscribers can
receive the message later when they subscribe.

● Will message
The Will message is a message that is forwarded when a client (irrespective of the
publishing client or subscribing client) is unexpectedly disconnected due to an error in the
network or power supply. Each client can register its Will message in advance when it
connects to the broker server, and in the event of an abnormal disconnection, other client
(the subscribing client) can be notified about the disconnection. If the client disconnects
normally, the Will message is not forwarded.
Like normal messages, the Will message is used with a topic and QoS level specified. The
Will message can also be used in combination with other functions such as the Retain
function.

● Property
Properties refer to optional features available in MQTT protocol version 5.0. While setting
properties is not mandatory, it allows the use of various convenient options such as topic
aliases and the delay in forwarding Will messages. By setting limits on properties, such as
the number of messages that can be processed simultaneously or the maximum packet size
that can be received, it is possible to retrieve the limitations of the connecting party during
the broker server and client connection. For details on property settings, please refer to the
descriptions of each function block.

11.7 LAN Port (MQTT)

11-76 WUME-GM1PGR-10

11.7.4 MQTT.MQTTClient (MQTT Client Connection)

This is a function block used to connect to an MQTT broker server.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xEnable BOOL FALSE TRUE: Executes the FB.
(connection)
FALSE: Stops the FB.
(disconnection)

uiPort UINT 0 Broker server port No.

xUseTLS BOOL FALSE Setting for using encryption in
communication with the broker
server
TRUE: Encrypts communication
with the broker server.

uiKeepAlive UINT 5 Keep alive time (unit: s)(Note 1)

pbWillMessage POINTER TO
BYTE

- An address to the Will message

uiWillMessageSize UINT 0 Size of the Will message (unit: byte)
(Note 2)

xWillRetain BOOL FALSE Will message Retain (keep
message on sever) setting
TRUE: Enables Will message
Retain (keep message on sever)
function.

eWillQoS MQTT_QOS MQTT_QOS.Qo
S0

Specifies the QoS level for the Will
Message.

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-77

Scope Name Type Default value Description

xCleanSession BOOL FALSE Specifies a session used for
connection with the broker server.
TRUE: Creates a new session.
FALSE: Use the existing session.

wsUsername WSTRING(255) "" User name(Note 3)

wsPassword WSTRING(1024) "" Password(Note 3)

wsWillTopic WSTRING(1024) "" Will message topic name

sClientId STRING(255) '' Client ID(Note 4)

If not specified, an ID is
automatically created. The created
ID varies with the MQTT protocol
version.
● Version 3.1.1: An ID is created

using 23 random half-width
alphabetic characters and
numbers.

● Version 5.0: An ID is created by
the broker server. For details,
refer to your broker server
specifications.

tPingInterval TIME TIME#2s0ms Interval at which a ping is
transmitted (unit: ms)(Note 5)

hCert RTS_IEC_HAND
LE

RTS_INVALID_
HANDLE

Client certificate handle
Do not use.

itfTLSContext NBS.ITLSContex
t

0 TLS connection context
Do not use.

itfAsyncProperty NBS.IasyncProp
erty

0 Background task property (for
connection process)
Do not change form the default
value.

udiTimeOut UDINT 0 Time to judge that connection
process times out (unit: μs)

eCommunicationMode COMMUNICATI
ON_MODE

COMMUNICATI
ON_MODE.TCP

Setting of communication mode to
be used
Do not change form the default
value.

sWebSocketUrl REFERENCE
TO
STRING(1024)

- WebSocket server URI
Do not use.

eMQTTVersion MQTT_VERSIO
N

MQTT_VERSIO
N.V3_1_1

MQTT protocol version

MQTTConnectProperti
es

REFERENCE
TO
MQTTConnectPr
operties

- Optional data used for connection
with the broker server (valid only for
protocol version 5.0)

mQTTWillProperties REFERENCE
TO
MQTTWillProper
ties

- Optional data used for sending Will
message (valid only for protocol
version 5.0)

11.7 LAN Port (MQTT)

11-78 WUME-GM1PGR-10

Scope Name Type Default value Description

Input /
output

sHostname STRING(80) '' Broker server host name (IP
address)

Output xDone BOOL FALSE TRUE: Connection is completed.
(Note 6)

xBusy BOOL FALSE TRUE: Function block is in
progress.

xError BOOL FALSE TRUE: An error has occurred in the
function block.

eMQTTError MQTT_ERROR MQTT_ERROR.
NO_ERROR

Refer to output error codes
in"11.7.8 MQTT.MQTT_ERROR
(Error Code)".

xConnectedToBroker BOOL FALSE Indicates the state of connection
with the broker server.
TRUE: Connected with the broker
server
FALSE: Not connected with the
broker server

eReaonCode MQTT_REASON
_CODE

- Refer to output reason codes (valid
only for protocol version 5.0)
in"11.7.7 MQTT.MQTT_REASON_
CODE (Reason Code)".

mQTTConnackProperti
es

REFERENCE
TO
MQTTConnackP
roperties

- Response data from the the broker
server (valid only for protocol
version 5.0)

(Note 1) Do not specify 0.
(Note 2) For the maximum message size that can be sent, refer to"11.7.2 MQTT Client Specifications".
(Note 3) Configure these settings if the broker server provides user name/ password settings.
(Note 4) The ID must be up to 23 characters.
(Note 5) If “0” is specified, no ping is sent. Set the ping transmission interval within the time specified for

uiKeepAlive.
(Note 6) The parameter turns TRUE at the completion of connection and remains only for one cycle.

■ COMMUNICATION_MODE (Enumeration type)

Name Value Description

TCP 0 Standard TCP/IP communication

WEB_SOCKET 1 TCP/IP communication via WebSocket (MQTT over
WebSocket)

■ MQTT_QOS (Enumeration type)

Name Value Description

QoS0 0 A message is sent only once. Even if the message has
not reached the recipient, a message is not
retransmitted.

QoS1 1 A message will be sent at least once. It is possible for
a message to be sent or delivered multiple times

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-79

Name Value Description
because the sender retransmits the message until it
gets an acknowledgment from the receiver.

QoS2 2 A message will be delivered exactly once to the
receiver. It takes more time to send a message at this
level compared to the QoS1 level, but duplication of
the message is less likely to occur.

■ MQTT_VERSION (Enumeration type)

Name Value Description

V3_1_1 0 Protocol version 3.1.1

V5 1 Protocol version 5.0

■ MQTTConnectProperties (Structure)
Optional data settings for connection with the MQTT broker server can be configured. This is
valid only for the protocol version 5.0.

Name Type Description

udiSessionExpiryInterval UDINT Sets a session expiry interval after disconnection
in seconds.
1 to 4,294,967,294: expiry interval (unit: s)
0: immediately discarded, 16#FFFFFFFF: stored
permanently

wsAuthenticationMethod WSTRING Authentication method name
Do not specify any value.

pbAuthenticationData POINTER TO BYTE Authentication data
Do not specify any value.

udiAuthenticationDataSize UDINT Authentication data size
Do not specify any value.

bRequestProblemInformation BYTE Reason code reception setting
Use this setting with the value fixed to 1.

bRequestResponseInformation BYTE Response information
Do not specify any value.

uiReceiveMaximum UINT The number of QoS1 and QoS2 messages that
the client can process concurrently

uiTopicAliasMaximum UINT The number of Topic Aliases that the client can
accept
Do not specify any value.

udiMaximumPacketSize UDINT The maximum packet size the client can
accept(Note 1)

1 to 4,294,967,295: packet size, 0: no limit

userProperties ARRAY [0..9] OF
MQTTStringPair

User-defined properties

(Note 1) This applies to the MQTT protocol packet size out of the total received packet.

11.7 LAN Port (MQTT)

11-80 WUME-GM1PGR-10

■ MQTTWillProperties (Structure)
Optional data settings for sending the Will message can be configured. This is valid only for the
protocol version 5.0.

Name Type Description

bPayloadFormatIndicator BYTE Payload format
Use this setting with the value fixed to 1.

udiMessageExpiryInterval UDINT Interval for which the broker server keeps the Will
message(Note 1)

1 to 4,294,967,295: keeping time (unit: s)
0, not specified: kept permanently

wsContentType WSTRING Payload content type
Do not specify any value.

wsResponseTopic WSTRING Topic name for a response message(Note 2)

udiCorrelationDataSize UDINT Correlation data size (unit: byte)(Note 2)

paCorrelationData POINTER TO BYTE Address to correlation data(Note 2)

udiWillDelayInterval UDINT A delay in publishing the Will message
1 to 4,294,967,295: delay (unit: s)
0, not specified: immediately published

userProperties ARRAY [0..9] OF
MQTTStringPair

User-defined properties

(Note 1) To use this, enable the Retain function.
(Note 2) If you want to implement request/response type communication using MQTT, you can use it. The

maximum size of the correlation data that can be set is 256 bytes.

■ MQTTStringPair (Structure)
This is used when setting user-specific properties. It is effective in protocol version 5.0.

Name Type Description

wsKey WSTRING Property name

wsValue WSTRING Value(Note 1)

(Note 1) If you use it, you need to set it together with wsKey.

■ MQTTConnackProperties (Structure)
This is the option data of the broker server. The value is stored when the connection with the
broker server is completed. Since it contains the constraints of the broker server, it can be used
to determine the validity of the input values of MQTTPublish/MQTTSubscribe. It is effective in
protocol version 5.0.

Name Type Description

udiSessionExpiryInterval UDINT A session expiry interval after disconnection
1 to 4,294,967,294: expiry interval (unit: s)
0: immediately discarded, 16#FFFFFFFF: stored
permanently

wsAssignedClientIdentifier WSTRING Client ID issued by the broker server

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-81

Name Type Description
Issued when sClientId is not set.

uiServerKeepAlive UINT Keep alive time assigned by the broker server
(unit: s)(Note 1)

xAuthPacketReceived BOOL Property name

wsAuthenticationMethod WSTRING Authentication method name

bAuthenticationData ARRAY [0..256] OF
BYTE

Data used for authentication

wsResponseInformation WSTRING Data for the Request/Response function

wsReasonString WSTRING Refer to reason codes
in"11.7.7 MQTT.MQTT_REASON_CODE (Reason
Code)".

uiReceiveMaximum UINT The number of QoS1 and QoS2 messages that
the broker server can process concurrently

uiTopicAliasMaximum UINT The number of Topic Aliases that the broker server
can accept

bMaximumQoS BYTE QoS level the broker server can use
0: only QoS0, 1: up to QoS1, 2, 255: all QoS

bRetainAvailable BYTE Retain function availability setting
0: Retain not permitted, 1, 255: Retain permitted

udiMaximumPacketSize UDINT The maximum packet size the broker server can
accept
1 to 4,294,967,295: packet size, 0: no limit

bWildcardSubscriptionAvailable BYTE Setting of the availability of wildcards in topic
name
0: wildcards not permitted, 1, 255: wildcards
permitted

bSubscriptionIdentifierAvailable BYTE Subscription ID availability setting
0: subscription ID not permitted, 1, 255:
subscription ID permitted

bSharedSubscriptionAvailable BYTE Shared subscription availability setting
0: shared subscriptions not permitted, 1, 255:
shared subscriptions permitted

userProperties ARRAY [0..9] OF
MQTTStringPair

User-defined properties

(Note 1) If the uiServerKeepAlive value is specified, the client overwrites the uiKeepAlive setting and operates.
At the same time, the ping transmission interval changes to half the uiServerKeepAlive value.

● If an error occurs, the output of eMQTTError will remain even if xEnable is set to FALSE. After
removing the cause of the error, executing the function block again will reset eMQTTError to
NO_ERROR.

11.7 LAN Port (MQTT)

11-82 WUME-GM1PGR-10

11.7.5 MQTT.MQTTPublish (MQTT Publish Function)

This is a function block for sending messages to the MQTT broker server. To use it, you must
first execute MQTTClient and establish a connection with the broker server.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Transmission of a
message

udiTimeOut UDINT 1000000 Timeout time for transmission
process (unit: μs)
0: Do not specify.

eQoS MQTT_QOS MQTT_QOS.Qo
S0

Specifies QoS level between the
MQTTPublish and broker server.
Refer to"11.7.4 MQTT.MQTTClient
(MQTT Client Connection)".

xReDelivery BOOL FALSE Specifies the re-delivery flag (DUP
Flag).(Note 1)

TRUE: Flag ON
FALSE: Flag OFF

xRetain BOOL FALSE Message Retain (keep message on
sever) setting
TRUE: Retain enabled
FALSE: Retain disabled

pbPayload POINTER TO
BYTE

- An address to the sent
message(Note 2)

udiPayloadSize UDINT 0 Size of the sent message (unit:
byte)(Note 2)

mQTTPublishPropertie
s

REFERENCE
TO
MQTTPublishPr
operties

- Optional data used for sending
messages (valid only for MQTT
protocol version 5.0)

Input /
output

mqttClient MQTTClient - Reference to MQTTClient sending
the message

wsTopicName WSTRING(1024) "" Topic name of the message to be
sent

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-83

Scope Name Type Default value Description

Output xDone BOOL FALSE TRUE: Transmission is completed.
(Note 3)

xBusy BOOL FALSE TRUE: Function block is in
progress.

xError BOOL FALSE TRUE: An error has occurred in the
function block.

eMQTTError MQTT_ERROR MQTT_ERROR.
NO_ERROR

Refer to output error codes
in"11.7.8 MQTT.MQTT_ERROR
(Error Code)".

(Note 1) To send QoS0 messages, specify FALSE.
(Note 2) For the maximum message size that can be sent, refer to"11.7.2 MQTT Client Specifications".
(Note 3) The parameter turns TRUE at the completion of transmission and remains only for one cycle.

■ MQTTPublishProperties (Structure)
Optional data settings for sending messages can be configured. This is valid only for the
protocol version 5.0.

Name Type Description

bPayloadFormatIndicator BYTE Payload format
Use this setting with the value fixed to 1.

udiMessageExpiryInterval UDINT Interval for which the broker server keeps the
message(Note 1)

1 to 4,294,967,295: keeping time (unit: s)
0, not specified: kept permanently

wsContentType WSTRING Payload content type
Do not specify any value.

wsResponseTopic WSTRING Topic name for a response message(Note 2)

udiCorrelationDataSize UDINT Correlation data size (unit: byte)(Note 2)

paCorrelationData POINTER TO BYTE Address to correlation data(Note 2)

udiSubscriptionIdentifier UDINT Subscription ID of the last received message
(corresponding to the MQTTSubscribe output)
Do not specify this when an MQTTPublish
instance is executed.

uiTopicAlias UINT Topic name alias(Note 3)

userProperties ARRAY [0..9] OF
MQTTStringPair

Refer to user-defined properties
in"11.7.4 MQTT.MQTTClient (MQTT Client
Connection)".

(Note 1) To use this, enable the Retain function.
(Note 2) If you want to implement request/response type communication using MQTT, you can use it. The

maximum size of the correlation data that can be set is 256 bytes.
(Note 3) Specify a value less than or equal to the maximum Topic Alias number accepted by the broker server.

The maximum Topic Alias number accepted by the broker server is output to the variable below when
an MQTTClient instance is executed.
MQTTClient.mQTTConnackProperties.uiTopicAliasMaximum

11.7 LAN Port (MQTT)

11-84 WUME-GM1PGR-10

● If you are already using 20 MQTTSubscribe instances with the same client, the eMQTTError of
MQTTPublish will output
MAX_NUMBER_OF_PUBLISHER_AND_SUBSCRIBER_EXCEEDED, and it will not execute.
At this time, xError will not become TRUE.

● After an error occurs, if the cause of the error is resolved while xExecute remains TRUE, the
output of eMQTTError may return to NO_ERROR. At this time, xError will remain TRUE.

● Use the parameters in accordance with the broker server settings you use.
● For the protocol version 5.0, it is possible to determine whether input values are valid using the

MQTTClient.mQTTConnackProperties value.

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-85

11.7.6 MQTT.MQTTSubscribe (MQTT Subscribe Function)

This is a function block for registering a subscription with the MQTT broker server. To use it, you
must first execute MQTTClient and establish a connection with the broker server.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xEnable BOOL FALSE TRUE: Execution of the FB is
enabled.
FALSE: Stops the FB. (Cancels the
subscription)

eSubscribeQoS MQTT_QOS MQTT_QOS.Qo
S0

Specifies QoS level between the
broker server and MQTTSubscribe.
Refer to"11.7.4 MQTT.MQTTClient
(MQTT Client Connection)".

pbPayload POINTER TO
BYTE

0 An address to the received
message storage destination

udiMaxPayloadSize UDINT 0 Size of the received message
storage destination (unit: byte)

eFilterMode FILTER_MODE FILTER_MODE.
FILTER_ON

Topic name filter setting

mQTTCSubscribeProp
erties

REFERENCE
TO
MQTTSubscribe
Properties

- Optional data used for registering
subscriptions (valid only for protocol
version 5.0)

udiTimeout UDINT 1000000 Timeout time for subscription
registration process (unit: μs)

Input /
output

mqttClient MQTTClient - Reference to MQTTClient
registering the subsctiption

wsTopicFilter WSTRING(1024) "" Topic name of the message to be
received(Note 1)

Output xDone BOOL FALSE TRUE: Completion of the
subscription registration

xBusy BOOL FALSE TRUE: Function block is in
progress.

xError BOOL FALSE TRUE: An error has occurred in the
function block.

11.7 LAN Port (MQTT)

11-86 WUME-GM1PGR-10

Scope Name Type Default value Description

eMQTTError MQTT_ERROR MQTT_ERROR.
NO_ERROR

Refer to output error codes
in"11.7.8 MQTT.MQTT_ERROR
(Error Code)".

xReceived BOOL FALSE TRUE: A message has been
received.(Note 2)

udiPayloadSize UDINT 0 Size of the received message

xSubscribeActive BOOL FALSE Status of subscription registration
TRUE: Registered (waiting to
receive messages)
FALSE: Unregistered

wsLastTopic WSTRING(1024) "" Topic name of the last received
message

mQTTPublishPropertie
s

REFERENCE
TO
MQTTPublishPr
operties

- Optional data of the last received
message. Refer
to"11.7.5 MQTT.MQTTPublish
(MQTT Publish Function)".

(Note 1) For the maximum length of the receivable topic name and the maximum number of topic levels, please
refer to"11.7.2 MQTT Client Specifications". Also, do not use the same topic name between
MQTTSubscribes using the same MQTTClient instance.

(Note 2) The parameter turns TRUE at the completion of message reception and remains only for one cycle.

■ FILTER_MODE (Enumeration type)

Name Value Description

FILTER_ON 0 Receives only messages under the same topic name
specified in wsTopicFilter.

FILTER_OFF 1 Receives all messages addressed to the same client
irrespective of the topic name specified in
wsTopicFilter.(Note 1)

FILTER_NONE 2 Not receive all messages irrespective of the topic
name specified in wsTopicFilter.(Note 2)

(Note 1) Only messages published to other subscription topics in which mqttClient is set to the same
MQTTClient instance can be received.

(Note 2) In this mode, you are only allowed to register/cancel subscriptions to topic names.

■ MQTTSubscribeProperties (Structure)
Optional data settings for registering subscriptions can be configured. This is valid only for the
protocol version 5.0.

Name Type Description

udiSubscriptionIdentifier UDINT Subscription ID

udiCorrelationDataSize UDINT Size of correlation data (unit: byte)(Note 1)(Note 2)

paCorrelationData POINTER TO BYTE Address to correlation data(Note 1)

userProperties ARRAY [0..9] OF
MQTTStringPair

Refer to user-defined properties
in"11.7.4 MQTT.MQTTClient (MQTT Client
Connection)".

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-87

Name Type Description

xNoLocalOption BOOL TRUE: Reception of messages from the same
client is permitted.
FALSE: Reception of messages from the same
client is not permitted.

xRetainAsPublished BOOL The setting of the Retain flag in a forwarded
message
Do not specify any value.

eRetainHandling MQTT_RETAIN_HAND
LING

Setting of whether or not to receive retained
messages at the time of subscription registration

(Note 1) If you want to implement request/response type communication using MQTT, you can use it. The
maximum size that can be set is 256 bytes.

(Note 2) Please note that if the size of the received message's correlation data exceeds
udiCorrelationDataSize, the correlation data of the received message will be discarded.

■ MQTT_RETAIN_HANDLING (Enumeration type)

Name Value Description

Time_Of_Subscribe 0 The client receives retained messages at the time of
subscription registration.

Not_Exists 1 The client receives retained messages only when a
new subscription is registered.

Do_Not_Send 2 The client does not receive retained messages at the
time of subscription registration.

● If a single client is already using 20 instances of MQTTSubscribe, any subsequent
MQTTSubscribe instances beyond the 21st will output
MAX_NUMBER_OF_PUBLISHER_AND_SUBSCRIBER_EXCEEDED in eMQTTError and will
not execute. At this time, xError will not become TRUE.

● If you are receiving a string type message, be sure to set NULL (0) at the end of the message.
● Use the parameters in accordance with the broker server settings you use.
● For the protocol version 5.0, it is possible to determine whether input values are valid using the

MQTTClient.mQTTConnackProperties value.

11.7.7 MQTT.MQTT_REASON_CODE (Reason Code)

This is an enumeration type code that is output when a function block of the MQTT function is
executed. Each error code indicates the result of an operation. The reason codes are output
only if the protocol version 5.0 is used.

■ MQTT.MQTT_ERROR (Enumeration type)

Name Value Description

Success 0 Successful operation, granted QoS “0” (at the time of
MQTTSubscribe execution)

Granted_QoS_1 1 Granted QoS “1”

11.7 LAN Port (MQTT)

11-88 WUME-GM1PGR-10

Name Value Description

Granted_QoS_2 2 Granted QoS “2”

Disconnect_with_Will_Message 4 Disconnected with Will message

No_matching_subscribers 16 Subscribers that match the filter name are
unregistered.

No_subscription_existed 17 The specified subscription does not exist.

Continue_authentication 24 Continued authentication

Re_authenticate 25 Re-authentication

Unspecified_error 128 An unspecified error

Malformed_Packet 129 A malformed packet

Protocol_Error 130 Protocol error

Implementation_specific_error 131 An implementation-specific error resulting from a valid
packet

Unsupported_Protocol_Version 132 Unsupported protocol version

Client_Identifier_not_valid 133 Client ID not valid

Bad_User_Name_or_Password 134 Bad user name or password

Not_authorized 135 Not authorized

Server_unavailable 136 Broker server is unavailable.

Server_busy 137 Broker Server is busy.

Banned 138 Banned connection

Server_shutting_down 139 Broker sever shutting down

Bad_authentication_method 140 Bad authentication method

Keep_Alive_timeout 141 Keep alive timeout

Session_taken_over 142 Session has been taken over.

Topic_Filter_invalid 143 Topic filter is invalid.

Topic_Name_invalid 144 Topic name is invalid.

Packet_Identifier_in_use 145 Packet ID in use

Packet_Identifier_not_found 146 Packet ID cannot not be found.

Receive_Maximum_exceeded 147 Reached Receive Maximum limit.

Topic_Alias_invalid 148 Topic Alias is invalid.

Packet_too_large 149 The packet size is too large.

Message_rate_too_high 150 The received data rate is too high.

Quota_exceeded 151 Quota exceeded

Administrative_action 152 Disconnection due to an administrative action

Payload_format_invalid 153 Payload format is invalid.

Retain_not_supported 154 Retain not supported

QoS_not_supported 155 QoS not supported

Use_another_server 156 Use another broker server (temporary change).

Server_moved 157 Move to another broker server location (permanent
change).

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-89

Name Value Description

Shared_Subscriptions_not_supported 158 Shared Subscriptions not supported

Connection_rate_exceeded 159 The connection data rate is too high.

Maximum_connect_time 160 The maximum connection time has been exceeded.

Subscription_Identifiers_not_supported 161 Subscription IDs not supported

Wildcard_Subscriptions_not_supported 162 Wildcard Subscriptions not supported

11.7.8 MQTT.MQTT_ERROR (Error Code)

This is an enumeration type error code that is output when a function block of the MQTT
function is executed.

■ MQTT.MQTT_ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

TCP_INIT_ERROR 1 TCP socket initialization has failed.

TCP_READ_ERROR 2 An error has occurred while received data is read.

TCP_WRITE_ERROR 3 An error has occurred while data is transmitted.

MAX_RESPONSE_SIZE_EXCEEDED 4 The packet size of the received data is greater than
the maximum packet size.

DECODE_REMAINING_LENGTH_MAL
FORMED

5 An invalid packet format is detected.

RESPONSE_PACKET_EMPTY 6 Empty received data is detected.

INVALID_PACKET_TYPE 7 An invalid packet type is detected inside the fixed
header.

INVALID_PACKET_BIT_FLAGS 8 An invalid packet bit flag is detected inside the fixed
header.

INVALID_PACKET 9 Invalid packet

KEEP_ALIVE_TIME_EXCEEDED 10 Exceeded keep alive time

WRONG_SESSION_PRESENT_CONN
ACK

11 A wrong session is detected in the CONNACK packet.

UNACCEPTABLE_PROTOCOL_VERIO
N

12 Connection is rejected due to an unacceptable
protocol version.

IDENTIFIER_REJECTED 13 The client ID is rejected and so connection is rejected.

SERVER_UNAVAILABLE 14 Connection is rejected because the broker server is
unavailable.

BAD_USER_NAME_PASSWORD 15 Connection is rejected because the user name or
password is not correct.

NOT_AUTHORIZED 16 Connection is rejected due to unauthorized access.

TOPIC_FILTER_EMPTY 17 The topic filter is empty.

TOPIC_NAME_NOT_ALLOWED_WILD
CARD

18 A wildcard is contained in the topic name.

11.7 LAN Port (MQTT)

11-90 WUME-GM1PGR-10

Name Value Description

TOPIC_INVALID_LENGTH 19 The topic length is outside the effective range.

TOPIC_IS_EMPTY 20 The topic name is empty.

SUBSCRIBE_FAILURE 21 Failed to register subscription.

ADD_MQTT_PACKET_COLLECTION_
ERROR

22 A collection error is detected when an MQTT packet is
added to the stack.

ADD_SUBSCRIBER_COLLECTION_ER
ROR

23 A collection error is detected when a subscriber is
added to the stack.

REMOVE_SUBSCRIBER_COLLECTIO
N_ERROR

24 A collection error is detected when a subscriber is
removed from the stack.

ACKNOWLEDGE_TIMEOUT 25 Ping packet response was not within the specified time
interval (tPingInterval × 2).

ALLOCATED_PAYLOAD_SIZE_EXCEE
DED

26 The payload size of the received data is greater than
the allocated memory size.

MAX_NUMBER_OF_PACKETS_EXCE
EDED

27 Exceeded the maximum packet size.

CAN_NOT_ADD_ELEMENT_TO_QUEU
E

28 The element cannot be added to the queue (it may
exceed the maximum size).

QUERYINTERFACE_ERROR 29 Failed to call the “QUERYINTERFACE” function (an
internal error).

TIME_OUT 30 Timeout is detected.

INVALID_LICENSE 31 A valid license is not found, or the demo mode period
expired.

CLIENT_NOT_CONNECTED 32 MQTTClient is not connected to the broker server.

RESOLVE_HOSTNAME_FAILED 33 Host name cannot be resolved.

MAX_REQUEST_SIZE_EXCEEDED 34 The size of the issued packet is greater than the
maximum packet size.

UNSUPPORTED_VERSION 35 Unsupported MQTT version

OPERATION_NOT_SUCCESSFUL 36 The operation failed. For details, refer to eReaonCode.

SEND_QUOTA_LIMIT_REACHED 37 Reached Receive Maximum limit.

INVALID_REASON_CODE 38 The reason code is invalid.

MAX_RECEIVE_BUFFER_SIZE_EXCE
EDED

39 A packet exceeding the receive buffer size has been
received.

MAX_TOPIC_LEVEL_EXCEEDED 40 Exceeded the maximum value of topic level

MAX_STRING_LENGTH_EXCEEDED 41 Exceeded the maximum length of TRING (1024)

MAX_CORRELATION_DATA_LENGTH
_EXCEEDED

42 Exceeded the maximum size of correlation data

MAX_NUMBER_OF_PUBLISHER_AND
_SUBSCRIBER_EXCEEDED

43 Exceeded the maximum number of publish and
subscribe that can be executed simultaneously

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-91

11.7.9 Sample Example: MQTT Communication

A publish/subscribe mode communication example using the MQTT functions is described
below.

In this program example, message publishing (sending) and subscribing (receiving) are
performed by one client. (Either of MQTT protocol version 3.1.1 and 5.0 is used.)
● System configuration

● Description of process
Registering an MQTT client on a broker server to send and receive a message on the topic
below.

- Topic name: Test
- Message: test123456789

1. Set bMQTT_Connect to TRUE to establish connection with the broker server.
To change the MQTT protocol version you use, change the eVersion value before this
step.

2. Set bMQTT_Receive to TRUE to register a subscriber.
3. Set bMQTT_Send to TRUE to send the message to the broker server.

The sent message is forwarded from the broker server to the subscriber registered in the
preceding step. (In this example, the message is stored in sMQTT_Receivemessage.)

● Declaration section

 PROGRAM MQTT_Connection
 VAR

 //FB Instance
 MQTTClient_0 : MQTT.MQTTClient;
 MQTTPublisher_0 : MQTT.MQTTPublish;
 MQTTSubscriber_0 : MQTT.MQTTSubscribe;

 //MQTT Parameter
 sHostname : STRING(255) := '192.168.1.100'; // Hostname or ip
address or URL
 uiPort : UINT := 1883; // Port of the MQT
T broker
 eVersion : MQTT.MQTT_VERSION := MQTT.MQTT_VERSION.V5; // MQTT protocol v
ersion

 //MQTT Properties (Set value if necessary)
 sConnectProperties : MQTT.MQTTConnectProperties;
 sWillProperties : MQTT.MQTTWillProperties;
 sPublishProperties : MQTT.MQTTPublishProperties;
 sSubscribeProperties : MQTT.MQTTSubscribeProperties;

11.7 LAN Port (MQTT)

11-92 WUME-GM1PGR-10

 bMQTT_Send : BOOL; // Publish exe
 bMQTT_Connect : BOOL; // Client exe
 bMQTT_Receive : BOOL; // Subscribe exe
 sMQTT_Receivemessage : STRING; // Receive Buffer

 wsMQTT_Topic :WSTRING(1024) := "Test"; // Topic Name/Filter
 sMQTT_sendmessage :STRING := 'test123456789'; // Send Buffer

 bConnect : BOOL;
 bsendOK : BOOL;
 breceiveOK : BOOL;

 END_VAR

● Implementation section

// MQTTClient Connect
 MQTTClient_0(xEnable := bMQTT_Connect,
 uiPort := uiPort,
 eMQTTVersion := eVersion,
 mQTTConnectProperties := sConnectProperties,
 sHostname := sHostname);

 bConnect := MQTTClient_0.xConnectedToBroker; // Get server connecti
on status

IF bConnect = TRUE THEN
 // publish a message
 MQTTPublisher_0(xExecute := bMQTT_Send,
 eQoS := MQTT.MQTT_QOS.QoS0,
 pbPayload := ADR(sMQTT_sendmessage),
 udiPayloadSize := DINT_TO_UDINT(Stu.StrLenA(ADR(
sMQTT_sendmessage))),
 mQTTPublishProperties := sPublishProperties,
 mqttClient := MQTTClient_0,
 wsTopicName := wsMQTT_Topic);

 IF MQTTPublisher_0.xDone = TRUE THEN
 bsendOK := TRUE;
 bMQTT_Send := FALSE;
 END_IF

 // Subscribe registration
 MQTTSubscriber_0(xEnable := bMQTT_Receive,
 eSubscribeQoS := MQTT.MQTT_QOS.QoS0,
 pbPayload := ADR(sMQTT_Receivemessage),
 udiMaxPayloadSize := SIZEOF(sMQTT_Receivemessage
),
 mQTTSubscribeProperties := sSubscribeProperties,
 mqttClient := MQTTClient_0,
 wsTopicFilter := wsMQTT_Topic);

 // Set the terminating character when receiving a message
 IF MQTTSubscriber_0.xReceived = TRUE THEN

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-93

 breceiveOK := TRUE;
 TerminateString(psIn := ADR(sMQTT_Receivemessage),
 udiLength := MQTTSubscriber_0.udiPayloadSize);
 END_IF

END_IF

● * Inside FUNCTION TerminateString

// Terminates the STRING psIn at position udiLength
FUNCTION TerminateString : BOOL
VAR_INPUT
 psIn　　　: POINTER TO BYTE; // Pointer to STRING
 udiLength : UDINT; // Length of psIn
END_VAR
VAR
END_VAR

psIn[udiLength] := 0;
TerminateString := TRUE;

11.7.10 Example: MQTT Communication Using Filter Mode

Below is an example of an MQTT communication program using Filter Mode.

In this program example, FILTER_MODE is used to mirror all messages intended for the same
client. Additionally, by utilizing the Subscription ID feature, it is possible to discern to which
subscribe the messages belong. (The Subscription ID is only supported in MQTT protocol
version 5.0.)
● Similar to system configuration

"11.7.9 Sample Example: MQTT Communication"
● Processing Content

Send a message (axis data) to the topic of MQTTSubscribe_00.

・MQTTPublish_10
Topic：Factory/Area_A/Axis1

● MQTTClient_1
● MQTTClient_0
・MQTTPublish_00

Topic：Factory/Area_A/Axis1
FilterMode：FILTER_ON
SubscriptionID：100

・MQTTPublish_01
Topic：Factory_Area_A
FilterMode：FILTER_OFF
SubscriptionID：101

1. Set bCliEna_0 to TRUE to register a subscription with the broker server.
2. Set bCliEna_1 and bPubExe_10 to TRUE to send a message to the broker server.

The message sent is forwarded from the broker server to the subscription registered in
the previous step. Although the message is sent to the topic of MQTTSubscriber_00, it is
also stored in MQTTSubscriber_01. Additionally, the subscription ID of

11.7 LAN Port (MQTT)

11-94 WUME-GM1PGR-10

MQTTSubscriber_00 is stored in
MQTTSubscriber_01.MQTTPublishProperties.udiSubscriptionIdentifier.

● Declaration section

 PROGRAM MQTT_FilterMode
 VAR

 //FB Instance
 MQTTClient_0 : MQTT.MQTTClient;
 MQTTSubscribe_00 : MQTT.MQTTSubscribe;
 MQTTSubscribe_01 : MQTT.MQTTSubscribe;

 MQTTClient_1 : MQTT.MQTTClient;
 MQTTPublish_10 : MQTT.MQTTPublish;

 //MQTT Properties (Set SubscriptionID)
 sSubProp_00 : MQTT.MQTTSubscribeProperties := (udiSubscriptionIdentifi
er := 100);
 sSubProp_01 : MQTT.MQTTSubscribeProperties := (udiSubscriptionIdentifi
er := 101);

 //MQTT Parameter
 sHostname : STRING(255) := '192.168.1.100'; // Hostname or IPaddress o
r URL
 uiPort : UINT := 1883; // Port of the MQTT broker

 bCliEna_0 : BOOL := FALSE;
 bSubEna_00 : BOOL := TRUE;
 bSubEna_01 : BOOL := TRUE;
 eVersion_0 : MQTT.MQTT_VERSION := MQTT.MQTT_VERSION.V5;
 wsTopic_00 : WSTRING(1024) := "Factory/Area_A/Axis1";
 fAxisValue : LREAL := 0;
 wsTopic_01 : WSTRING(1024) := "Factory_Area_A";
 abyRecvData : ARRAY[0..SIZEOF(LREAL)-1] OF BYTE; // Payload data Check

 bCliEna_1 : BOOL := FALSE;
 bPubExe_10 : BOOL := FALSE;
 eVersion_1 : MQTT.MQTT_VERSION := MQTT.MQTT_VERSION.V5;
 fSendData : LREAL := 0;

 END_VAR

● Implementation section

(* Subscribe side *)
// MQTTClient Connect
MQTTClient_0(
 xEnable := bCliEna_0,
 uiPort := uiPort,
 sClientId := 'A',
 sHostname := sHostname,
 eMQTTVersion := eVersion_0,
);

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-95

// Subscribe registration (If MQTTClient_0 succeeds, run automatically)
MQTTSubscribe_00(
 xEnable := bSubEna_00 AND MQTTClient_0.
xConnectedToBroker,
 udiMaxPayloadSize := SIZEOF(fAxisValue),
 pbPayload := ADR(fAxisValue),
 eFilterMode := MQTT.FILTER_MODE.FILTER_ON,
 mqttClient := MQTTClient_0,
 wsTopicFilter := wsTopic_00,
 mQTTSubscribeProperties := sSubProp_00,
);

MQTTSubscribe_01(
 xEnable := bSubEna_01 AND MQTTClient_0.
xConnectedToBroker,
 pbPayload := ADR(abyRecvData),
 udiMaxPayloadSize := SIZEOF(abyRecvData),
 eFilterMode := MQTT.FILTER_MODE.FILTER_OFF,
 mqttClient := MQTTClient_0,
 wsTopicFilter := wsTopic_01,
 mQTTSubscribeProperties := sSubProp_01,
);

(* Publish side *)
// MQTTClient Connect
MQTTClient_1(
 xEnable := bCliEna_1,
 uiPort := uiPort,
 sClientId := 'B',
 sHostname := sHostname,
 eMQTTVersion := eVersion_1,
);

fSendData := Axis1.fActPosition;

MQTTPublish_10(
 xExecute := bPubExe_10 AND MQTTClient_1.xConnectedTo
Broker,
 pbPayload := ADR(fSendData),
 udiPayloadSize := SIZEOF(fSendData),
 mqttClient := MQTTClient_1,
 wsTopicName := wsTopic_00,
);

11.7.11 MQTT Communication: Request/Response Type Communication

Below is an example of the Request/Response type of communication using MQTT
functionality.

In this program example, properties are used to perform message publish (send) and subscribe
(receive) in a request/response manner. (This is only supported in MQTT protocol version 5.0.)
● Similar to system configuration

11.7 LAN Port (MQTT)

11-96 WUME-GM1PGR-10

"11.7.9 Sample Example: MQTT Communication"
● Processing Content

The request side (MQTTClient_0) sends a message to the response side with the response
destination topic name (ResponseTopic) and an ID (CorrelationData) to identify the request.
When the response side (MQTTClient_1) receives a message with a ResponseTopic set, it
reads the attached ResponseTopic and CorrelationData and returns a message (axis data)
addressed to ResponseTopic. The request side, upon receiving the response message,
compares the CorrelationData of the response message with the initially provided
CorrelationData to confirm that it is a response to the request they sent.

・MQTTPublish_0
Topic：Factory/Area_A/Axis1
ResponseTopic ：Axis1_Res
CorrelationData：10001

● MQTTClient_0(Request) ● MQTTClient_1(Response)
・MQTTSubscribe_1

Topic：Factory/Area_A/Axis1
・PublishProperties

・MQTTPublish_1
Topic：Axis1_Res
CorrelationData：10001

・MQTTSubscribe_0
Topic：Axis1_Res

1. Set bCliEna_0 and bCliEna_1 to TRUE to register a subscription with the broker server.
2. Set bPubExe_0 to TRUE to send a message to the broker server.

If the response side receives a message with a ResponseTopic set, it automatically
returns a message using the received message's ResponseTopic and CorrelationData.
When the request side successfully receives a response, bComplete becomes TRUE.

● Declaration section

 PROGRAM MQTT_RequestResponse
 VAR
 //FB Instance
 MQTTClient_0 : MQTT.MQTTClient;
 MQTTPublish_0 : MQTT.MQTTPublish;
 MQTTSubscribe_0 : MQTT.MQTTSubscribe;

 MQTTClient_1 : MQTT.MQTTClient;
 MQTTPublish_1 : MQTT.MQTTPublish;
 MQTTSubscribe_1 : MQTT.MQTTSubscribe;

 //MQTT Properties (Set value if necessary)
 sPubProp_0 : MQTT.MQTTPublishProperties;
 sPubProp_1 : MQTT.MQTTPublishProperties;

 //MQTT Parameter
 sHostname : STRING(255) := '192.168.1.100'; // Hostname or IPadd
ress or URL
 uiPort : UINT := 1883; // Port of the MQTT broker
 eVersion : MQTT.MQTT_VERSION:= MQTT.MQTT_VERSION.V5; // MQTT protoco
l version

 bCliEna_0 : BOOL := FALSE;
 bPubExe_0 : BOOL := FALSE;
 bSubEna_0 : BOOL := TRUE;

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-97

 bSendData : BOOL := FALSE;

 bCliEna_1 : BOOL := FALSE;
 bSubEna_1 : BOOL := TRUE;
 bPubExe_1 : BOOL := FALSE;

 wsTopic_1 : WSTRING(1024) := "Factory/Area_A/Axis1";
 abyRecvData : ARRAY[0..(MQTT.MQTTParam.g_udiMaxPayloadSize-1)] OF BYTE;

 // RequestResponse variable
 wRequestID : WORD := 10001;
 wsRequestTopic : WSTRING(1024):= "Axis1_Res";
 bRequestData : BOOL := 0;
 pwRecvReqID : POINTER TO WORD;

 wsResponseTopic: WSTRING(1024):= "";
 bResponseData : BOOL := FALSE;

 bComplete : BOOL := FALSE;
 END_VAR

● Implementation section

(* Request side *)
// MQTTClient Connect
MQTTClient_0(
 xEnable := bCliEna_0,
 uiPort := uiPort,
 sClientId := 'Request',
 sHostname := sHostname,
 eMQTTVersion := eVersion,
);

// Prepare SubscriberFB to receive response data (If MQTTClient_0 succeeds,
 run automatically)
MQTTSubscribe_0(
 xEnable := bSubEna_0 AND MQTTClient_0.xCon
nectedToBroker,
 pbPayload := ADR(bRequestData),
 udiMaxPayloadSize := SIZEOF(bRequestData),
 mqttClient := MQTTClient_0,
 wsTopicFilter := wsRequestTopic,
);

// Prepare a SubscribeFB for Response and then execute a PublishFB
IF MQTTSubscribe_0.xSubscribeActive = TRUE THEN

 // Set the receiving topic and identification number
 // Use "CorrelationData" to link request and response messages
 sPubProp_0.wsResponseTopic := wsRequestTopic;
 sPubProp_0.paCorrelationData := ADR(wRequestID);
 sPubProp_0.udiCorrelationDataSize := SIZEOF(wRequestID);

 MQTTPublish_0(
 xExecute := bPubExe_0,

11.7 LAN Port (MQTT)

11-98 WUME-GM1PGR-10

 pbPayload := ADR(bSendData),
 udiPayloadSize := SIZEOF(bSendData),
 xRetain := true,
 mqttClient := MQTTClient_0,
 wsTopicName := wsTopic_1,
 mQTTPublishProperties := sPubProp_0,
);

 IF MQTTPublish_0.xDone = TRUE THEN
 bPubExe_0 := FALSE;
 END_IF
END_IF

//When you receive a Response message, check the identification number
IF MQTTSubscribe_0.xReceived = TRUE THEN
 pwRecvReqID := MQTTSubscribe_0.mQTTPublishProperties.paCorrelationDa
ta;
 IF pwRecvReqID^ = wRequestID THEN
 bComplete := TRUE;
 END_IF
END_IF

(* Response side *)
// MQTTClient Connect
MQTTClient_1(
 xEnable := bCliEna_1,
 uiPort := uiPort,
 sClientId := 'Response',
 sHostname := sHostname,
 eMQTTVersion := eVersion,
);

// Subscribe registration (If MQTTClient_1 succeeds, run automatically)
MQTTSubscribe_1(
 xEnable := bSubEna_1 AND MQTTClient_1.xCon
nectedToBroker,
 pbPayload := ADR(abyRecvData),
 udiMaxPayloadSize := SIZEOF(abyRecvData),
 mqttClient := MQTTClient_1,
 wsTopicFilter := wsTopic_1,
);

// Automatically respond when ResponseTopic is included in received Message
IF MQTTSubscribe_1.xReceived = TRUE
AND MQTTSubscribe_1.mQTTPublishProperties.wsResponseTopic <> "" THEN

 bResponseData := Axis1.bError;

 // Get response destination topic and identification number from receiv
ed Message
 sPubProp_1.udiCorrelationDataSize := MQTTSubscribe_1.mQTTPublishPrope
rties.udiCorrelationDataSize;
 sPubProp_1.paCorrelationData := MQTTSubscribe_1.mQTTPublishPrope
rties.paCorrelationData;
 wsResponseTopic := MQTTSubscribe_1.mQTTPublishPrope

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-99

rties.wsResponseTopic;

 bPubExe_1 := TRUE;

END_IF

MQTTPublish_1(
 xExecute := bPubExe_1,
 pbPayload := ADR(bResponseData),
 udiPayloadSize := SIZEOF(bResponseData),
 mqttClient := MQTTClient_1,
 wsTopicName := wsResponseTopic,
 mQTTPublishProperties := sPubProp_1,
);

IF MQTTPublish_1.xDone = TRUE THEN
 bPubExe_1 := FALSE;
END_IF

11.7.12 Example: MQTT Communication Using Topic Alias

Below is an example of MQTT communication using the Topic Alias feature.

In this program example, topic aliases are used to perform message publishing (sending)
without specifying the topic name. (Topic aliases are only supported in MQTT protocol version
5.0.) To use topic aliases, it is necessary to execute a publish with the topic name and topic
alias set at least once.
● Similarly to the system configuration

"11.7.9 Sample Example: MQTT Communication".
● Processing Content

After the first publish execution, clear the topic name, and from the second time onwards,
execute sending and receiving messages (axis data) using only the topic alias.

・MQTTPublish_1
Topic：Factory/Area_A/Axis1
TopicAlias ：1

● MQTTClient_1 ● MQTTClient_0
・MQTTSubscribe_0

Topic：Factory/Area_A/Axis1

・MQTTPublish_1
TopicAlias ：1

・MQTTSubscribe_0
Topic：Factory/Area_A/Axis1

1st Time

● MQTTClient_1 ● MQTTClient_0
2nd Time onwards

1. Set bCliEna_0 to TRUE to register a subscription with the broker server.
2. Set bCliEna_1 and bPubExe_1 to TRUE to send a message to the broker server.

After sending the message, bPubExe_1 becomes FALSE and the topic name that was
set in wsTopic_1 is cleared.

3. Set bPubExe_1 to TRUE again to send another message to the broker server.

11.7 LAN Port (MQTT)

11-100 WUME-GM1PGR-10

Although MQTTPublish_1.wsTopicName is left blank, the message sent is successfully
forwarded to the subscription.

● Declaration section

 PROGRAM MQTT_TopicAlias
 VAR
 //FB Instance
 MQTTClient_0 : MQTT.MQTTClient;
 MQTTSubscribe_0 : MQTT.MQTTSubscribe;

 MQTTClient_1 : MQTT.MQTTClient;
 MQTTPublish_1 : MQTT.MQTTPublish;

 //MQTT Properties (Set TopicAlias)
 sPubProp_1 : MQTT.MQTTPublishProperties := (uiTopicAlias := 1);

 //MQTT Parameter
 sHostname : STRING(255) := '192.168.1.100'; // Hostname or IPad
dress or URL
 uiPort : UINT := 1883; // Port of the MQTT broker
 eVersion : MQTT.MQTT_VERSION := MQTT.MQTT_VERSION.V5; // MQTT protoc
ol version

 bCliEna_0 : BOOL := FALSE;
 bSubEna_0 : BOOL := TRUE;
 wsTopic_0 : WSTRING(1024) := "Factory/Area_A/Axis1";
 fAxisValue : LREAL := 0;

 bCliEna_1 : BOOL := FALSE;
 bPubExe_1 : BOOL := FALSE;
 wsTopic_1 : WSTRING(1024) := "Factory/Area_A/Axis1";
 fSendData : LREAL := 0;

 bAliasSet : BOOL := FALSE;
 END_VAR

● Implementation section

(* Subscribe side *)
// MQTTClient Connect
MQTTClient_0(
 xEnable := bCliEna_0,
 uiPort := uiPort,
 sClientId := 'A',
 sHostname := sHostname,
 eMQTTVersion := eVersion,
);

// Subscribe registration (If MQTTClient_0 succeeds, run automatically)
MQTTSubscribe_0(
 xEnable := bSubEna_0 AND MQTTClient_0.xCon
nectedToBroker,
 pbPayload := ADR(fAxisValue),
 udiMaxPayloadSize := SIZEOF(fAxisValue),

11.7 LAN Port (MQTT)

WUME-GM1PGR-10 11-101

 mqttClient := MQTTClient_0,
 wsTopicFilter := wsTopic_0,
);

(* Publish side *)
// MQTTClient Connect
MQTTClient_1(
 xEnable := bCliEna_1,
 uiPort := uiPort,
 sClientId := 'B',
 sHostname := sHostname,
 eMQTTVersion := eVersion,
);

// Publish execution (If MQTTClient_1 succeeds, run automatically only once
)
IF MQTTClient_1.xConnectedToBroker = TRUE THEN

 fSendData := Axis1.fActPosition;

 MQTTPublish_1(
 xExecute := bPubExe_1,
 pbPayload := ADR(fSendData),
 udiPayloadSize := SIZEOF(fSendData),
 mqttClient := MQTTClient_1,
 wsTopicName := wsTopic_1,
 mQTTPublishProperties := sPubProp_1,
);

 // Empty the TopicName after first published succeeds
 IF bAliasSet = FALSE AND MQTTPublish_1.xDone = TRUE THEN
 wsTopic_1 := "";
 bPubExe_1 := FALSE;
 bAliasSet := TRUE;
 END_IF

END_IF

11.7 LAN Port (MQTT)

11-102 WUME-GM1PGR-10

11.8 LAN Port (DNS)

This section describes the instructions that are used to perform communication with the LAN
port using the DNS protocol.

11.8.1 What is DNS?

DNS stands for the Domain Name System and refers to a system that manages a mapping
between the name of a domain or a host on the network and its IP address. A DNS server has
information about mappings between domain names and IP addresses. In response to a query
containing a “host name” as a key from a DNS client, the DNS server sends back a
corresponding “IP address”.
The GM1 controller can obtain an IP address corresponding to a domain name from a DNS
server through an FB of a DNS client.

11.8.2 DNS_GetIPAddress (Name Resolution)

This is used to send the DNS server a query about the IP address of the specified host name.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input Execute BOOL FALSE At rising edge: Execution of the
FB starts.

HostName STRING(255) - Host name on which a query is
sent to the DNS server
(Note 1)(Note 2)

DNSIPAddress STRING(255) - IP address of the DNS server
(Note 2)

Timeout UINT 20 Connection timeout 1 to 60 (s)

Retry UINT 0 Number of connection retries: 0 to
3

Output Busy BOOL FALSE TRUE: The FB is in operation.

Done BOOL FALSE TRUE: Execution is completed.

Error BOOL FALSE TRUE: An error has occurred
within the FB.

ErrorID DNS_CLI_ERROR NO_ERROR Error ID output

11.8 LAN Port (DNS)

WUME-GM1PGR-10 11-103

Scope Name Type Default value Description

IPAddress STRING(255) - IP address corresponding to the
host name

(Note 1) The domain name must be up to 253 characters.
(Note 2) If no value is specified for any of HostName and DNSIPAddress, an error occurs.

● For a program example, refer to "11.8.4 Sample Example: DNS Name Resolution".

11.8.3 DNS_CLI_ERROR (Enumeration Type)

This is an enumeration type error code that is output when an DNS function block is executed.

■ DNS_CLI_ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

DNS_SYSTEM_ERROR 1 Internal error

DNS_WRONG_PARAMTER 2 Incorrect input parameter

DNS_MULTIPLE_EXECUTION 3 Multiple execution error occurs.

DNS_RESOLUTION_FAILED 4 Name resolution failure

DNS_CONNECTION_TIMEOUT 5 Communication timeout

DNS_ILLEGAL_NAME 6 Illegal host name

11.8 LAN Port (DNS)

11-104 WUME-GM1PGR-10

11.8.4 Sample Example: DNS Name Resolution

This is a program coded to send the DNS server a query about the IP address corresponding to
the host name.

● Description of process
When the case number (byStep) is set to 1, a name resolution process is executed. Before
execution of the process, specify values for the variable sSendSrv_ip (IP address of the DNS
server) and variable sHostName (host name whose IP address is to be acquired). Details of
the process for each case number in the implementation section are as described below.
1. DNS_GetIPAddress is executed to acquire the IP address corresponding to the host name
from the DNS server.
2. When the process is completed, the variable bFinish goes TRUE.

● Declaration section

VAR
// Start DNS function
byStep : BYTE := 0; //Process No
bFinish : BOOL := FALSE;

// FB instance
DNS_GetIPAddress_0 : DNS_GetIPAddress;

// Variables
bDNS_GetIPAddress_exe : BOOL := FALSE;
sHostName : STRING := 'www.Srv01.local'; //HostName
sSendSrv_ip : STRING := '192.168.1.100'; //DNS Server IP
uiTimeout : UINT := 10; //Timeout[s]
uiRetry : UINT := 1; //Retry
sGETIPAddress : STRING; //Host IP

END_VAR
● Implementation section

//FunctionBlock
DNS_GetIPAddress_0(Execute := bDNS_GetIPAddress_exe,
 HostName := sHostName,
 DNSIPAddress := sSendSrv_ip,
 Timeout := uiTimeout,
 Retry := uiRetry,
 IPAddress => sGETIPAddress);

CASE byStep OF
 1: // Host name resolution
 bFinish := FALSE;
 bDNS_GetIPAddress_exe := TRUE;
 IF (DNS_GetIPAddress_0.Done = TRUE) THEN
 byStep := 2;
 END_IF

 2: //Finish
 bDNS_GetIPAddress_exe := FALSE;
 bFinish := TRUE;

11.8 LAN Port (DNS)

WUME-GM1PGR-10 11-105

 byStep := 0;
END_CASE

11.8 LAN Port (DNS)

11-106 WUME-GM1PGR-10

11.9 SD Card Operation (File Operation)

Files in the SD card inserted in the SD memory card slot can be operated.
In file operation using the GM1 Controller, WSTRING (kanji) cannot be used in the file name
and directory name.

11.9.1 FILE.Open (Open File)

This is a function block that opens a file or creates a new file.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sFileName FILE.CAA.FI
LENAME

Specifies the file name with an absolute path or relative path.

eFileMode FILE.MODE File mode

xExclusive BOOL TRUE: Exclusive access mode
FALSE: Multiple access mode
xExclusive is not supported.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

hFile FILE.CAA.H
ANDLE

Handle of a file

■ FILE.MODE (Enumeration type)

Name Value Description

MWRITE 0 Overwrite mode (When the specified file does not
exist, a new file is created.)

MREAD 1 Read mode

MRDWR 2 Read / write mode (When the specified file does not
exist, a new file is created.)

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-107

Name Value Description

MAPPD 3 Append write mode

● You cannot use full size characters and the following symbols in a file name: [\], [/], [:], [*], [?],
[”], [<], [>], [|].

11.9.2 FILE.Close (Close File)

This is a function block that closes a file.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hFile FILE.CAA.H
ANDLE

Handle of a file to be closed
Specifies the handle output by FILE.Open.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

11.9 SD Card Operation (File Operation)

11-108 WUME-GM1PGR-10

11.9.3 FILE.Read (Read File)

This is a function block that reads data from the file opened.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

udiTimeOut UDINT Timeout time until the execution is stopped (μs)

hFile FILE.CAA.H
ANDLE

Handle of a file
Specifies the handle output by FILE.Open.

pBuffer FILE.CAA.P
VOID

Pointer to the data buffer to be read
Gets a pointer by the ADR operator.

szBuffer FILE.CAA.S
IZE

Size of the data buffer to be read
Gets a pointer by the SIZEOF operator.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

szSize FILE.CAA.S
IZE

Size of the read data buffer

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-109

11.9.4 FILE.Write (Write File)

This is a function block that writes data to the file opened.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

udiTimeOut UDINT Timeout time until the execution is stopped (μs)

hFile FILE.CAA.H
ANDLE

Handle of a file
Specifies the handle output by FILE.Open.

pBuffer FILE.CAA.P
VOID

Pointer to the data buffer to be written
Gets a pointer by the ADR operator.

szSize FILE.CAA.S
IZE

Size of the data buffer to be written
Gets a pointer by the SIZEOF operator.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

11.9 SD Card Operation (File Operation)

11-110 WUME-GM1PGR-10

11.9.5 FILE.Flush (Flush File)

This is a function block that flushes buffer contents to a file.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hFile FILE.CAA.H
ANDLE

Handle of a file
Specifies the handle output by FILE.Open.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-111

11.9.6 FILE.Copy (Copy File)

This is a function block that copies a file.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

udiTimeOut UDINT Timeout time until the execution is stopped (μs)

sFileNameD
est

FILE.CAA.FI
LENAME

Copy destination file name

sFileNameS
ource

FILE.CAA.FI
LENAME

Copy source file name

xOverWrite BOOL TRUE: Copies to overwrite an existing file.
FALSE: Outputs an error without copying to overwrite.
If FALSE is specified in a case where there is an existing file, copy is
not executed. No error is output.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

szSize FILE.CAA.S
IZE

Size of the copied file

● You cannot use full size characters and the following symbols in a file name: [\], [/], [:], [*], [?],
[”], [<], [>], [|].

11.9 SD Card Operation (File Operation)

11-112 WUME-GM1PGR-10

11.9.7 FILE.Rename (Rename File)

This is a function block that changes a file name.

It is not possible to change the directory name of a directory that is currently open. Close it
using the DirClose function block.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sFileNameO
ld

FILE.CAA.FI
LENAME

File name before change

sFileNameO
ld

FILE.CAA.FI
LENAME

File name after change

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

● You cannot use full size characters and the following symbols in a file name: [\], [/], [:], [*], [?],
[”], [<], [>], [|].

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-113

11.9.8 FILE.Delete (Delete File)

This is a function block that deletes a file.

It is not possible to delete a file that is currently open. Close it using the Close function block.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sFileName FILE.CAA.FI
LENAME

File to be deleted

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

11.9 SD Card Operation (File Operation)

11-114 WUME-GM1PGR-10

11.9.9 FILE.EOF (End of File)

This is a function block that determines whether the current offset of a file is EOF (End Of File)
or not. It can be used only when the OPEN mode is set to MREAD/MREADPLUS.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hFile FILE.CAA.FI
LENAME

Handle of a file
Specifies the handle output by FILE.Open.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

xEOF BOOL File: The current offset is EOF.

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-115

11.9.10 FILE.GetAttribute (Get File Attribute)

This is a function block that gets file attributes.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hFile FILE.CAA.FI
LENAME

Handle of a file
Specifies the handle output by FILE.Open.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

eFileAttrib FILE.ATTRI
B

TRUE: The current offset is EOF.
FALSE: The current offset is not EOF.

■ FILE.ATTRIB (Enumeration type)

Name Value Description

ARCHIVE 0 Archive file

HIDDEN 1 Hidden file

NORMAL 2 File without any other attributes

READONLY 3 Read only

11.9 SD Card Operation (File Operation)

11-116 WUME-GM1PGR-10

11.9.11 FILE.GetPos (Get File Offset)

This is a function block that gets the current offset of a file.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hFile FILE.CAA.FI
LENAME

Handle of a file
Specifies the handle output by FILE.Open.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

udiPos __UXINT The current offset (byte) is output.

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-117

11.9.12 FILE.GetSize (Get File Size)

This is a function block that gets the file size.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sFileName FILE.CAA.FI
LENAME

File from which to get the file size

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

szSize FILE.CAA.S
IZE

The file size (byte) is output.

11.9 SD Card Operation (File Operation)

11-118 WUME-GM1PGR-10

11.9.13 FILE.GetTime (Get File Update Time)

This is a function block that gets the update time of a file.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sFileName FILE.CAA.FI
LENAME

File from which to get the file update time

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

dtLastModifi
cation

DATE_AND
_TIME

The last update date and time is output.
Example: DATE_AND_TIME#2020-01-11-15:12:30

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-119

11.9.14 FILE.SetPos (Set File Offset)

This is a function block that sets the offset of a file.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hFile FILE.CAA.H
ANDLE

Handle of a file
Specifies the handle output by FILE.Open.

udiPos __UXINT Offset to be set (byte)

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

11.9 SD Card Operation (File Operation)

11-120 WUME-GM1PGR-10

11.9.15 FILE.ERROR (Error ID)

This is an enumeration type error ID that is output when a function block for file operation is
executed. It is used to output an error in a file operation or directory operation of the SD card.

■ FILE.ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 Normal end

FIRST_ERROR 5100 First library specific error

TIME_OUT 5101 Timeout

ABORT 5102 Aborts processing by xAbort.

HANDLE_INVALID 5103 Invalid handle

NOT_EXIST 5104 No file or directory exists.

EXIST 5105 A file or directory already exists

NO_MORE_ENTRIES 5106 There are no other entries.

NOT_EMPTY 5107 The file or directory is not empty.

READ_ONLY_CAA 5108 The file or directory is write protected.

WRONG_PARAMETER 5109 Wrong parameter

ERROR_UNKNOWN 5110 Unknown error

WRITE_INCOMPLETE 5111 Not all the data is written.

FILE_NOT_IMPLEMENTED 5112 The function is not implemented.

ASM_CREATEJOB_FAILED 5113 Failed to create an AsyncManager job.

FILE_OPERATION_DENIED 5114 No access due to ForceFilePath / ForceIecFilePath

FIRST_MF 5150 First error unique to the manufacturer

LAST_ERROR 5199 insert manuf. specific errors here Last library specific
error

11.9.16 Program example:SD CardFile write processing

SampleDir/SampleFile.txt is created in the SD card and specified data is written to the file.

■ File write processing sequence
The file write processing sequence is shown below.
● File open processing (overwrite mode, insert mode)

• Overwrite mode: For existing files, the contents of the file are cleared.
• Insert mode: For existing files, the contents of the file are not cleared.
• When write is executed, data is written following the end of the previous data.

● File write processing
● File close processing

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-121

■ Operation example
● In this example, operations are performed by setting the value of uiProcess to 1, 2, and 2 in

this order.
● The contents of SampleFile.txt which is output are as follows:

NEW_DATA
ADD_DATA1
ADD_DATA2

● Declaration section

11.9 SD Card Operation (File Operation)

11-122 WUME-GM1PGR-10

Implementation section

11.9.17 Program example:SD CardFile read processing

Data in SampleDir/SampleFile.txt in the SD card is read into the buffer.
The effective range of data read into the buffer is judged from the data size information that is
output after read processing.

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-123

■ File read processing sequence
The file read processing sequence is shown below.
● File open processing (read mode)
● File read processing
● File close processing

■ Explanation of variables
uiProcess：

Executes processing when the variable is set to 1 (read mode).

■ Operation example
● In this example, operations are performed according to the following contents of

SampleFile.txt.
NEW_DATA
ADD_DATA1
ADD_DATA2

● Read data and data size are as below.
Data (STRING type): 'NEW_DATARNADD_DATA1RNADD_DATA2RNADD_DATA3'
Data size: 41

● Declaration section

11.9 SD Card Operation (File Operation)

11-124 WUME-GM1PGR-10

Implementation section

11.9 SD Card Operation (File Operation)

WUME-GM1PGR-10 11-125

11.10 SD Card Operation (Directory Operation)

Directories in the SD card inserted in the SD memory card slot can be operated.

11.10.1 FILE.DirCreate (Create Directory)

This is a function block that creates a directory. An error occurs if there already exists a sub-
directory.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sDirName FILE.CAA.FI
LENAME

Specifies a new directory name with a relative path.

xParent BOOL TRUE: Automatically creates a non-existing sub-directory.
FALSE: An error occurs if there already exists a sub-directory.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

● You cannot use full size characters and the following symbols in a directory name: [\], [/], [:], [*],
[?], [”], [<], [>], [|].

11.10 SD Card Operation (Directory Operation)

11-126 WUME-GM1PGR-10

11.10.2 FILE.DirOpen (Open Directory)

This is a function block that opens a directory.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sDirName FILE.CAA.FI
LENAME

Specifies the directory name with a relative path.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

hDir FILE.CAA.H
ANDLE

Handle of the FILE.CAA.HANDLE directory

● You cannot use full size characters and the following symbols in a directory name: [\], [/], [:], [*],
[?], [”], [<], [>], [|].

11.10 SD Card Operation (Directory Operation)

WUME-GM1PGR-10 11-127

11.10.3 FILE.DirClose (Close Directory)

This is a function block that closes a directory.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hFile FILE.CAA.FI
LENAME

Handle of the directory to be closed
Specifies the handle output by FILE.Open.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

11.10 SD Card Operation (Directory Operation)

11-128 WUME-GM1PGR-10

11.10.4 FILE.DirCopy (Copy Directory)

This is a function block that copies a directory.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sDirNameD
est

FILE.CAA.FI
LENAME

Directory name of the copy destination

sDirNameS
ource

FILE.CAA.FI
LENAME

Directory of the copy source

xRecursive BOOL TRUE: Copies the sub-directory and files.

xOverWrite BOOL TRUE: Copies to overwrite an existing file.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

● You cannot use full size characters and the following symbols in a directory name: [\], [/], [:], [*],
[?], [”], [<], [>], [|].

11.10 SD Card Operation (Directory Operation)

WUME-GM1PGR-10 11-129

11.10.5 FILE.DirRename (Rename Directory)

This is a function block that renames a directory name. It is not possible to change the directory
name of a directory that is currently open. Close it using the DirClose function block.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

sDirNameOl
d

FILE.CAA.FI
LENAME

Directory name before change

sDirNameN
ew

FILE.CAA.FI
LENAME

Directory name after change

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

● You cannot use full size characters and the following symbols in a directory name: [\], [/], [:], [*],
[?], [”], [<], [>], [|].

11.10 SD Card Operation (Directory Operation)

11-130 WUME-GM1PGR-10

11.10.6 FILE.DirRemove (Delete Directory)

This is a function block that deletes a directory. It is not possible to delete a directory that is
currently open. Close it using the DirClose function block.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

xAbort BOOL TRUE: Stops execution and resets all outputs.

udiTimeOut UDINT Timeout time until the execution is stopped (μs)

sDirName FILE.CAA.FI
LENAME

Specifies the directory name with a relative path.

xRecursive BOOL TRUE: Deletes the sub-directory and all files.
FALSE: Deletes only when the directory is empty. An error occurs if
the directory is not empty.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

xAborted BOOL TRUE: Execution is stopped by the user.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

11.10 SD Card Operation (Directory Operation)

WUME-GM1PGR-10 11-131

11.10.7 FILE.DirList (Directory List)

This is a function block that outputs a list of directories and files inside the directory.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

hDir FILE.CAA.H
ANDLE

Directory from which to output a list
Specifies the handle output by FILE.DirOpen.

Output xDone BOOL TRUE: Execution is completed.

xBusy BOOL TRUE: Execution of the FB is not completed.

xError BOOL TRUE: An error has occurred within the FB.

eError FILE.ERRO
R

An error ID is output.
Refer to "11.9.15 FILE.ERROR (Error ID)".

deDirEntry FILE.FILE_
DIR_ENTRY

Files and directories are output.

■ FILE_DIR_ENTRY (Structure)

Member Type Description

sEntry FILE.CAA.FILENAM
E

Directory or file name

szSize FILE.CAA.SIZE File size

xDirectory BOOL TRUE: Directory
FALSE: File

xExclusive BOOL TRUE: Exclusive access mode
FALSE: Multiple access mode

dtLastModification DATE_AND_TIME Last update date and time.

11.10 SD Card Operation (Directory Operation)

11-132 WUME-GM1PGR-10

11.11 SD Card Operation (CSV File Operation)

CSV files in the SD card inserted in the SD memory card slot can be operated (reading,
writing).

11.11.1 Overview of CSV File Reading

With the GM1 controller, through use of function blocks, data can be read from a CSV file on
the SD card. A procedure for reading data from ‘ReadData.csv’ in the ‘Sample’ folder on the SD
card will be described.

● Folder structure
SD card
|--Sample
|　|--ReadData.csv (target CSV file to be read)

● File contents
1,2,3,4,5,6,7,8,9,10\r\n
11,12,13,14,15,16,17,18,19,20\r\n
21,22,23,24,25,26,27,28,29,30\r\n

1. Specify a target CSV file to be read.
By executing CSV.CSVReaderInit, specify the name of a CSV file from which data is read,
as well as a data separator.

2. Read data from the CSV file.
There are three types of methods used to read data.
● Read all data by batch.

Execute CSV.ReadAll to read all data from the CSV file in array form by a single run of
execution.
Execution result

asElement[0..29] =
['1','2','3','4','5','6','7','8','9','10','11','12',...,'22','23','24','25','26','27','28','29','30']

● Read data element by element.
Execute CSV.NextElement to read only one element in order from the beginning of the
data at every run of execution.
It is necessary to execute CSV.NextElement 30 times to read all data from a CSV file like
this example.
Execution result

1st run of execution: sElement = ‘1’
2nd run of execution: sElement = ‘2’
...
29th run of execution: sElement = ‘29’
30th run of execution: sElement = ‘30’

● Read data line by line.
Execute CSV.NextLine to read only one line in order from the beginning of the data at
every run of execution.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-133

Execution result
1st run of execution: sLine = ‘1,2,3,4,5,6,7,8,9,10’
2nd run of execution: sLine = ‘11,12,13,14,15,16,17,18,19,20’
3rd run of execution: sLine = ‘21,22,23,24,25,26,27,28,29,30’

● For an example of the process for reading all data by batch, refer to "11.11.15 Example of
Process for Reading All Data from CSV File".

● For an example of the process for changing a target CSV file to be read, refer to
"11.11.16 Example of Process for Reading Data from Multiple CSV Files".

11.11.2 CSV.CSVReaderInit (Specify Target CSV File To Be Read)

This is a function block that specifies a CSV file from which data is read. Separator settings can
also be configured.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

szFileName STRING '' Specifies the file name with an
absolute path.(Note 1)

sLineSeparator STRING(2) 'RN' Specifies a line separator.(Note 2)

(Note 3)

● 'RN': CR+LF
● '$R': CR
● '$N': LF

sColumnSeparator STRING(1) ';' Specifies a column separator.(Note

2)

xCloseFile BOOL FALSE TRUE： Close the file
Please confirm xDone is TRUE and
change it to FALSE.

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

11.11 SD Card Operation (CSV File Operation)

11-134 WUME-GM1PGR-10

Scope Name Type Default value Description

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.CSV_ERR
OR

NO_ERROR An error ID is output.
Refer to"11.11.6 CSV.CSV_ERROR
(Reading Error Code)".

hFile SysFile.RTS_IE
C_HANDLE

16#00000000 Handle of a file

(Note 1) Add the CSV extension (‘.csv’) at the end of the file name and specify up to 80 characters.
(Note 2) Set the argument to a line or column separator used in the CSV file. If the setting is not correct, data

cannot be read.
(Note 3) ‘RN’ is handled as two characters, and ‘$R’ and ‘$N’ are each handled as one character.

● You cannot use full size characters and the following symbols in a file name: [\], [/], [:], [*], [?],
[”], [<], [>], [|].

● To use ReadAll, NextElement, or NextLine, execute CSVReaderinit in advance.
● If you specify a CSV file in which a line separator is not used at the end of data, the data

cannot be properly read by ReadAll, NextElement, or NextLine.
● If you specify a CSV file in which several types of line or column separators are written in data,

the data cannot be properly read by ReadAll, NextElement, or NextLine.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-135

11.11.3 CSV.ReadAll (Read All File Data by Batch)

This is a function block that reads all data from a CSV file. All data can be read according to
separators by a single run of execution.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

udiMaxElementLength UDINT 80 Specify the maximum length of one
element.(Note 1)

pasDataArray POINTER TO
ARRAY OF
STRING

- Pointer to the buffer that stores read
data(Note 2)

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.CSV_ERR
OR

NO_ERROR An error ID is output.
Refer to
"11.11.6 CSV.CSV_ERROR
(Reading Error Code)".

iNumberOfElements UDINT 0 The number of read elements

Input /
output

csvReaderInit CSVReaderInit - Reference to CSVReaderInit

(Note 1) Set the argument to a value that is greater than the maximum number of characters in each read
element and less than or equal to 32000.
If the setting is outside the range, data cannot be properly read.

(Note 2) Set the number of elements in the array to a value greater than or equal to the total number of
elements of the data to be read.
Set the STRING type memory size to a value equal to the udiMaxElementLength value.

11.11 SD Card Operation (CSV File Operation)

11-136 WUME-GM1PGR-10

● To use ReadAll, execute CSVReaderInit in advance.
● Set the input argument csvReaderInit to CSVReaderInit, which is executed to specify the target

CSV file to be read.
● The maximum number of characters of one element that can be read by ReadAll is 32000.

Data cannot be properly read if one element exceeds 32000 characters, and thus do not use
such data.

● If you specify 0 (NULL) for the pointer （pasDataArray）, the function does not operate
properly, and thus do not specify so.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-137

11.11.4 CSV.NextElement (Read One Element)

This is a function block that reads one element from a CSV file. Data can be read one element
by one element in order from the beginning of the data at every run of execution.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

udiMaxElementLength UDINT 255 Specify the maximum length of one
element.(Note 1)

xReset BOOL FALSE While it is TRUE, the read position
is reset to the beginning of data.

psElement POINTER TO
STRING

- Pointer to the buffer that stores read
data(Note 2)

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.CSV_ERR
OR

NO_ERROR An error ID is output.
Refer to
"11.11.6 CSV.CSV_ERROR
(Reading Error Code)".

xHasNextElement BOOL FALSE TRUE: One element to be read next
is present.
FALSE: One element to be read
next is not present.

Input /
output

csvReaderInit CSVReaderInit - Reference to CSVReaderInit

(Note 1) Set the argument to a value that is greater than the maximum number of characters in one read
element and less than or equal to 32000.
If the setting is outside the range, data cannot be properly read.

(Note 2) Set the STRING type memory size to a value equal to the udiMaxElementLength value.

11.11 SD Card Operation (CSV File Operation)

11-138 WUME-GM1PGR-10

● To execute NextElement, execute CSVReaderInit in advance.
● Set the input argument csvReaderInit to CSVReaderInit, which is executed to specify the target

CSV file to be read.
● The maximum number of characters that can be read for a single element using NextElement

is 32,000 characters.
If a single element exceeds 32,000 characters, it cannot be read correctly using NextElement.
Please refrain from using it in such cases.

● If you specify 0 (NULL) for the pointer (psElement), the function does not operate properly, and
thus do not specify so.

11.11.5 CSV.NextLine (Read One Line)

This is a function block that reads one line from a CSV file. Data can be read one line by one
line in order from the beginning of the data at every run of execution.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

udiMaxLineLength UDINT 255 Specify the maximum length of one
line.(Note 1)

xReset BOOL FALSE While it is TRUE, the read position
is reset to the beginning of data.

psLine POINTER TO
STRING

- Pointer to the buffer that stores read
data(Note 2)

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.CSV_ERR
OR

NO_ERROR An error ID is output.
Refer to
"11.11.6 CSV.CSV_ERROR
(Reading Error Code)".

xHasNextLine BOOL FALSE TRUE: One line to be read next is
present.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-139

Scope Name Type Default value Description
FALSE: One line to be read next is
not present.

Input /
output

csvReaderInit CSVReaderInit - Reference to CSVReaderInit

(Note 1) Set the argument to a value that is greater than the maximum number of characters in one read line
and less than or equal to 32000.
If the setting is outside the range, data cannot be properly read.

(Note 2) Set the STRING type memory size to a value equal to the udiMaxLineLength value.

● To execute NextLine, execute CSVReaderInit in advance.
● Set the input argument csvReaderInit to CSVReaderInit, which is executed to specify the target

CSV file to be read.
● The maximum number of characters of one line that can be read by NextLine is 32000.

Data cannot be properly read if one line exceeds 32000 characters, and thus do not use such
data.

● If you specify 0 (NULL) for the pointer (psLine), the function does not operate properly, and
thus do not specify so.

11.11 SD Card Operation (CSV File Operation)

11-140 WUME-GM1PGR-10

11.11.6 CSV.CSV_ERROR (Reading Error Code)

This is an enumeration type error code that is output when the function block for reading a CSV
file is executed.

■ CSV.CSV_ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

TIME_OUT 2 Timeout

CANNOT_SET_POSITION 10 The delimiter position could not be set because the
column/row delimiter character is either the same
string or NULL.

END_OF_BUFFER 12 The maximum limit of the internal buffer size has been
reached.

INVALID_HANDLE 17 Invalid handle

MAXIMUM_ELEMENT_SIZE_EXCEED
ED

18 The read data has exceeded the maximum data
length.

INVALID_POINTER 19 Invalid pointer

11.11.7 Overview of CSV File Writing

With the GM1 controller, through use of function blocks, data can be written to a CSV file on the
SD card.

A procedure for adding data to ‘WriteData_Init1.csv’ and ‘WriteData_Init2.csv’ on a SD card, as
well as writing and saving data to ‘WriteData_New.csv’, a new CSV file, will be described.
‘WriteData_Init1.csv’ is present in ‘Sample1’, an existing folder, and ‘WriteData_Init2.csv’ is
present in ‘Sample2’, another existing folder.
● Folder structure

SD card
|--Sample1 (existing folder)
|　|--WriteData_Init1.csv (existing CSV file specified in step 1))
|　|--WriteData_New.csv (new CSV file saved in step 4)
|--Sample2 (existing folder)
|　|--WriteData_Init2.csv (existing CSV file specified in step 6))

1. Specify a target CSV file to write.
By executing CSV.Init, specify the name of a CSV file to which data is written, as well as the
name of a directory where the file is located, and a data separator.

2. Add the data to be written to an internal buffer.
Before the data is written to the CSV file, it is necessary to add the data to an internal
storage area (internal buffer) once. The added data remains added to the internal buffer
until CSV.WriteFile is executed in step 3.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-141

● Adding the data to the internal buffer
The CSV.Add’Type’ function block by which data can be added includes 20 types (refer
to "11.11.9 CSV.Add’Type’ (Add Data to Internal Buffer)" for supported types). Execute
CSV.Add’Type’ to add specified values to the internal buffer. A column separator
specified in step 1 is automatically added at every run of execution.

● Adding a line feed code to the internal buffer
Execute CSV.NewLine to add a line separator specified in step 1 to the internal buffer.

3. Write to the CSV file.
Execute CSV.WriteFile to write the data added to the internal buffer (the data added in step
2) to the CSV file.

4. Change the target to write to a new CSV file.
Execute CSV.NewFile to change the target to write to a new CSV file. Perform steps 2 and
3 in the similar way to write the data to the new CSV file and save it in the directory
specified by CSV.Init in step 1.
At this time, if the file name is set to the name of an existing CSV file, the new CSV file is
saved by overwriting the existing CSV file.

5. Add the data to the end of data in an existing CSV file.
After setting the file name to the name of the existing CSV file and executing CSV.Init,
perform steps 2 and 3 to add the data to the specified CSV file.

6. Change the directory
By changing a folder path and then executing CSV.Init, you can change the directory
(‘Sample1’) specified in step 1 to another directory (‘Sample2’). Perform steps 2 and 3 in
the similar way to add the data to the specified CSV file.

● If the file name specified by CSV.Init is set to NULL, an error occurs. However, when you
specify NULL for the file name specified by CSV.NewFile, an error does not occur and a
number is added to the name of the CSV file that is the target to write before the execution of
CSV.NewFile. For details, refer to "11.11.12 CSV.NewFile (Change Target To Write to New CSV
File)".

● If you specify a directory path to the file name specified by either of CSV.Init and CSV.NewFile,
a new folder is created in the directory specified by CSV.Init, and a new CSV file is created/
saved in the new folder.

● To change the target CSV file to write by the execution of CSV.Init or CSV.NewFile, execute
CSV.WriteFile beforehand. For details, refer to "11.11.11 CSV.WriteFile (Write, Save Data to
CSV File)".

● For an example of the process for writing data to a CSV file, refer to "11.11.17 Example of
Process for Writing Log Data to CSV File".

11.11 SD Card Operation (CSV File Operation)

11-142 WUME-GM1PGR-10

11.11.8 CSV.Init (Specify Target CSV File To Write)

This is a function block that specifies a CSV file to which data is written. If the specified CSV file
does not exist, a new file is created. Separator settings can also be configured.Execute the
function block by UserTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

sDirectoryPath STRING '' Specifies a directory name.(Note 1)

sFileName STRING '' Specifies a file name with a relative
path.(Note 2)

sRowSeparator STRING 'RN' Specifies a line separator.(Note 3)

● 'RN': CR+LF
● '$R': CR
● '$N': LF

sColumnSeparator STRING ';' Specifies a column separator.(Note

4)

xAbort BOOL FALSE TRUE: Execution of the FB is
aborted.

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.ERROR NO_ERROR An error ID is output.
Refer to "11.11.14 CSV.ERROR
(Writing Error Code)".

xAborted BOOL FALSE TRUE: Execution is aborted by the
user’s xAbort input.

Input /
output

rCSVWriter CSVWriter - "11.11.13 CSV.CSVWriter"

(Note 1) The directory name must be up to 80 characters.
To specify the root directory, specify ‘.’ or ‘./’.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-143

(Note 2) Set the file name by specifying a path relative to the directory specified in the input argument
sDirectoryPath. Add the CSV extension (‘.csv’) at the end of the file name and specify up to 80
characters.
If the specified directory path does not exist, a directory is created. A new CSV file is created in the
directory.

(Note 3) ‘RN’ is handled as two characters, and ‘$R’ and ‘$N’ are each handled as one character.
(Note 4) To read the CSV file using CSVReaderInit, set the parameter to one character.

● You cannot use full size characters and the following symbols in directory and file names: [\], [/],
[:], [*], [?], [”], [<], [>], [|].

● To use WriteFile, Add’Type’, NewLine or NewFile, execute CSV.Init in advance.
● To specify another CSV file, execute WriteFile and then execute CSV.Init again.

11.11 SD Card Operation (CSV File Operation)

11-144 WUME-GM1PGR-10

11.11.9 CSV.Add’Type’ (Add Data to Internal Buffer)

This is a function block that adds input data to an internal buffer. The table below shows
supported data types.

■ Add’Type’ categories

Category Type Default value

Truth BOOL FALSE

Integer BYTE/WORD/DWORD/LWORD/SINT/USINT/INT/UINT/DINT/
UDINT/LINT/ULINT

0

Floating-
point
number

REAL（Please do not use LREAL.） 0

Character
string

STRING ''

Time TIME/LTIME/DATE/TIME_OF_DAY/DATE_AND_TIME Minimum value of each
data type

■ Icon (description of only AddSTRING)

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

**Input(Note 1) Refer to the
table above.

Refer to the
table above.

Specifies data added to the internal
buffer.

xAbort BOOL FALSE TRUE: Execution of the FB is
aborted.

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.ERROR NO_ERROR An error ID is output.
Refer to"11.11.14 CSV.ERROR
(Writing Error Code)".

xAborted BOOL FALSE TRUE: Execution is aborted by the
user’s xAbort input.

Input /
output

rCSVWriter CSVWriter - "11.11.13 CSV.CSVWriter"

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-145

(Note 1) **: A prefix that denotes a data type is added to the beginning of the argument.

● This FB absolutely requires arguments of CSVWriter and thus can be used only after the
execution of CSV.Init.

● Up to 5000 characters can be added to the internal buffer.
The FB does not properly operate if the added characters exceeds 5000 characters, and thus
do not use such data.

11.11 SD Card Operation (CSV File Operation)

11-146 WUME-GM1PGR-10

11.11.10 CSV.NewLine (Add Line Separator to Internal Buffer)

This is a function block that adds a line separator to an internal buffer. The line separator is
specified in the input argument sRowSeparator of CSV.Init.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

xAbort BOOL FALSE TRUE: Execution of the FB is
aborted.

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.ERROR NO_ERROR An error ID is output.
Refer to "11.11.14 CSV.ERROR
(Writing Error Code)".

xAborted BOOL FALSE TRUE: Execution is aborted by the
user’s xAbort input.

Input /
output

rCSVWriter CSVWriter - "11.11.13 CSV.CSVWriter"

● This FB absolutely requires arguments of CSVWriter and thus can be used only after the
execution of CSV.Init.

● If you write data to another CSV file by CSV.Init or NewFile, add a line feed code by executing
NewLine before WriteFile. If no line feed is added, the data cannot be properly read from the
CSV file through reading.

● Up to 5000 characters can be added to the internal buffer.
The FB does not properly operate if the added characters exceeds 5000 characters, and thus
do not use such data.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-147

11.11.11 CSV.WriteFile (Write, Save Data to CSV File)

This is a function block that writes data added to an internal buffer to a CSV file and saves the
data. With the execution of WriteFile, the data added to the internal buffer is written to the CSV
file and thus is reset.Execute the function block by UserTask.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

xAbort BOOL FALSE TRUE: Execution of the FB is
aborted.

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.ERROR NO_ERROR An error ID is output.
Refer to "11.11.14 CSV.ERROR
(Writing Error Code)".

xAborted BOOL FALSE TRUE: Execution is aborted by the
user’s xAbort input.

Input /
output

rCSVWriter CSVWriter - "11.11.13 CSV.CSVWriter"

● If you write data to another CSV file by CSV.Init or NewFile, reset the internal buffer by
executing WriteFile before executing CSV.Init or NewFile. If the internal buffer is not reset, the
data cannot be properly written to the specified CSV file.

● If SD card write protection is enabled, an error occurs, preventing data from being written and a
new file from being created.

● If there is no free space on the SD card, an error occurs and a new blank file is created.
● If the number of files saved to the directory on the SD card has reached the upper limit,

creating a new file in the directory results in improper operation, and thus do not use it.

11.11 SD Card Operation (CSV File Operation)

11-148 WUME-GM1PGR-10

11.11.12 CSV.NewFile (Change Target To Write to New CSV File)

This is a function block that changes the target to write to a new CSV file.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

sNewFileName STRING '' Specifies a file name with a relative
path.(Note 1)

xAbort BOOL FALSE TRUE: Execution of the FB is
aborted.

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError CSV.ERROR NO_ERROR An error ID is output.
Refer to "11.11.14 CSV.ERROR
(Writing Error Code)".

xAborted BOOL FALSE TRUE: Execution is aborted by the
user’s xAbort input.

Input /
output

rCSVWriter CSVWriter - "11.11.13 CSV.CSVWriter"

(Note 1) Please set the relative path from the directory specified in the input argument sDirectoryPath of
CSV.Init. Ensure that the length of the relative path, including the directory name specified in the input
argument sDirectoryPath, the path separator ('\'), and the CSV extension ('.csv'), is set to be less than
80 characters.
If the specified directory path does not exist, a directory will be created. Within it, the CSV file will be
saved.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-149

● This FB absolutely requires arguments of CSVWriter and thus can be used only after the
execution of CSV.Init.

● Full-width characters and some symbols (\ / : * ? " < > |) cannot be used in the file name.
If a NULL or unusable symbol is used in the file name, an error will occur and the value 21 will
be output to eError.

● A new CSV file is not created only through the execution of NewFile, but is created through the
execution of WriteFile.

● If the file name is set to the name of an existing CSV file, the new CSV file is saved by
overwriting the existing CSV file.

11.11 SD Card Operation (CSV File Operation)

11-150 WUME-GM1PGR-10

11.11.13 CSV.CSVWriter

This is a function block used in the input / output parameters of CSV.Init, Add’Type’, NewLine,
NewFile, and WriteFile. Use this FB with the default values left unchanged.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input sFileName STRING 'dataFileSeq.csv' -

sDirectoryPath STRING 'C:/temp' -

11.11.14 CSV.ERROR (Writing Error Code)

This is an enumeration type error code that is output when the function block for writing a CSV
file is executed.

■ CSV.ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

CANNOT_OPEN_FILE 7 A file cannot be created.

CANNOT_WRITE_DATA 9 Data cannot be written to the file.

END_OF_BUFFER 10 The number has reached the upper limit on the internal
buffer size.

CANNOT_GET_FILE_SIZE 14 The file cannot be found.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-151

11.11.15 Example of Process for Reading All Data from CSV File

An example program for specifying a CSV file on the SD card and reading all data from the
CSV file will be described below.

● Implementation Example
Reading all data from ‘Data.csv’, which is in the root directory on the SD card, by batch.
• Folder structure

SD card
|--Data.csv

• File contents
Apple,4,600\r\n
Orange,2,250\r\n

When execution of the program is completed, all the data is read to the asElement array.
asElement[0..5]=['Apple','4','600','Orange','2','250']

● Description of process
When the case number (iStep) is changed to 1, a reading process is executed. Details of the
process for each case number in the implementation section are as described below.
1. Execute CSV.CSVReaderInit to specify a CSV file from which data is read.
2. Execute ReadAll to read all data.

When reading of all the data is completed, the variable xFinish goes TRUE.
● Declaration section

VAR
// Start,Finish Flag
iStep : INT := 0; //Change to 1:Start
xFinish : BOOL := FALSE; //TRUE:Finish

// FB instance
CSVReaderInit_0 : CSV.CSVReaderInit;
ReadAll_0 : CSV.ReadAll;

// Variables
asElement : ARRAY [0..999] OF STRING(255); //output
sFileName : STRING := 'Data.csv';
sColumnSep : STRING := ',';
sLineSep : STRING := 'RN';
xExecuteCSVReaderInit : BOOL := FALSE;
xExecuteReadAll : BOOL := FALSE;
END_VAR

● Implementation section

//FunctionBlock
CSVReaderInit_0(xExecute := xExecuteCSVReaderInit,
 szFileName := sFileName,
 sColumnSeparator := sColumnSep,
 sLineSeparator := sLineSep);

ReadAll_0(xExecute := xExecuteReadAll,
 udiMaxElementLength := 255,

11.11 SD Card Operation (CSV File Operation)

11-152 WUME-GM1PGR-10

 pasDataArray := ADR(asElement),
 csvReaderInit := CSVReaderInit_0);

CASE iStep OF
 1: // Open CSVFile
 xFinish := FALSE;
 xExecuteCSVReaderInit := TRUE;
 IF (CSVReaderInit_0.xDone = TRUE) THEN
 xExecuteCSVReaderInit := FALSE;
 iStep := 2;
 END_IF

 2: // Read All Data
 xExecuteReadAll := TRUE;
 IF (ReadAll_0.xDone = TRUE) THEN
 xExecuteReadAll := FALSE;
 xFinish := TRUE;
 iStep := 0;
 END_IF
END_CASE

11.11.16 Example of Process for Reading Data from Multiple CSV Files

The following is an example of a program that reads all the data of two CSV files on an SD card
one element at a time, starting with the first.

● Implementation Example
Reading all data from ‘Data.csv’ and ‘Data1.csv’ in the root directory on the SD card one
element by one element.
• Folder structure

SD card
|--Data.csv
|--Data1.csv

• File contents
Contents of Data.csv

Apple,4,600\r\n
Orange,2,250\r\n

Contents of Data1.csv
Cherry,6,300\r\n
Tomato,8,500\r\n

When execution of the program is completed, all the data is read to the asElement array.
asElement[0..11]=['Apple','4','600','Orange','2','250','Cherry','6','300','Tomato','8','500']

● Processing content
When the case number (byStep) is changed to 1, a process is executed. Details of the
process for each case number in the implementation section are as described below.
1. Execute CSVReaderInit to specify the CSV file (sFileName) from which data is read first.
2. Execute NextElement to read one element.
3. When there is another element that can be read, return to the case number 2.

When all elements are read, proceed to the case number 4.

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-153

4. Execute CSVReaderInit to specify the CSV file (sNewFileName) from which data is read
second.

5. Execute NextElement to read one element.
6. If there are readable elements, it will return to case number 5.

If all elements have been read, the processing will be completed and xFinish will become
TRUE.

● Declaration section

VAR
// Start,Finish Flag
iStep : INT := 0; //Change to 1:Start
xFinish : BOOL := FALSE; //TRUE:Finish

// FB instance
CSVReaderInit_0 : CSV.CSVReaderInit;
NextElement_0 : CSV.NextElement;

// Variables
asElement : ARRAY [0..999] OF STRING(255); //output
sFileName : STRING := 'Data.csv'; // First Read File
sNewFileName : STRING := 'Data1.csv'; // Second Read File
sColumnSep : STRING := ',';
sLineSep : STRING := 'RN';
xExecuteCSVReaderInit : BOOL := FALSE;
xExecuteNextElement : BOOL := FALSE;
iCount_item : INT := 0;
END_VAR

● Implementation section

//FunctionBlock
CSVReaderInit_0(xExecute := xExecuteCSVReaderInit,
 szFileName := sFileName,
 sColumnSeparator := sColumnSep,
 sLineSeparator := sLineSep);

NextElement_0(xExecute := xExecuteNextElement,
 udiMaxElementLength := 255,
 psElement := ADR(asElement[iCount_item]),
 csvReaderInit := CSVReaderInit_0);

CASE iStep OF
 1: // Open First CSVFile
 xFinish := FALSE;
 xExecuteCSVReaderInit := TRUE;
 IF (CSVReaderInit_0.xDone = TRUE) THEN
 xExecuteCSVReaderInit := FALSE;
 iStep := 2;
 END_IF

 2: // Read the First CSVFile
 xExecuteNextElement := TRUE;
 IF (NextElement_0.xDone = TRUE) THEN
 iCount_item := iCount_item + 1;
 xExecuteNextElement := FALSE;

11.11 SD Card Operation (CSV File Operation)

11-154 WUME-GM1PGR-10

 iStep := 3;
 END_IF

 3: // Repeat until all Elements are read (First CSVFile)
 IF (NextElement_0.xHasNextElement = TRUE) THEN
 iStep := 2;
 ELSE
 iStep := 4;
 END_IF

 4: // Open Second CSVFile
 sFileName := sNewFileName;
 xExecuteCSVReaderInit := TRUE;
 IF (CSVReaderInit_0.xDone = TRUE) THEN
 xExecuteCSVReaderInit := FALSE;
 iStep := 5;
 END_IF

 5: // Read the Second CSVFile
 xExecuteNextElement := TRUE;
 IF (NextElement_0.xDone = TRUE) THEN
 iCount_item := iCount_item + 1;
 xExecuteNextElement := FALSE;
 iStep := 6;
 END_IF

 6: // Repeat until all Elements are read (Second CSVFile)
 IF (NextElement_0.xHasNextElement = TRUE) THEN
 iStep := 5;
 ELSE
 xFinish := TRUE;
 iStep := 0;
 END_IF
END_CASE

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-155

11.11.17 Example of Process for Writing Log Data to CSV File

An example program for writing log data to a CSV file on the SD card will be described below.

The example shows a program used to output a log of parameters of an axis (Axis1) in
operation. When log out is performed one time, 10 elements, “log number, local time, parameter
1, parameter 2,..., parameter 8”, are output as a log. An interval at which a log is output and the
number of outputs are set by the variable tSample_interval and the variable iNumber_of_Times,
respectively. The name of a CSV file to which logs are output is ‘LogData_**.csv’ (**: The
number of execution times).
● Implementation Example

The program is executed at a total of two times, and logs are output to two CSV files
(‘LogData_1.csv’ and ‘LogData_2.csv’). For instance, 10 logs are output at one-second
intervals each time.
• Folder structure

SD card
|--LogData_1.csv (CSV file created at first execution)
|--LogData_2.csv (CSV file created at second execution)

When the program execution is completed two times in total, data is written to
‘LogData_1.csv’ and ‘LogData_2.csv’ as shown below.
Contents of LogData_1.csv

1,DT#2000-01-01-01:01:01,10,1,0,0,10,1,0,0\r\n
2,DT#2000-01-01-01:01:02,20,5,0,0,20,5,0,0\r\n
...
10,DT#2000-01-01-01:01:10,100,5,0,0,100,5,0,0\r\n

Contents of LogData_2.csv
1,DT#2000-01-01-01:02:01,110,5,0,0,110,5,0,0\r\n
2,DT#2000-01-01-01:02:02,120,5,0,0,120,5,0,0\r\n
...
10,DT#2000-01-01-01:02:10,200,1,0,0,200,1,0,0\r\n

● Description of process
When the case number (iStep) is changed to 1, a writing process is executed. Details of the
process for each case number in the implementation section are as described below.
1. For first execution, execute CSV.Init to create a new CSV file.

For execution at second and succeeding times, execute NewFile to create a new CSV
file.

2. Execute AddSTRING to add data output as a log to the internal buffer.
3. Continually return to the case number 2 until all the specified elements are added.

When all the specified elements are added, proceed to the case number 4.
4. Execute NewLine to add a line feed code to the internal buffer.
5. Execute WriteFile to write the data added to the internal buffer to the CSV file.
6. Continually return to the case number 2 until the specified number of logs are written.

When the specified number of logs are written, proceed to the case number 7.
7. At the completion of log data writing, xFinish = TRUE.

● Declaration section

11.11 SD Card Operation (CSV File Operation)

11-156 WUME-GM1PGR-10

VAR
// Start,Finish Flag
iStep : INT := 0; //Change to 1:Start
xFinish : BOOL := FALSE; //TRUE:Finish

// FB instance
BLINK_0 : BLINK;
R_TRIG_0 : R_TRIG;
CTU_0,CTU_1 : CTU;
CSVWriter_0 : CSV.CSVWriter;
Init_0 : CSV.Init;
AddSTRING_0 : CSV.AddSTRING;
NewLine_0 : CSV.NewLine;
WriteFile_0 : CSV.WriteFile;
NewFile_0 : CSV.NewFile;

// Variables
sFileName : STRING := 'LogData'; // Base of FileName
sDirectoryPath : STRING := '.'; // Directory path
sLineSep : STRING := 'RN';
sColumnSep : STRING := ',';
uliTimeZone : LINT := 9; // Time zone at UTC
iNumber_of_Elem : INT := 10; // The number of Write Data
iNumber_of_Times : INT := 10; // The number of times to get the data
tSample_interval : TIME := T#1S; // Time Interval (1 second or more)

xCTURESET_0 : BOOL := FALSE;
xCTURESET_1 : BOOL := FALSE;
xExecuteInit : BOOL := FALSE;
xExecuteSTRING : BOOL := FALSE;
xExecuteNewLine : BOOL := FALSE;
xExecuteWriteFile : BOOL := FALSE;
xExecuteNewFile : BOOL := FALSE;
xStart : BOOL := FALSE;
iNumber_of_xStart : INT := 0;
aData : ARRAY [0..9] OF STRING;
iCount_Data : INT := 0;
sSerialNumber : STRING;
sCreateFileName : STRING;
END_VAR

● Implementation section

//Stored Data
IF (R_TRIG_0.Q = TRUE) AND (iCount_Data < iNumber_of_Times) THEN
 aData[0] := TO_STRING(iCount_Data + 1);

 aData[1] := TO_STRING(TO_DT((GetDateTime() + uliTimeZone*60*60*1000)
/ 1000));
 aData[2] := TO_STRING(Axis1.fSetPosition);
 aData[3] := TO_STRING(Axis1.fSetVelocity);
 aData[4] := TO_STRING(Axis1.fSetAcceleration);
 aData[5] := TO_STRING(Axis1.fSetJerk);
 aData[6] := TO_STRING(Axis1.fActPosition);
 aData[7] := TO_STRING(Axis1.fActVelocity);
 aData[8] := TO_STRING(Axis1.fActAcceleration);

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-157

 aData[9] := TO_STRING(Axis1.fActJerk);
 iCount_Data := iCount_Data + 1;
END_IF

//Create FileName
sSerialNumber := CONCAT(STR1 := '_' ,
 STR2 := TO_STRING(iNumber_of_xStart + 1));

sCreateFileName := CONCAT(STR1 := sFileName ,
 STR2 := CONCAT(STR1 := sSerialNumber ,
 STR2 := '.csv'));

//FunctionBlock
BLINK_0(ENABLE := xStart ,
 TIMEHIGH := T#1MS ,
 TIMELOW := tSample_interval - T#1MS);

R_TRIG_0(CLK := BLINK_0.OUT);

CTU_0(CU := AddSTRING_0.xDone ,
 RESET := xCTURESET_0 ,
 PV := TO_WORD(iNumber_of_Elem));

CTU_1(CU := WriteFile_0.xDone ,
 RESET := xCTURESET_1 ,
 PV := TO_WORD(iNumber_of_Times));

Init_0(xExecute := xExecuteInit ,
 sDirectoryPath := sDirectoryPath ,
 sFileName := sCreateFileName ,
 sRowSeparator := sLineSep ,
 sColumnSeparator:= sColumnSep ,
 rCSVWriter := CSVWriter_0);

AddSTRING_0(xExecute := xExecuteSTRING ,
 sInput := aData[CTU_0.CV] ,
 rCSVWriter := CSVWriter_0);

NewLine_0(xExecute := xExecuteNewLine ,
 rCSVWriter := CSVWriter_0);

WriteFile_0(xExecute := xExecuteWriteFile ,
 rCSVWriter := CSVWriter_0);

NewFile_0(xExecute := xExecuteNewFile ,
 sNewFileName := sCreateFileName ,
 rCSVWriter := CSVWriter_0);

CASE iStep OF
 1: // Init or NewFile
 xStart := TRUE;
 xFinish := FALSE;
 IF (iNumber_of_xStart = 0) THEN
 xExecuteInit := TRUE;
 ELSIF (iNumber_of_xStart > 0) THEN
 xExecuteNewFile := TRUE;

11.11 SD Card Operation (CSV File Operation)

11-158 WUME-GM1PGR-10

 END_IF
 IF (Init_0.xDone = TRUE) OR (NewFile_0.xDone = TRUE) THEN
 iStep :=2;
 END_IF

 2: // AddSTRING
 IF (CTU_1.CV < iCount_Data) THEN
 xExecuteSTRING := TRUE;
 IF (AddSTRING_0.xDone = TRUE) THEN
 xExecuteSTRING := FALSE;
 iStep := 3;
 END_IF
 END_IF

 3: // Repeat until the specified number is added to the buffer
 IF (CTU_0.Q = TRUE) THEN
 xCTURESET_0 := TRUE;
 iStep := 4;
 ELSE
 iStep := 2;
 END_IF

 4: // NewLine
 xExecuteNewLine := TRUE;
 IF (NewLine_0.xDone = TRUE) THEN
 xExecuteNewLine := FALSE;
 iStep := 5;
 END_IF

 5: // WriteFile
 xExecuteWriteFile := TRUE;
 IF (WriteFile_0.xDone = TRUE) THEN
 xCTURESET_0 := FALSE;
 xExecuteWriteFile := FALSE;
 iStep := 6;
 END_IF

 6: // Repeat until the specified number is written
 IF (CTU_1.Q = TRUE) THEN
 xCTURESET_1 := TRUE;
 iStep := 7;
 ELSE
 iStep := 2;
 END_IF

 7: // Finish
 iNumber_of_xStart := iNumber_of_xStart + 1;
 xStart := FALSE;
 xCTURESET_1 := FALSE;
 iCount_Data := 0;
 xExecuteInit := FALSE;
 xExecuteNewFile := FALSE;
 xFinish := TRUE;
 iStep := 0;
END_CASE

11.11 SD Card Operation (CSV File Operation)

WUME-GM1PGR-10 11-159

11.12 Clock Setting

This section describes function blocks that are used to set the clock of the GM1 Controller.
Enter a function block name by using the RTCLK (namespace).

11.12.1 SYS_GetTime (Get Time)

This is a function block (FB) that gets the current local time

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL TRUE: Active
FALSE: Stop

Output xDone BOOL TRUE: The function block is normally ended.

xBusy BOOL TRUE: The function block is active.

xError BOOL TRUE: An error has occurred.

eError ERROR Details of error contents

dtDateAndTi
me

DT Current local time

11.12 Clock Setting

11-160 WUME-GM1PGR-10

11.12.2 SYS_SetTime (Set Time)

This is a function block (FB) that sets the current local time.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL TRUE: Active
FALSE: Stop

dtDateAndTi
me

DT Current time to be set

Output xDone BOOL TRUE: The function block is normally ended.

xBusy BOOL TRUE: The function block is active.

xError BOOL TRUE: An error has occurred.

eError ERROR Details of error contents

11.12 Clock Setting

WUME-GM1PGR-10 11-161

11.12.3 SYS_GetTimezone (Get Time Zone Information)

This is a function block (FB) that gets the time zone information.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL TRUE: Active
FALSE: Stop

Output xDone BOOL TRUE: The function block is normally ended.

xBusy BOOL TRUE: The function block is active.

xError BOOL TRUE: An error has occurred.

eError ERROR Details of error contents

iTimezone INT Time zone information (Offset from UTC)

11.12 Clock Setting

11-162 WUME-GM1PGR-10

11.12.4 SYS_SetTimezone (Set Time Zone Information)

This is a function block (FB) that sets the time zone information.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL TRUE: Active
FALSE: Stop

iTimezone INT Time zone information (Offset from UTC)

Output xDone BOOL TRUE: The function block is normally ended.

xBusy BOOL TRUE: The function block is active.

xError BOOL TRUE: An error has occurred.

eError ERROR Details of error contents

11.12.5 SYS_DateConcat (Convert from UINT Type to DATE Type)

This is a function (FUN) that converts a UINT type date to a DATE type.

■ Icon

■ Parameter

Scope Name Type Description

Input uiYear UINT Year: 1970 to 2099

uiMonth UINT Month: 1 to 12

uiDay UINT Day: 1 to 31

peError POINTER
TO ERROR

Pointer to the error information storage location

11.12 Clock Setting

WUME-GM1PGR-10 11-163

Scope Name Type Description

Output SYS_DateC
oncat

DATE Return value: Returns DT#1970-01-01 if the input value is invalid.

11.12.6 SYS_DateSplit (Convert from DATE Type to UINT Type)

This is a function (FUN) that converts a DATE type date to a UINT type.

■ Icon

■ Parameter

Scope Name Type Description

Input datDate DATE Date data

puiYear POINTER
TO UINT

Pointer to the year data storage location: 1970 to 2099

puiMonth POINTER
TO UINT

Pointer to the month data storage location: 1 to 12

puiDay POINTER
TO UINT

Pointer to the day data storage location: 1 to 31

Output SYS_DateS
plit

ERROR Return value: Error information

11.12 Clock Setting

11-164 WUME-GM1PGR-10

11.12.7 SYS_DTConcat (Convert from UINT Type to DT Type)

This is a function (FUN) that converts a UINT type date and time to a DT type.

■ Icon

■ Parameter

Type Name Type Description

Input uiYear UINT Year: 1970 to 2099

uiMonth UINT Month: 1 to 12

uiDay UINT Day: 1 to 31

uiHour UINT Hour: 0 to 23

uiMinute UINT Minute: 0 to 59

uiSecond UINT Second: 0 to 59

peError POINTER
TO ERROR

Pointer to the error information

Output SYS_DTCo
ncat

DT Return value: Returns DT#1970-01-01-00:00:00 if the input value is
invalid.

11.12 Clock Setting

WUME-GM1PGR-10 11-165

11.12.8 SYS_DTSplit (Convert from DT Type to UINT Type)

This is a function (FUN) that converts a DT type date and time to a UINT type.

■ Icon

■ Parameter

Scope Name Type Description

Input dtDateAndTi
me

DT Date and time data

puiYear POINTER
TO UINT

Pointer to the year data storage location: 1970 to 2099

puiMonth POINTER
TO UINT

Pointer to the month data storage location: 1 to 12

puiDay POINTER
TO UINT

Pointer to the day data storage location: 1 to 31

puiHour POINTER
TO UINT

Pointer to the hour data storage location: 0 to 23

puiMinute POINTER
TO UINT

Pointer to the minute data storage location: 0 to 59

puiSecond POINTER
TO UINT

Pointer to the second data storage location: 0 to 59

Output SYS_DTSpli
t

ERROR Return value: Error information

11.12 Clock Setting

11-166 WUME-GM1PGR-10

11.12.9 SYS_GetDayOfWeek (Get Day of the Week)

This is a function (FUN) that gets the day of the week from the DATE type date.

■ Icon

■ Parameter

Scope Name Type Description

Input dtDate DATE Date data

peError POINTER
TO ERROR

Pointer to the error information

Output SYS_GetDa
yOfWeek

Panasonic_
GM_System
.WEEKDAY

Return value: Day of the week

RTCLK.WEEKDAY (Day of the week)

Name Value Description

SUNDAY 16#00 Sunday

MONDAY 16#01 Monday

TUESDAY 16#02 Tuesday

WEDNESDAY 16#03 Wednesday

THURSDAY 16#04 Thursday

FRIDAY 16#05 Friday

SATURDAY 16#06 Saturday

11.12 Clock Setting

WUME-GM1PGR-10 11-167

11.12.10 SYS_TODConcat (Convert from UINT Type to TOD Type)

This is a function (FUN) that converts a UINT type time with milliseconds to a TOD type.

■ Icon

■ Parameter

Scope Name Type Description

Input uiHour UINT Hour: 0 to 23

uiMinute UINT Minute: 0 to 59

uiSecond UINT Second: 0 to 59

uiMillisecon
d

UINT Millisecond: 0 to 999

peError POINTER
TO ERROR

Pointer to the error information

Output SYS_TODC
oncat

TOD Return value
Returns TOD#00:00:00 if the input value is invalid.

11.12 Clock Setting

11-168 WUME-GM1PGR-10

11.12.11 SYS_TODSplit (Convert from TOD Type to UINT Type)

This is a function (FUN) that converts a TOD type time with milliseconds to a UINT type.

■ Icon

■ Parameter

Scope Name Type Description

Input todTime TOD Time (hour, minute, second) with millisecond data

puiHour POINTER
TO UINT

Pointer to the hour data storage location: 0 to 23

puiMinute POINTER
TO UINT

Pointer to the minute data storage location: 0 to 59

puiSecond POINTER
TO UINT

Pointer to the second data storage location: 0 to 59

puiMilliseco
nd

POINTER
TO UINT

Pointer to the millisecond data storage location: 0 to 999

Output SYS_TODS
plit

ERROR Return value: Error information

11.12 Clock Setting

WUME-GM1PGR-10 11-169

11.12.12 ERROR (Clock Instruction Error Code)

Name Value Description

NO_ERROR 0 No error

FIRST_ERROR 5700 First error unique to the library

TIME_OUT 5751 The time limit is exceeded.

NOT_AVAILABLE 5752 Not available.

INPUT_VALID 5753 Invalid input value

DTU_ERROR_UNKNOWN 5754 Unknown error

DTU_WRONG_PARAMETER 5755 Wrong parameter

DTU_TZI_NOT_SET 5756 The time zone information has not been initialized.

FIRST_MF 5770 First error unique to the manufacturer

LAST_ERROR 5799 Last error unique to the library

11.12.13 SNTP.SNTPGetUTCTime (Get SNTP Time)

This is a function block used to communicate with the SNTP server and get the current server
time and Main Unit time. The gotten time is information about time in units of milliseconds that
has elapsed since 00:00:00 on January 1 in 1970.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

sSNTPServer(Note 2) STRING(255) '' Specifies the IP address of the
SNTP server.

sOwnIP(Note 2) STRING(255) '0.0.0.0' Specifies the IP address of the
GM1 controller.(Note 1)

uiSNTPPort(Note 2) UINT 0 Specifies the port number of the
SNTP server.

uiOwnPort(Note 2) UINT 0 Specifies the port number of the
GM1 controller.
Set it to 123.

11.12 Clock Setting

11-170 WUME-GM1PGR-10

Scope Name Type Default value Description

udiTimeout UDINT 1000 Timeout (Unit: ms)

eNTPVersion NTP_VERSION V3 Specifies the NTP version.

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError SNTP.ERROR NO_ERROR An error ID is output.
Refer to "11.12.14 SNTP.ERROR
(SNTP Error Code)".

uliTimestamp ULINT 0 The current time of the SNTP
server (unit: ms)

uliReceiveClientTS ULINT 0 The current time of the Main Unit
(unit: ms)

(Note 1) Specify the IP address of the LAN port connected to the server.
(Note 2) A change made to any of the sSNTPServer, sOwnIP, uiSNTPPort, and uiOwnPort values after

execution of the FB of the same instance does not take effect.

■ NTP_VERSION (Enumeration type)

Name Value Description

V3 0 Version 3

V4 1 Version 4

● Values for uliTimestamp and uliReceiveClientTS are acquired according to Coordinated
Universal Time (UTC). To change the Main Unit time, conversion to a local time is necessary.

● SNTPGetUTCTime is designed to only get time. To update time, refer to "11.12.15 Example of
SNTP Time Synchronization".

11.12.14 SNTP.ERROR (SNTP Error Code)

This is an enumeration type error code that is output when an SNTP function block is executed.

■ SNTP.ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

TIME_OUT 1 Timeout

INIT_ERROR 2 Initialization failed.

SEND_ERROR 3 Failed to send the request to the server.

SERVER_REFUSED_REQUEST 6 The server refused the request.

INVALID_LICENSE 7 Invalid license

11.12 Clock Setting

WUME-GM1PGR-10 11-171

11.12.15 Example of SNTP Time Synchronization

An example program for communicating with the SNTP server and synchronizing the gotten
server time and the GM1 controller time will be described below.

● Description of process
When the case number (byStep) is changed to 1, a process for time synchronization is
executed. Before execution of the process, specify values for the variable sSendSrv_ip (IP
address of the SNTP server) and variable sClient_ip (IP address of the GM1 controller).
Details of the process for each case number in the implementation section are as described
below.
1. Execute SYS_GetTimeZone to get information on the time zone for the GM1 controller.
2. Execute SNTPGetUTCTime to communicate with the SNTP server and get the current

server time. After that, execute SYS_SetTime to set the GM1 controller time to the
current local time.

3. When time synchronizaion is completed, the variable xFinish goes TRUE.
● Declaration section

VAR
// Start SNTP function
byStep : BYTE := 0; //Process No
xFinish : BOOL := FALSE;

// Setting Variables for SNTP_Client
sSendSrv_ip : STRING := '192.168.1.100';//SNTP Server IP
sClient_ip : STRING := '192.168.1.5'; //SNTP_Client(GM1) IP
uiSendSrv_port : UINT := 123; //SNTP_Server port
uiClient_port : UINT := 123; //SNTP_Client(GM1) port
udiTimeout : UDINT := 1000; //Timeout[ms]

// FB instance
GetTimeZone_0 : SYS_GetTimezone;
SNTPGetUTCTime_0 : SNTP.SNTPGetUTCTime;
SetTime_0 : SYS_SetTime;

// Variables
xTimeZone_exe : BOOL := FALSE; //TRUE：TimeZone exe
xSNTPGetUTCTime_exe : BOOL := FALSE; //TRUE：SNTPGetUTC exe
xSetTime_exe : BOOL := FALSE; //TRUE：SetTime exe
liTimeZone : LINT; //GM1 TimeZone[min]
uliGETTime : ULINT; //UTC[ms]

END_VAR
● Implementation section

//FunctionBlock
GetTimeZone_0(xExecute := xTimeZone_exe,
 iTimezone => liTimeZone);

SNTPGetUTCTime_0(xExecute := xSNTPGetUTCTime_exe,
 sSNTPServer := sSendSrv_ip,
 sOwnIP := sClient_ip,
 uiSNTPPort := uiSendSrv_port,

11.12 Clock Setting

11-172 WUME-GM1PGR-10

 uiOwnPort := uiClient_port,
 udiTimeout := udiTimeout,
 eNTPVersion := SNTP.V3,
 uliTimestamp => uliGETTime);

SetTime_0(xExecute := xSetTime_exe,
 dtDateAndTime := TO_DT((uliGETTime + (liTimeZone*60*1000))/1000)
);

(* Calculation of Set Time

liTimeZone*60*1000
 ...Convert Timezone information from hours to milliseconds

uliGETTime + (liTimeZone*60*1000)
 ...Calculation of Local Time

(uliGETTime + (liTimeZone*60*1000))/1000)
 ...Convert Local Time from milliseconds to Seconds

*)

CASE byStep OF
 1: // Get GM1 Time zone information
 xFinish := FALSE;
 xTimeZone_exe := TRUE;
 IF (GetTimeZone_0.xDone = TRUE) THEN
 byStep := 2;
 END_IF

 2: // Update GM1 Time
 xSNTPGetUTCTime_exe := TRUE;
 IF (SNTPGetUTCTime_0.xDone = TRUE) THEN
 xSetTime_exe := TRUE;
 IF (SetTime_0.xDone = TRUE) THEN
 byStep := 3;
 END_IF
 END_IF

 3: //Finish
 xTimeZone_exe := FALSE;
 xSNTPGetUTCTime_exe := FALSE;
 xSetTime_exe := FALSE;
 xFinish := TRUE;
 byStep := 0;
END_CASE

11.12 Clock Setting

WUME-GM1PGR-10 11-173

11.13 System Data

11.13.1 SYS_GetSystemError (Get System Error)

This is a function block that gets the information of a system error that has occurred in the GM1
Controller.

■ Icon

■ Parameter

Scope Name Type Description

Input None

Output Error BOOL TRUE: An error has occurred.

ErrorId UDINT Error ID of the error that has occurred

● For the error IDs, refer to the GM1 Controller RTEX User’s Manual (Operation Edition) or GM1
Controller EtherCAT User’s Manual (Operation Edition).

11.13.2 SYS_ClearSystemError (Clear System Error)

This is a function block that clears a system error that has occurred in the GM1 Controller.

■ Icon

■ Parameter

Scope Name Type Description

Input xExecute BOOL Starts execution at the rising edge.

Output xDone BOOL TRUE: Processing is completed.

xError BOOL TRUE: An error has occurred within the FB.

11.13 System Data

11-174 WUME-GM1PGR-10

11.14 PID Control

11.14.1 PD (PD Control)

This is a function block (FB) that performs PD control. P control can be performed when TV is
set to 0.

■ Icon

■ Parameter

Scope Name Type Default Description

Input ACTUAL REAL - Current value

SET
POINT

REAL - Target value

KP REAL - Proportionality constant P

TV REAL - Derivative time D (unit: s)

Y_MANUA
L

REAL - A value output to output value (Y) when MANUAL = TRUE is
set.

Y_OFFSE
T

REAL - An offset value of output value (Y)

Y_MIN REAL - A lower limit value of output value (Y)

Y_MAX REAL - An upper limit value of output value (Y)

MANUAL BOOL - TRUE: The value set in Y_MANUAL is output to output value
(Y).

RESET BOOL - TRUE: Output value (Y) is reset.
Output value (Y) is set to the offset value (Y_OFFSET) to
reset the integral portion.

Output Y REAL - Output value

LIMITS_A
CTIVE

BOOL FALSE TRUE: Output value (Y) is outside the range defined by
Y_MIN/Y_MAX.

11.14 PID Control

WUME-GM1PGR-10 11-175

11.14.2 PID (PID Control)

This is a function block (FB) that performs PID control. Cycle time is automatically measured
and PID operation is executed. PI control can be performed when TV is set to 0.

● Cycle time is a time passed while the FB is called twice.

■ Icon

■ Parameter

Scope Name Type Default Description

Input ACTUAL REAL - Current value

SET
POINT

REAL - Target value

KP REAL - Proportionality constant P

TN REAL - Integral time I (unit: s)

TV REAL - Derivative time D (unit: s)

Y_MANUA
L

REAL - A value output to output value (Y) when MANUAL = TRUE is
set.

Y_OFFSE
T

REAL - An offset value of output value (Y)

Y_MIN REAL - A lower limit value of output value (Y)

Y_MAX REAL - An upper limit value of output value (Y)

MANUAL BOOL - TRUE: The value set in Y_MANUAL is output to output value
(Y).

RESET BOOL - TRUE: Output value (Y) is reset.
Output value (Y) is set to the offset value (Y_OFFSET) to
reset the integral portion.

Output Y REAL - Output value

LIMITS_A
CTIVE

BOOL FALSE TRUE: Output value (Y) is outside the range defined by
Y_MIN/Y_MAX.

11.14 PID Control

11-176 WUME-GM1PGR-10

Scope Name Type Default Description

OVERFLO
W

BOOL - TRUE: Integer portion overflow

● The maximum preciseness is 1 ms and thus the precision decreases when the operation is
executed in a short cycle time.
For instance, if the cycle time is 1 ms, PID control measures the cycle time as 2 ms or 0 ms in
some cases.
If the operation is executed in a short cycle time, use of PID_FIXCYCLE is recommended.

11.14.3 PID_FIXCYCLE ［PID Control (Any Cycle Time)］

This is a function block (FB) that performs PID control. Cycle time can be manually set. PID
operation is executed over the set cycle time. Except for the manually set cycle time, this FB
operates in the same way as PID function blocks.

● Cycle time is a time passed while the FB is called twice.

■ Icon

■ Parameter

Scope Name Type Default Description

Input ACTUAL REAL - Current value

SET
POINT

REAL - Target value

KP REAL - Proportionality constant P

TN REAL - Integral time I (unit: s)

TV REAL - Derivative time D (unit: s)

11.14 PID Control

WUME-GM1PGR-10 11-177

Scope Name Type Default Description

Y_MANUA
L

REAL - A value output to output value (Y) when MANUAL = TRUE is
set.

Y_OFFSE
T

REAL - An offset value of output value (Y)

Y_MIN REAL - A lower limit value of output value (Y)

Y_MAX REAL - An upper limit value of output value (Y)

MANUAL BOOL - TRUE: The value set in Y_MANUAL is output to output value
(Y).

RESET BOOL - TRUE: Output value (Y) is reset.
Output value (Y) is set to the offset value (Y_OFFSET) to
reset the integral portion.

CYCLE REAL - A time passed while the FB is called twice

Output Y REAL - Output value

LIMITS_A
CTIVE

BOOL FALSE TRUE: Output value (Y) is outside the range defined by
Y_MIN/Y_MAX.

OVERFLO
W

BOOL - TRUE: Integer portion overflow

11.14 PID Control

11-178 WUME-GM1PGR-10

11.15 Recipe function

Variables in each recipe definition added to the Recipe Manager can be manipulated as recipes
with the Recipe Method command.
The recipe method is affected by the “Storage” and “General” tabs.
If these are not configured correctly, the function will not behave properly.

■ Recipe method command description method
Each recipe method command is a method belonging to the function block
RecipeManCommands.
Therefore, an item that sets RecipeManCommands as an instance must be written at the
beginning of the method.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
● Implement section

output := RecipeManCommands_0.CreateRecipe(input1 , input2);

■ Terminology
● Recipe (GM Programmer tools)

A common file format for recipes handled by the GM Programmer recipe feature. The format
of the standard recipe file is <Recipe Name>.<Recipe Definition Name>.<Recipe
Extension>. The format for automatic saving in Recipe Manager is also the recipe file
format.The contents follow the settings of the “Storage” tab.

● Recipe File
The file format of recipes handled by the GM Programmer recipe function.The recipe file
format is <Recipe Name<.<Recipe Extension<. By setting <Recipe Name< to <Recipe
Name<.<Recipe Definition Name<, you can also handle recipe files.

● Recipe (GM1 internal meomry)
Refers to a recipe that was created at runtime in the GM1 Main Unit.This recipe is not
automatically saved and is deleted by resetting or turning on and off. If “Automatically save
changes” in the Recipe Manager is enabled, a recipe file is created base on the Recipe(in
SD card) when the user logs in to the GM1 Main Unit or when ReloadRecipes is run. In
recipe commands, “recipe” refers mainly to the Recipe (GM1 internal meomry). The format of
the recipe file is <recipe name>.<Recipe definition name>.<Recipe extension>.

11.15 Recipe function

WUME-GM1PGR-10 11-179

● Recipes created in the tool cannot be rewritten directly from POU.
● Basically runtime recipes are manipulated by POU.

If you want to handle the contents of a recipe created in the tool in POU, it is done via a recipe
file or a runtime recipe saved automatically in the SD card.

■ Recipe file character limit
In GM Programmer tool, Recipe files has a limited number of characters. If set outside of these
ranges, it may not work correctly.
The character limit for each item is as follows:

Setting item Limit value

Recipe Name Specify up to 35 characters.

Recipe definition name Specify up to 35 characters.

Extension Please enter no more than 10 characters, including periods.

File path name Please enter no more than 176 characters, including the “\” symbol.

11.15.1 CreateRecipe (Create Recipe)

A method that creates a new recipe in the specified recipe definition from the "current value"
and saves it as a recipe file. In addition, it is not possible to overwrite an existing recipe or
specify the same name. An error occurs.

■ Icon

11.15 Recipe function

11-180 WUME-GM1PGR-10

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name for the recipe to be
created (Note 1)

RecipeName STRING The name of the recipe to be created (Note

2)

Output CreateRecipe DWORD Output runtime ReturnValues

(Note 1) Be sure to specify the target recipe definition before operating.
(Note 2) Be sure to specify the recipe name to be created before operating.

■ Program example
A program that reads the “current value” of the recipe definition corresponding to the input
variable input1 and creates a recipe with the recipe name of the input variable input2 and a
recipe file.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';
input2 ：STRING := 'RecipeName';

● Implement section

output := RecipeManCommands_0.CreateRecipe(input1 , input2);

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

If enabled, recipes created by the
CreateRecipe method will automatically
be saved to the SD card as recipe
files.If this setting is disabled, recipes
are created at runtime only and are not
stored in recipe files.

Load Recipe Load only exact matches in the variable list The CreateRecipe method is not
affected.

Load matching variables by the variable
name

The CreateRecipe method is not
affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The CreateRecipe method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The CreateRecipe method is not
affected.

Read Recipe Check the recipe changes The CreateRecipe method is not
affected.

11.15 Recipe function

WUME-GM1PGR-10 11-181

● If the SD card is not inserted into the GM1 Main Unit, a recipe file is not created, but no error
occurs.

● When SD card write protection is enabled, a recipe file is not created, but no error occurs.
● If there is no free space on the SD card, no error occurs, but an empty recipe file is created.
● Since no error occurs in the above three cases, if you want to create a recipe file, check the

size of the recipe file (FILE.GetSize) after it is generated.

11.15 Recipe function

11-182 WUME-GM1PGR-10

11.15.2 DeleteRecipe (Delete Recipe)

This is a method to delete a recipe for the specified recipe definition. If a corresponding recipe
file exists, the file is also deleted.

■ Icon

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name for the recipe to be
deleted (Note 1)

RecipeName STRING The name of the recipe to be deleted (Note

2)

Output DeleteRecipe DWORD Output runtime ReturnValues

(Note 1) Be sure to specify the target recipe definition before operating.
(Note 2) Be sure to specify the recipe name to be deleted before operating.

■ Program example
This is a program that deletes the recipes present in the recipe definition that correspond to the
input variables input1 and input2.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';
input2 ：STRING := 'RecipeName';

● Implement section

output := RecipeManCommands_0.DeleteRecipe(input1 , input2);

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

If this setting is disabled, DeleteRecipe
will not delete recipe files.

Load Recipe Load only exact matches in the variable list The DeleteRecipe method is not
affected.

11.15 Recipe function

WUME-GM1PGR-10 11-183

Setting item Overview

Load matching variables by the variable
name

The DeleteRecipe method is not
affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The DeleteRecipe method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The DeleteRecipe method is not
affected.

Read Recipe Check the recipe changes The DeleteRecipe method is not
affected.

● If an SD card is not inserted into the GM1 Main Unit, the recipe file is not deleted and an error
occurs.

● When SD card write protection is enabled, the recipe file is not deleted and an error occurs.

11.15.3 LoadFromAndWriteRecipe (Load and Write Recipe File)

Load the recipe from the specified recipe file. This is a method that then writes the recipe value
to the corresponding recipe and “current value”. If the item “Variable” is not listed in the recipe
file to be loaded, it will not be loaded correctly.

■ Icon

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name for the recipe to be
loaded (Note 1)

RecipeName STRING The name of the recipe to be loaded (Note 2)

FileName STRING(255) Name of the recipe file to be loaded (Note 3)

Output LoadFromAndWriteRecipe DWORD Output runtime ReturnValues

(Note 1) Be sure to specify the target recipe definition before operating.
(Note 2) Be sure to specify the recipe name to be loaded before operating.
(Note 3) Be sure to specify the target recipe file before operating.

■ Program example
Load the recipe file corresponding to the input variable input3 for the recipe present in the
recipe definition corresponding to the input variables input1 and input2. This is a program that
writes that value to the “current value” of the recipe and recipe definition.
● Declaration section

11.15 Recipe function

11-184 WUME-GM1PGR-10

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';
input2 : STRING := 'RecipeName';
input3 : STRING := 'RecipeName.RecipeDefName.txtrecipe';

● Implement section

output := RecipeManCommands_0.LoadFromAndWriteRecipe(input1 , input2 , inpu
t3);

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

If this setting is disabled, the recipe
must be executed after it has been
created in runtime.

Load Recipe Load only exact matches in the variable list The LoadFromAndWriteRecipe method
can only be executed if the contents of
the recipe file to be loaded match all of
the settings on the Storage tab and the
variable names in the recipe definition.

Load matching variables by the variable
name

When the LoadFromAndWriteRecipe
method is executed, only variables that
match the variable names in the recipe
file to be loaded and the variable
names in the recipe definition are
written.

Write Recipe (Note 1) Limit variables to minimum/maximum when
the recipe value is out of range

When writing a recipe value to the
“current value” in the recipe definition, if
the value is outside the minimum/
maximum value range specified in the
recipe definition, the minimum or
maximum value set in the recipe
definition will be written instead.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

When writing a recipe value to the
“current value” in the recipe definition, if
the value is outside the minimum/
maximum value range specified in the
recipe definition, the value is not written
and the “current value” is preserved.

Read Recipe Check the recipe changes The LoadFromAndWriteRecipe method
is not affected.

(Note 1) When writing recipe values to “current value” using this function, be sure to set the maximum and
minimum values for all variables that can be set. It will not work correctly if you only set it partially. If
you want to write all variables regardless of the maximum and minimum values, do not set the
maximum and minimum values for all variables.

● If an SD card is not inserted into the GM1 Main Unit, an error occurs.

11.15 Recipe function

WUME-GM1PGR-10 11-185

11.15.4 ReadAndSaveRecipe (Recipe File Overwrite Save)

This is a method that loads the “current value” into the recipe and then saves the recipe to a
recipe file. If a recipe file with the same name already exists, it is overwritten and saved. To
execute the ReadAndSaveRecipe method, a recipe must be created, for example, by
CreateRecipe.

■ Icon

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name for the recipe to be
read(Note 1)

RecipeName STRING The name of the recipe to be saved (Note 2)

Output ReadAndSaveRecipe DWORD Output runtime ReturnValues

(Note 1) If there is no free space on the SD card, no error occurs, but an empty recipe file is created.
(Note 2) Be sure to specify the target recipe name before operating.

■ Program example
This program reads the current value of the recipe definition corresponding to the input variable
input1 into the recipe of input variable input2 and saves it in a recipe file.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';
input2 : STRING := 'RecipeName';

● Implement section

output := RecipeManCommands_0.ReadAndSaveRecipe(input1 , input2);

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

If this setting is disabled, the behavior
will vary depending on the “Check for
recipe changes” setting.
● “Check for recipe changes” is

disabled: A recipe file is created on
the SD card.

11.15 Recipe function

11-186 WUME-GM1PGR-10

Setting item Overview
● “Check for recipe changes” is

enabled: A recipe file is created on
the SD card only when it is
determined that the overwrite save
has occurred due to a change in the
recipe value.

If this setting is enabled, follow the
“Check for recipe changes” setting.

Load Recipe Load only exact matches in the variable list The ReadAndSaveRecipe method is
not affected.

Load matching variables by the variable
name

The ReadAndSaveRecipe method is
not affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The ReadAndSaveRecipe method is
not affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The ReadAndSaveRecipe method is
not affected.

Read Recipe Check the recipe changes If you enable this setting, the
ReadAndSaveRecipe method first
loads the “current value” into the recipe
when it runs.

● If an SD card is not inserted into the GM1 Main Unit, the recipe file is not overwritten and saved
and an error occurs.

● When SD card write protection is enabled, the recipe file is not overwritten and saved and an
error occurs.

● If there is no free space on the SD card, no error occurs, but an empty recipe file is created.

11.15.5 prvCompareRecipe (Compare Recipes)

This is a method to compare the “current value” of the recipe definition with the specified recipe
(GM1 internal meomry). It can be executed when the “Check for recipe changes” setting in the
Recipe Manager is enabled. Since the prvCompareRecipe method belongs to Private, an error
occurs when the function block RecipeManCommands is executed before operation.

■ Icon

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name to be compared
(Note 1)

11.15 Recipe function

WUME-GM1PGR-10 11-187

Scope Name Type Description

RecipeName STRING The name of the recipe to be compared
(Note 2)

Output prvCompareRecipe BOOL If the recipe matches the “current value” of
the recipe definition, TRUE is returned

(Note 1) Be sure to specify the target recipe definition before operating.
(Note 2) Be sure to specify the recipe name to be compared before operating.

■ Program example
This is a program that compares the value of the recipe of input variable input2 present in the
recipe definition corresponding to input variable input1 with the “current value”.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';
input2 : STRING := 'RecipeName';

● Implement section

output := RecipeManCommands_0.ReloadRecipes(input1);
output := RecipeManCommands_0.prvCompareRecipe(input1 , input2);

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

If this setting is disabled, the recipe
must be executed after it has been
created in runtime.

Load Recipe Load only exact matches in the variable list Verify that the settings in the Storage
tab and the variable names in the
recipe definition exactly match the
contents of the recipe file to be
compared.

Load matching variables by the variable
name

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The prvCompareRecipe method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The prvCompareRecipe method is not
affected.

Read Recipe Check the recipe changes If enabled, the prvCompareRecipe
method becomes executable.

● Please execute ReloadRecipes (reload of the recipe file in the SD card) and reflect it in the
Recipe(GM1 internal meomry).If another method is executed before this method, an error will
occur.

11.15 Recipe function

11-188 WUME-GM1PGR-10

11.15.6 ReloadRecipes (Load Recipe File in SD Card)

This is a method to load the recipe file saved in the SD card for the specified recipe definition.
The loaded recipe file is saved as recipe(GM1 internal meomry). This is necessary to access
the recipe file in the card correctly, such as when the SD card is inserted and disconnected
during GM1 operation.

■ Icon

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name to be reloaded (Note

1)

Output ReloadRecipes DWORD Output runtime ReturnValues

(Note 1) Be sure to specify the target recipe definition before operating.

■ Program example
This is a program that reads the recipe file in the SD card that belongs to the recipe definition
corresponding to the input variable input1.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';

● Implement section

output := RecipeManCommands_0.ReloadRecipes(input1);

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

If this setting is disabled,
ReloadRecipes will not load the recipe
file.

Load Recipe Load only exact matches in the variable list The ReloadRecipes method is not
affected.

Load matching variables by the variable
name

The ReloadRecipes method is not
affected.

11.15 Recipe function

WUME-GM1PGR-10 11-189

Setting item Overview

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The ReloadRecipes method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The ReloadRecipes method is not
affected.

Read Recipe Check the recipe changes The ReloadRecipes method is not
affected.

● If there is no data on the SD card inserted into GM1, or if the SD card is not inserted, no error
occurs. Run GetRecipeCount, for example, to verify that the recipe file in the card was loaded
correctly.

11.15.7 GetRecipeCount (Count Recipes)

This is a method to count the number of recipes belonging to the specified recipe definition.The
count target is the recipes (GM1 internal meomry).

■ Icon

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name that counts the
number of recipes (Note 1)

Output GetRecipeCount INT Output the number of recipes present in the
recipe definition

(Note 1) Be sure to specify the target recipe definition before operating.

■ Program example
This is a program that counts the number of recipes present in the recipe definition
corresponding to the input variable input1.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';

● Implement section

output := RecipeManCommands_0.GetRecipeCount(input1);

11.15 Recipe function

11-190 WUME-GM1PGR-10

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

The GetRecipeCount method is not
affected.

Load Recipe Load only exact matches in the variable list The GetRecipeCount method is not
affected.

Load matching variables by the variable
name

The GetRecipeCount method is not
affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The GetRecipeCount method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The GetRecipeCount method is not
affected.

Read Recipe Check the recipe changes The GetRecipeCount method is not
affected.

11.15.8 GetRecipeNames (Get Recipe Names)

This is a method to acquire the name of the recipe that belongs to the specified recipe
definition. The count target is the recipes (GM1 internal meomry).

■ Icon

■ Parameter

Scope Name Type Description

Input RecipeDefinitionName STRING Recipe definition name that acquires the
recipe name (Note 1)

pStrings POINTER TO
ARRAY OF STRING

Pointer to store the acquired recipe name
(Note 2)

iSize INT Number of recipes to acquire (Note 3)(Note 4)

iStartIndex INT Index value of the recipe to acquire. (Note 4)

Index value for recipe starting with 0.

Output GetRecipeNames DWORD Output runtime ReturnValues

(Note 1) Be sure to specify the target recipe definition before operating.

11.15 Recipe function

WUME-GM1PGR-10 11-191

(Note 2) The pointer array must be STRING (80) type. If you specify another type, the correct recipe name will
not be acquired.

(Note 3) Do not set a value greater than the number of arrays set for pStrings. Failure to set the appropriate
value may result in an unexpected error.

(Note 4) Be sure to set a value greater than or equal to 0 before operating. If you set a negative number, it will
not work.

■ Program example
This is a program that acquires the recipe name from the input variable input4 +1th recipe for
the number of input variables input3 for the recipe present in the recipe definition corresponding
to the input variable input1.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
input1 : STRING := 'RecipeDefName';
input2 : ARRAY [0..9] OF STRING;
input3 : INT:=10;
input4 : INT:=0;

● Implement section

output := RecipeManCommands_0.GetRecipeNames(input1,ADR(input2),input3,inpu
t4);

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

The GetRecipeNames method is not
affected.

Load Recipe Load only exact matches in the variable list The GetRecipeNames method is not
affected.

Load matching variables by the variable
name

The GetRecipeNames method is not
affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The GetRecipeNames method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The GetRecipeNames method is not
affected.

Read Recipe Check the recipe changes The GetRecipeNames method is not
affected.

11.15 Recipe function

11-192 WUME-GM1PGR-10

11.15.9 GetLastError (Get Last ReturnValues)

This is a method that acquires the ReturnValues value from the last action when using the
recipe method.

■ Icon

■ Parameter

Scope Name Type Description

Output GetLastError DWORD Output the last output ReturnValues

■ ReturnValues (GVL)

Name Number (DWORD) Description

ERR_OK 16#0 Operation successful

ERR_RECIPE_FI
LE_NOT_FOUND

16#4000 Recipe file not found

ERR_RECIPE_MI
SMATCH

16#4001 The recipe file contents do not match the current recipe.
Occurs only if the storage type is a string and the variable
name in the file does not match the variable name in the
recipe definition. The recipe file will not be loaded at this
time.

ERR_RECIPE_SA
VE_ERR

16#4002 The save operation failed due to the following reasons:
● The file cannot be created or opened because the SD

card is full
● The configured file path does not exist
● The configured file extension is not allowed at runtime

ERR_RECIPE_N
OT_FOUND

16#4003 The specified recipe does not exist

ERR_RECIPE_DE
FINITION_NOT_F
OUND

16#4004 The specified recipe definition does not exist

ERR_RECIPE_AL
READY_EXIST

16#4005 The specified recipe already exists in the recipe definition

ERR_NO_RECIP
E_MANAGER_SE
T

16#4006 “Recipe Management in PLC” is not enabled in the Recipe
Manager

ERR_RECIPE_N
OMEMORY

16#4008 The recipe definition does not have enough free memory to
create a new recipe:
● More than 50 recipes were created in the recipe

definition

11.15 Recipe function

WUME-GM1PGR-10 11-193

■ Program example
This is a program that acquires the ReturnValues value obtained from the last recipe method
operation executed.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
● Implement section

output := RecipeManCommands_0.GetLastError();

■ ■Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

The GetLastError method is not
affected.

Load Recipe Load only exact matches in the variable list The GetLastError method is not
affected.

Load matching variables by the variable
name

The GetLastError method is not
affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The GetLastError method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The GetLastError method is not
affected.

Read Recipe Check the recipe changes The GetLastError method is not
affected.

11.15 Recipe function

11-194 WUME-GM1PGR-10

11.15.10 GetLastInfo (Get Last InfoValues)

This is a method that acquires the InfoValues value obtained from the last action when using
the recipe method. It may be acquired automatically at the start of GM1 operation.

■ Icon

■ Parameter

Scope Name Type Description

Output GetLastInfo InfoValues Outputs the final output InfoValues (Note 1)

(Note 1) If multiple InfoValues occur simultaneously, the sum of the UDINT values for each Info is output.

■ InfoValues (Enumeration type)
Occurs when the Recipe Manager load recipe setting is “Load variables that match the variable
name”

Name Number (UDINT) Description

NO_INFO 16#0 No Info occurrence

INFO_RECIPE_M
ANAGER_NOT_A
LL_VARIABLES_F
OUND

16#1 When loading a recipe file, some variables in “Variables” in
the recipe definition are not in the recipe file

INFO_RECIPE_M
ANAGER_OTHER
_VARIABLES_FO
UND

16#2 When loading a recipe file, some variables in the recipe file
are not in “variables” in the recipe definition

INFO_RECIPE_M
ANAGER_ONE_O
R_MORE_VARIA
BLES_FOUND

16#3 When the recipe file was loaded, one or more values were
written to “current value” in the recipe definition

INFO_RECIPE_M
ANAGER_ALL_VA
RIABLES_FOUND

16#4 When the recipe file was loaded, all values were written to
“current value” in the recipe definition

■ Program example
This is a program that acquires the InfoValues value obtained from the last recipe method
operation executed.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
● Implement section

output := RecipeManCommands_0.GetLastInfo();

11.15 Recipe function

WUME-GM1PGR-10 11-195

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

The GetLastInfo method is not affected.

Load Recipe Load only exact matches in the variable list The GetLastInfo method is not affected.

Load matching variables by the variable
name

The GetLastInfo method is not affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The GetLastInfo method is not affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The GetLastInfo method is not affected.

Read Recipe Check the recipe changes The GetLastInfo method is not affected.

11.15 Recipe function

11-196 WUME-GM1PGR-10

11.15.11 ResetLastError (GetLastError Reset)

This is a method to reset the value of GetLastError. It is used in conjunction with GetLastError.

■ Icon

■ Parameter

Scope Name Type Description

Output ResetLastError DWORD Output runtime ReturnValues

■ Program example
This is a program that resets the GetLastError value.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
● Implement section

output := RecipeManCommands_0.ResetLastError();

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

The ResetLastError method is not
affected.

Load Recipe Load only exact matches in the variable list The ResetLastError method is not
affected.

Load matching variables by the variable
name

The ResetLastError method is not
affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The ResetLastError method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The ResetLastError method is not
affected.

Read Recipe Check the recipe changes The ResetLastError method is not
affected.

11.15 Recipe function

WUME-GM1PGR-10 11-197

11.15.12 ResetLastInfo (GetLastInfo Reset)

This is a method to reset the value of GetLastInfo. It is used in conjunction with GetLastInfo.

■ Icon

■ Parameter

Scope Name Type Description

Output ResetLastInfo DWORD Output runtime ReturnValues

■ Program example
This is a program that resets the GetLastInfo value obtained when using the Recipe Method
command.
● Declaration section

RecipeManCommands_0 : RecipeManCommands;
● Implement section

output := RecipeManCommands_0.ResetLastInfo();

■ Recipe Manager settings
The settings on the General tab of the Recipe Manager affect the following.

Setting item Overview

Recipe management
within PLC

- If enabled, the RecipeManCommands
method will be executable.

Save Recipe Save recipe changes to recipe files
automatically

The ResetLastInfo method is not
affected.

Load Recipe Load only exact matches in the variable list The ResetLastInfo method is not
affected.

Load matching variables by the variable
name

The ResetLastInfo method is not
affected.

Write Recipe Limit variables to minimum/maximum when
the recipe value is out of range

The ResetLastInfo method is not
affected.

Do not write to a variable if the recipe value
is outside the minimum/maximum range

The ResetLastInfo method is not
affected.

Read Recipe Check the recipe changes The ResetLastInfo method is not
affected.

11.15 Recipe function

11-198 WUME-GM1PGR-10

11.16 Enable/Disable Devices

By enabling/disabling a specified device, you can manage multiple system configurations in a
shared project.

11.16.1 Overview of Device Enable/Disable Settings

With the GM1 controller, through use of function blocks, the enable/disable settings on specified
devices can be changed. If a specified device is set to disable, the specified device is handled
as being nonexistent in the system.

You can change the enable/disable setting on a slave device under
EtherCAT_Master_SoftMotion in the Device tree.

1. Configure enable/disable settings on slave devices.
Using INode.Enable, configure the enable/disable setting on each slave.

2. Reconfigure the EtherCAT master.
Execute Reconfigure to reconfigure the slave devices.

3. Reinitialize a servo amplifier out of the EtherCAT slave.
Execute SMC3_ReinitDrive to reinitialize the slave axis that is set to enable.

To perform this operation, it is necessary to select “Enable diagnosis for device” checkbox on
the “PLC Settings” tab in the Device object.

11.16 Enable/Disable Devices

WUME-GM1PGR-10 11-199

● It is possible to disable a device by selecting the device from the Device tree in the project and
right-clicking it. However, in this case, the disable setting cannot be changed to enable by the
program process described above. If you configure an enable/disable setting on a device
through a program process, always set the device to the enable setting in the project.

● If two or more servo amplifiers are connected, avoid combined use of automatic number
assignment and user-definable numbering in the StationAlias setting.

● For a program example, refer to "11.16.5 Sample Example: Changing EtherCAT Slave Enable/
Disable Setting".

11.16.2 INode.Enable (Enable/Disable Setting)

This property is used for enabling/disabling a device. After a change is made to the property,
the change takes effect by executing Reconfigure (reconfiguration). Write like
DeviceName.Enable.

■ Parameter

Scope Name Type Default value Description

PROP INode.Enable BOOL FALSE TRUE: Enable
FALSE: Disable

● To use this property, it is necessary to select “Enable diagnosis for device” checkbox on the
“PLC Settings” tab in the Device object.

11.16 Enable/Disable Devices

11-200 WUME-GM1PGR-10

11.16.3 Reconfigure (Reconfigure Devices)

This function block reads information such as enable/disable settings on the corresponding
device and all subdevices and restarts communication after the devices are reconfigured. After
the execution of Reconfigure, all changed enable/disable settings on the slave devices and
parameter changes take effect.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input xExecute BOOL FALSE At rising edge: Execution of the FB
starts.

itfNode INode - Specifies the name of the node to
be reconfigured. Example:
EtherCAT_Master_SoftMotion

Output xDone BOOL FALSE TRUE: Execution of the FB is
completed.

xBusy BOOL FALSE TRUE: FB is in progress.

xError BOOL FALSE TRUE: An error has occurred within
the FB.

eError DED.ERROR NO_ERROR An error ID is output.
"11.16.4 DED.ERROR (Error
Code)"

● To use this FB, it is necessary to select “Enable diagnosis for device” checkbox on the “PLC
Settings” tab in the Device object.

11.16.4 DED.ERROR (Error Code)

This is a list of error codes for device diagnosis.

■ DED.ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

FIRST_ERROR 1300 First error unique to the library

TIME_OUT 1301 Timeout error

11.16 Enable/Disable Devices

WUME-GM1PGR-10 11-201

Name Value Description

ABORT 1302 Operation was aborted.

REF_INVALID 1303 The interface reference was invalid.

NOT_SUPPORTED 1304 The function is not supported.

ERROR_IO 1305 A general I/O configuration error occurred.

PARAM_INVALID 1306 Invalid parameter

NODE_NOT_EXISTING 1307 The specified node does not exist.

NO_MEMORY 1308 Dynamic memory allocation is disabled or system
memory runs low.

ADR_NOT_FOUND 1309 The specified I/O address is invalid.

INST_NOT_FOUND 1310 There is no IDevice instance associated with the
specified I/O address.

NO_DATA 1311 There is no data available.

OPERATION_INVALID 1312 Operation is not possible.

FIRST_MF 1350 First error unique to the manufacturer

LAST_ERROR 1399 Last error unique to the library

11.16.5 Sample Example: Changing EtherCAT Slave Enable/Disable Setting

This is a program coded to disable the "MADLT11BF3” device in the EtherCAT device
configuration shown below. This program is useful if a project has a configuration made up of
three real axes and the enable/disable setting on the third axis changes depending on the
system.

To use this program, it is necessary to select “Enable diagnosis for device” checkbox on the
“PLC Settings” tab in the Device object.
● Description of process

When the case number (iStep) is set to 1, a process is executed. When the process is
completed, the variable xFinish goes TRUE.

11.16 Enable/Disable Devices

11-202 WUME-GM1PGR-10

● Declaration section

VAR
// Change to 1 : To Start
iStep : INT := 0;
// Finish Flag
xFinish : BOOL := FALSE;
// FB instance
Reconfigure_0 : Reconfigure;
Reinit_1 : SMC3_ReinitDrive ;
Reinit_2 : SMC3_ReinitDrive ;
// Variables
xExecuteReconfigure : BOOL := FALSE;
xExecuteReinit1 : BOOL := FALSE;
xExecuteReinit2 : BOOL := FALSE;

END_VAR
● Implementation section

//FunctionBlock
Reconfigure_0(xExecute := xExecuteReconfigure,
 itfNode := EtherCAT_Master_SoftMotion);
Reinit_1(Axis := SM_Drive1,
 bExecute := xExecuteReinit1);
Reinit_2(Axis := SM_Drive2,
 bExecute := xExecuteReinit2);

CASE iStep OF
 1: // Device setting (Enable/Disable)
 MADLT11BF1.Enable := TRUE;
 MADLT11BF2.Enable := TRUE;
 MADLT11BF3.Enable := FALSE;
 iStep := 2;
 2: // Reconfigure
 xExecuteReconfigure := TRUE;
 IF (Reconfigure.xDone = TRUE) THEN
 xExecuteReconfigure := FALSE;
 iStep := 3;
 END_IF
 3: // SMC3_ReinitDrive
 xExecuteReinit1 := TRUE;
 xExecuteReinit2 := TRUE;
 IF (Reinit_1.bDone = TRUE) AND (Reinit_2.bDone = TRUE) THEN
 xExecuteReinit1 := FALSE;
 xExecuteReinit2 := FALSE;
 xFinish := TRUE;
 iStep := 0;
 END_IF
END_CASE

11.16 Enable/Disable Devices

WUME-GM1PGR-10 11-203

11.17 Project Management Function

Project data can be backed up and restored via an SD memory card.
For instructions on how to execute the main operations of the project management feature,
please refer to the Operation section.

11.17.1 What is Project Management Function?

The backup and restore functions for data of each type in the GM1 controller are called project
management functions.

■ Backup function
This is a function used to collectively save data of every type in the GM1 controller to an SD
memory card. File data to be saved is called a backup file. This function can be executed by
any of two methods: operation by the controller and a function block in a program.

■ Restore function
This is a function used to transfer a backup file in an SD memory card to the GM1 controller.
Data of every type in the GM1 controller will be replaced by a backup file. This function can be
executed by any of two methods: operation by the controller and a function block in a program.

■ Backup file and restoration configuration file
When the backup function is performed, a backup file and a restoration configuration file are
created in a predetermined directory on the SD memory card. These files have roles as shown
below.

File name Description Backup Restore

Backup file
AUTOEXEC.GM1

Data of every type in the GM1
controller is stored in this file.

Creation Reference

Restoration configuration file
AUTOEXEC.INI

This file is used to specify data
subject to restoration. This is text data
and thus is editable.

Creation Reference

■ Each type of settings data subject to backup and restoration

Target data Backup Restore

Source file ○ ○

External file ○ Selectable(Note 1)

Bootstrap application ○ ○

RETAIN variable ○ Selectable(Note 1)

Network setting ○ Selectable(Note 1)

Time zone ○ Selectable(Note 1)

Account (device user) ○ ○

Certificates × ×

(Note 1) Whether or not to specify it for a target of restoration can be selected.

11.17 Project Management Function

11-204 WUME-GM1PGR-10

■ Method for writing specifications in restoration configuration file
The restoration configuration file is a text file used to specify each type of settings data for a
target of restoration when data is restored. The following is an example of specifications written
in a restoration configuration file.

[AUTOEXEC_OPTION]
 Application_File=yes
 External_File=no
 Retain_File=no
 Network_File=no
 Timezone_File=no

Method for specifying each type of settings data

Writing Description

Application_File Source file, bootstrap application, and account (device user)

External_File External file

Retain_File RETAIN variable

Network_File Network setting

Timezone_File Time zone

Method for specifying data for a target of restoration.

Writing Description

yes Specify it for a target of restoration

no Not specify it for a target of restoration

● Application_File cannot be excluded from the target of restoration. If it is excluded from the
target of restoration, an error occurs.

● In writing, do not use spaces around the equals "=" sign. If there is any single- or double-width
space around the equals "=" sign, the type of data is regarded as (no), being excluded from the
target of restoration.

11.17 Project Management Function

WUME-GM1PGR-10 11-205

11.17.2 SYS_PRJBackup (Project Backup)

This is a function block that backs up project data on an SD memory card.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input Execute BOOL FALSE At rising edge: Execution of the
FB starts.

DirName STRING(255) - A path to the folder in the SD
memory card to which the
“AUTOEXEC.GM1” backup file
and the ”AUTOEXEC.INI”
restoration configuration file are
output.

RestoreParam RESTORE_PARAM - Parameter for the creation of
the ”AUTOEXEC.INI” restoration
configuration file
Refer
to"11.17.3 SYS_PRJRestore
(Restore Project)".

Output Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Done BOOL FALSE TRUE: Execution is completed.

Error BOOL FALSE TRUE: An error has occurred
within the FB.

ErrorID PRJMNG_ERROR FALSE Error ID output
Refer
to"11.17.4 PRJMNG_ERROR
(Error Code)".

■ Description of functions
● In the folder specified by “DirName”, the “AUTOEXEC.GM1” backup file and

the ”AUTOEXEC.INI” restoration configuration file are created. The restoration configuration
file is created in accordance with details specified in “RestoreParam”.

● If the folder specified by “DirName” does not exist, a folder is created. Even a hierarchy
folder is created.

● When the “AUTOEXEC.GM1” backup file and the ”AUTOEXEC.INI” restoration configuration
file are present in the “DirName” folder, they are overwritten.

● The backup file and restoration configuration file that are renamed cannot be created.

11.17 Project Management Function

11-206 WUME-GM1PGR-10

● In any of the following cases, the process is judged to be abnormal and the Error output goes
TRUE.
• A directory that is one level higher “..” or the root directory "//” is specified in “DirName”.
• The SYS_PRJBackup command and SYSPRJ_Restore command are executed

simultaneously.
• The SD memory card is not in ready state, is write-protected, or is out of memory.
• The number of created files or the number of directories has exceed the number permitted in

the SD memory card.

11.17 Project Management Function

WUME-GM1PGR-10 11-207

11.17.3 SYS_PRJRestore (Restore Project)

This is a function block that restores project data from an SD memory card.

■ Icon

■ Parameter

Scope Name Type Default value Description

Input Execute BOOL FALSE At rising edge: Execution of the
FB starts.

DirName STRING(255) - A path to the folder in the SD
memory card in which the
“AUTOEXEC.GM1” backup file to
be referenced is stored.

RefAutoExecIni BOOL TRUE TRUE: Selects target data to be
restored according to
the ”AUTOEXEC.INI” restoration
configuration file. FALSE: Selects
target data to be restored
according to the “RestoreParam”
input.

RestoreParam RESTORE_PARAM - Parameter for selecting target
data to be restored. Details will be
described later.

Output Busy BOOL FALSE TRUE: Execution of the FB is not
completed.

Done BOOL FALSE TRUE: Execution is completed.

Error BOOL FALSE TRUE: An error has occurred
within the FB.

ErrorID PRJMNG_ERROR FALSE Error ID output
Refer
to"11.17.4 PRJMNG_ERROR
(Error Code)".

■ Description of functions
The “AUTOEXEC.GM1” backup file in the folder specified by “DirName” is restored. The target
data to be restored can be specified by any of two methods: through use of an FB argument or
the ”AUTOEXEC.INI” restoration configuration file in the SD memory card.
1. To use the FB argument, specify the restoration target data by “RestoreParam” and set

“RefAutoExecIni” to FALSE.
2. To use the ”AUTOEXEC.INI” restoration configuration file in the SD memory card, set

“RefAutoExecIni” to TRUE. No specification is required for “RestoreParam”.
After restoration is completed, the GM1 controller automatically restarts.

11.17 Project Management Function

11-208 WUME-GM1PGR-10

Results of the restoration can be checked after the restart
by"11.17.5 SYS_GetPRJRestoreResult (Project Restoration Results)".

■ RESTORE_PARAM (Structure)
This structure is used to specify restoration targets. It has the same specification items as in
the ”AUTOEXEC.INI” restoration configuration file.

Member Type Default value Description

ApplicationFile BOOL TRUE Selects “source file”, “bootstrap application”, and
“account (device user)” as restoration targets.
TRUE: Restoration target
FALSE: Not restoration target

ExternalFile BOOL FALSE Selects “external file” as a restoration target.
TRUE: Restoration target
FALSE: Not restoration target

RetainFile BOOL FALSE Selects “persistent variables” as a restoration target.
TRUE: Restoration target
FALSE: Not restoration target

NetworkFile BOOL FALSE Selects “network settings ” as a restoration target.
TRUE: Restoration target
FALSE: Not restoration target

TimezoneFile BOOL FALSE Selects “time zone” as a restoration target.
TRUE: Restoration target
FALSE: Not restoration target

● “Source file”, “bootstrap application”, and “account (device user)” cannot be excluded from
restoration targets. If they are excluded from the target of restoration, an error occurs.

● A backup file name and a restoration configuration file name cannot be specified.
● In any of the following cases, the process is judged to be abnormal and the Error output goes

TRUE.
• The “DirName” folder does not exist.
• The “AUTOEXEC.GM1” backup file is not present in the “DirName” folder.
• “RefAutoExecIni” is set to TRUE ,and the ”AUTOEXEC.INI” restoration configuration file is

not present in the “DirName” folder.
• “RefAutoExecIni” is set to TRUE ,and “Application File=yes” is not found in

the ”AUTOEXEC.INI” restoration configuration file.
• “RefAutoExecIni” is set to FALSE, and “RestoreParam.ApplicationFile” is set to FALSE.
• The SYS_PRJBackup command and SYS_PRJRestore command are executed

simultaneously.
• The SD memory card is not in ready state.

11.17 Project Management Function

WUME-GM1PGR-10 11-209

11.17.4 PRJMNG_ERROR (Error Code)

This is an enumeration type error code that is output when either of project backup and project
restoration function blocks are executed.

■ PRJMNG_ERROR (Enumeration type)

Name Value Description

NO_ERROR 0 No error

SYSTEM_ERROR 1 Internal error

NO_SD_CARD 2 SD card not inserted
The SD memory card is not in ready state.

NOT_EXIST 3 The folder specified by “DirName” does not exist.
A directory that is one level higher “..” is specified in “DirName”.
The “AUTOEXEC.GM1” backup file is not present in the
“DirName” folder.
The ”AUTOEXEC.INI” restoration configuration file is not present
in the “DirName” folder when “RefAutoExecIni” is set to TRUE.

MULTIPLE_EXEC 4 Multiple execution error occurs.

DIR_CREATE_FAIL 5 SD memory card not inserted
The SD memory card is not in ready state.
The SD memory card is write-protected.
Failed to create the folder, which is specified by “DirName”, on
the SD memory card.
A directory that is one level higher “..” is specified in “DirName”.
The root directory "//” is specified in “DirName”.

BACKUP_FAILED 6 Failed to create the backup file in the “DirName” folder on the
SD memory card.

FILE_READ_FAILED 7 Error or failure in reading of the “AUTOEXEC.GM1” backup file

MODEL_VERSION_MISMATCH 8 The model version in the “AUTOEXEC.GM1” backup file does
not match the model version of the GM1 controller.

INVALID_RESTORE_CONDITION 9 Application_File (“source file”, “bootstrap application”, and
“account (device user)”) is excluded from the specified
restoration target.
Application_File in the ”AUTOEXEC.INI” restoration
configuration file is excluded from the specified restoration target
when “RefAutoExecIni” is set to TRUE.
“RestoreParam.ApplicationFile” is set to FALSE when
“RefAutoExecIni” is set to FALSE.

RESTORE_FAILED 10 Failed to restore project.

RETAIN_DATA_CORRUPTED 11 Failed to restore retain variables file

11.17 Project Management Function

11-210 WUME-GM1PGR-10

11.17.5 SYS_GetPRJRestoreResult (Project Restoration Results)

This function is used to get results of the execution of either of restore (controller operation) and
SYS_PRJRestore (Restore Project).

■ Icon

■ Parameter

Scope Name Type Description

Output SYS_GetPRJRestoreResult RESTORE_RESULT This structure stores results of
restoration. Details will be described
later.

■ Description of functions
Results of the execution of either of restore (controller operation) and SYS_PRJRestore
(Restore Project) take effect after the restart of the GM1 controller.
● Results of the execution will be kept until any of the actions below is performed.

• Power OFF
• Download project
• Online change
• Reset (Initialize PLC)
• Device reset (Initialize PLC)
• Reset Device by means of hard switching

● The following actions do not clear results of the restoration.
• Execution of restore (controller operation)
• Calling SYS_PRJRestore (Restore Project)

■ RESTORE_RESULT (Structure)
This structure stores results of restoration.

Member Type Default value Description

Result BOOL FALSE TRUE: Completion of
restoration
FALSE: Not completion of
restoration

RestoreDateAndTime DATE_AND_TIME DT#1970-01-01-00:00:00 Date and time when
restoration was completed

11.17 Project Management Function

WUME-GM1PGR-10 11-211

(MEMO)

11-212 WUME-GM1PGR-10

12 Function Blocks for Units

12.1 Basic Configuration of Function Blocks for the Pulse Output Unit12-2
12.1.1 Specifications of the Function Block .. 12-2
12.1.2 Notes for Executing the Function Block ... 12-3

12.2 Function Blocks for the Pulse Output Unit ..12-4
12.2.1 PG_Power.. 12-4
12.2.2 PG_Jog .. 12-5
12.2.3 PG_MoveAbsolute ... 12-6
12.2.4 PG_MoveRelative .. 12-7
12.2.5 PG_LatchPosition .. 12-9
12.2.6 PG_Pulser.. 12-11
12.2.7 PG_Stop .. 12-13
12.2.8 PG_Home .. 12-15
12.2.9 PG_SetPosition.. 12-17
12.2.10 PG_WriteParameter... 12-18
12.2.11 PG_ReadParameter... 12-22
12.2.12 PG_ClearError ... 12-23
12.2.13 PG_ReadStatus ... 12-24

12.3 Error Codes...12-26
12.3.1 Error Check Method... 12-26
12.3.2 PG_ERROR... 12-27

12.4 Functions for the Serial Communication Unit....................................12-28
12.4.1 NSC_ReadComStatus (Read COM Port Status) 12-28
12.4.2 NSC_ERROR (Error Code) ... 12-29

WUME-GM1PGR-10 12-1

12.1 Basic Configuration of Function Blocks for the Pulse Output Unit

This section describes the basic configuration of the function block.

12.1.1 Specifications of the Function Block

■ Common parameters
Listed below are the common arguments used in the GM1 Pulse Output Unit Function Blocks.

Scope Parameter Description

Input

UnitID
Please specify the connected Unit ID of the pulse output unit targeted by the function
block execution within the range of 1 to 15.
Please do not set a Unit ID that is not connected to a pulse output unit.

AxisNo Please specify the axis number targeted by the function block execution within the
range of 1 to 4.

Execute

This is a trigger that executes the function block.
● Execute the function block on the rising edge of Execute = TRUE.
● After the completion of the function block processing, changing Execute to FALSE

will clear CommandAborted, Done, and Error.
● During the execution of the function block (when Busy = TRUE), if Execute

becomes FALSE, the function block will continue to operate.
At this time, when operation is finished, CommandAborted, Done or Error is held
for one cycle.

Enable
This enables an execution of a function block.
● The function block is executed on the rising edge of Enable = TRUE.
● If Enable becomes FALSE, the function block processing is stopped.

Output

Busy During the execution of the function block, Busy = TRUE.(Note 1)

Done When the function block processing is complete, Done = TRUE.(Note 1)

CommandAbor
ted If the function block processing is interrupted, CommandAborted = TRUE.(Note 1)

Error If an error occurs during the execution of the function block, Error = TRUE.

ErrorID Error information can be checked when an error occurs.

Valid When an output becomes valid, this output becomes TRUE.

(Note 1) After a function block is processed, one of the following parameters is set to TRUE:
CommandAborted, Done, or Error.

■ Tasks
Either MotionTask or UserTask can be executed.
Use the same task for performing a process for the same axis.

■ Simulation mode
Simulation mode is not supported. Executing in simulation mode will result in a function block
error (PG_NOT_SUPPORTED).

12.1 Basic Configuration of Function Blocks for the Pulse Output Unit

12-2 WUME-GM1PGR-10

12.1.2 Notes for Executing the Function Block

■ Busy state
If the function block is busy (Busy = TRUE), call the function block at every cycle when
executing a task.

● Exceptions, if any, will be described in the specifications for each function block.

■ Interruption of function block processing
● The following function blocks cannot be executed at the same time on the same axis:

PG_Jog, PG_MoveRelative, PG_MoveAbsolute, PG_LatchPosition, PG_Home, and
PG_Pulser
The function block executed first takes precedence over the others.
As for the function block that is executed later, CommandAborted is set to TRUE and
processing is not started.

● PG_Stop takes precedence over any other control.
If operation is stopped by executing PG_Stop, CommandAborted is set to TRUE for all other
functions blocks and their controls are stopped

● If a stop operation (RUN → STOP) is applied in the middle of executing the function block,
the pulse output unit stops outputting pulse signals.
When operation is resumed, CommandAborted is set to TRUE for the function block being
operated and its processing is interrupted.

● If an error occurs in a pulse output unit, the pulse output unit stops outputting pulse signals.
For the function block that is being executed, the PG_AXIS_UNIT_ERROR is issued and its
processing is interrupted.

■ Continuous execution of a function block
In a cycle where the Done output is set to TRUE, re-execute the function block (Execute =
TRUE) to continue execution of the function block.

12.1 Basic Configuration of Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-3

12.2 Function Blocks for the Pulse Output Unit

Various motion operations can be realized by using the function blocks for the pulse output unit.
This section describes motion control function blocks for the single axis.

12.2.1 PG_Power

This is a function block (FB) that controls the servo ON/OFF of the axis of the pulse output unit.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Enable BOOL FALSE TRUE: Execution of the FB is
enabled.

bRegulatorOn BOOL FALSE
TRUE: Servo ON
FALSE: Servo OFF

Output

Status BOOL FALSE
TRUE: The axis is operational
FALSE: The axis cannot be
executed.

bRegulatorRealState BOOL FALSE
TRUE: Servo ON state
FALSE: Servo OFF state

Busy BOOL FALSE TRUE: FB is in progress.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Notes for Executing the Function Block
● After executing PG_Power, check the servo ON state using the bRegulatorRealState output

parameter.
● It is not necessary to call PG_Power at every cycle.

12.2 Function Blocks for the Pulse Output Unit

12-4 WUME-GM1PGR-10

12.2.2 PG_Jog

This is a function block (FB) that causes the axis of the pulse output unit to keep traveling in a
forward or backward direction.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

JogForward BOOL FALSE TRUE: Travels in a forward
direction.

JogBackward BOOL FALSE TRUE: Travels in a backward
direction.

Velocity LREAL 0 Specifies the target speed (u/s).

AccDec LREAL 0
Specifies the acceleration /
deceleration (u/s2).

Output

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● To start the operation, set either JogForward or JogBackward to TRUE depending on the

direction you want to move.
● If both JogForward and JogBackward are set to TRUE, an error

(PG_JOG_INVALID_REQUEST) will occur.

● When executing again after the occurrence of the error, set both JogForward and
JogBackward to FALSE once.

● When switching from JogForward to JogBackward (or from JogBackward to JogForward),
the operation will switch after the current pulse output under control is completed.

● Velocity can be changed during operation (when Busy is TRUE).

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-5

● The AccDec input cannot be changed during operation.

● When executing the function block, use the PG_Power function block in advance to set to
the servo ON state.

● If the function block is executed in the servo OFF state, the
PG_AXIS_NOT_READY_FOR_MOTION error is issued.

● If the function block is executed as the Velocity setting is less than the startup velocity, an
error is issued. Check the startup velocity from the parameter setting of the pulse output
unit.

12.2.3 PG_MoveAbsolute

This is a function block (FB) that causes the axis of the pulse output unit to travel to a position
specified as an absolute position.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

Position LREAL 0 Specifies the target position (u).

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

AccDec LREAL 0
Specifies the acceleration /
deceleration (u/s2).

ContinuousFlag BOOL FALSE FALSE: E-point control
TRUE: P-point control

Output

ContinuousEnable BOOL FALSE TRUE: Position, Velocity, and
AccDec can be changed.

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

12.2 Function Blocks for the Pulse Output Unit

12-6 WUME-GM1PGR-10

Scope Parameter name Type Default Description

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● The axis will perform an absolute move to the position specified by Position.

(Coordinates: -2147483648 to 2147483647u)
● To execute E-point control, specify as follows

• Please execute with ContinuousFlag = FALSE specified.
● To use the P-point control, specify as follows.

• Please execute with ContinuousFlag = TRUE specified.
• After the start of PG_MoveAbsolute execution, it becomes possible to overwrite Position,

Velocity, and AccDec when ContinuousEnable = TRUE. Change the inputs triggered by
the rising edge of Execute = TRUE.

• If an overwrite is attempted when ContinuousEnable = FALSE, it will result in an error
(PG_SET_VALUE_CHANGE_FAILED).

• If no overwrite is performed, the execution of PG_MoveAbsolute will end (Done = TRUE)
upon completion of the pulse output.

● When executing the function block, use the PG_Power function block in advance to set to
the servo ON state.

● If the function block is executed in the servo OFF state, the
PG_AXIS_NOT_READY_FOR_MOTION error is issued.

● If the function block is executed as the Velocity setting is less than the startup velocity, an
error is issued. Check the startup velocity from the parameter setting of the pulse output
unit.

12.2.4 PG_MoveRelative

This is a function block (FB) that causes the axis of the pulse output unit to travel to a position
specified as a relative position.

■ Icon

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-7

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

Distance LREAL 0 Specifies the relative distance (u).

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

AccDec LREAL 0
Specifies the acceleration /
deceleration (u/s2).

ContinuousFlag BOOL FALSE FALSE: E-point control
TRUE: P-point control

Output

ContinuousEnable BOOL FALSE TRUE: Distance, Velocity, and
AccDec can be changed.

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● The axis will perform a relative move by the distance specified in Distance.

(Coordinates: -2147483648 to 2147483647u)
● To execute E-point control, specify as follows

• Please execute with ContinuousFlag = FALSE specified.
● To use the P-point control, specify as follows.

• Please execute with ContinuousFlag = TRUE specified.
• After starting the execution of PG_MoveRelative, it becomes possible to overwrite

Distance, Velocity, and AccDec when ContinuousEnable = TRUE. Please change the
inputs using the rising edge of Execute = TRUE as a trigger.

• If an overwrite is attempted when ContinuousEnable = FALSE, it will result in an error
(PG_SET_VALUE_CHANGE_FAILED).

• If no overwrite is performed, upon completion of the pulse output, the execution of
PG_MoveRelative will end (Done = TRUE).

● Please turn on the servo in advance using PG_Power before execution.
● Please turn on the servo in advance using PG_Power before execution.Running it with

the servo off will result in an error (PG_AXIS_NOT_READY_FOR_MOTION).
● If the function block is executed as the Velocity setting is less than the startup velocity, an

error is issued. Check the startup velocity from the parameter setting of the pulse output
unit.

12.2 Function Blocks for the Pulse Output Unit

12-8 WUME-GM1PGR-10

12.2.5 PG_LatchPosition

This is a function block (FB) that moves the axis of the pulse output unit a specified relative
distance from the position where an external signal is input.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

Distance LREAL 0 Specifies the relative distance (u).

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

AccDec LREAL 0
Specifies the acceleration /
deceleration (u/s2).

PositioningStart BOOL FALSE Positioning start input (for
debugging)

Output

ContinuousEnable BOOL FALSE TRUE: Start input

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● The latch operation begins upon triggering with Execute = TRUE. It performs a relative move

the distance of Distance from the starting point of the external signal input.
● PositioningStart functions as an alternative input to the external signal for initiating position

control. It can be used for debugging purposes.

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-9

● Please turn on the servo in advance with PG_Power before execution. Running it with the
servo off will result in an error (PG_AXIS_NOT_READY_FOR_MOTION).

● While in execution (Busy = TRUE), changing the input arguments or re-executing is not
possible. Triggering Execute = TRUE will result in the error (PG_FB_IN_BUSY).

● If the function block is executed as the Velocity setting is less than the startup velocity, an
error is issued. Check the startup velocity from the parameter setting of the pulse output
unit.

12.2 Function Blocks for the Pulse Output Unit

12-10 WUME-GM1PGR-10

12.2.6 PG_Pulser

This is a function block (FB) that enables constant speed operation for the axes of the pulse
output unit using external pulse input.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Enable BOOL FALSE
TRUE: Enables pulser operation.
FALSE: Disables pulser operation.

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

Ratio PG_PULSER_R
ATIO RATIO_x1

Specifies the multiplication ratio
between the pulser input and pulser
output.

Output

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed

● Please turn on the servo in advance with PG_Power before execution. Running it with the
servo off will result in an error (PG_AXIS_NOT_READY_FOR_MOTION).

● If the function block is executed as the Velocity setting is less than the startup velocity, an
error is issued. Check the startup velocity from the parameter setting of the pulse output
unit.

■ PG_PULSER_RATIO (Enumeration type)
For specifying the multiplication ratio between the pulser input and pulser output using
PG_PULSER_RATIO, refer to the following table.

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-11

Definition Description

RATIO_x1 x1

RATIO_x2 x2

RATIO_x5 x5

RATIO_x10 x10

RATIO_x50 x50

RATIO_x100 x100

RATIO_x500 x500

RATIO_x1000 x1000

12.2 Function Blocks for the Pulse Output Unit

12-12 WUME-GM1PGR-10

12.2.7 PG_Stop

This is a function block (FB) that causes the axis of the pulse output unit to make a forced stop
or deceleration stop.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

StopMethod BOOL FALSE
TRUE: Emergency stop
FALSE: Deceleration stop

Output

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● Executing PG_Stop during the operation of the following function blocks will cause the

function block in motion to interrupt its operation (CommandAborted = TRUE).
• PG_Jog
• PG_MoveRelative
• PG_MoveAbsolute
• PG_LatchPosition
• PG_Pulser
• PG_Home
If you want to re-execute these function blocks, please set Execute of PG_Stop to FALSE
before executing.

● The stop method can be specified using the StopMethod input.
TRUE: Forced stop
FALSE: Deceleration stop

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-13

● When decelerating to a stop, it will decelerate using the acceleration/deceleration rate set in
the function block that is in operation.

● Please turn on the servo in advance with PG_Power before execution. Running it with the
servo off will result in an error (PG_AXIS_NOT_READY_FOR_MOTION).

● While in execution (Busy = TRUE), changing the input arguments or re-executing is not
possible. Triggering Execute = TRUE will result in the error (PG_FB_IN_BUSY).

12.2 Function Blocks for the Pulse Output Unit

12-14 WUME-GM1PGR-10

12.2.8 PG_Home

This is a function block (FB) that performs home return of the pulse output unit.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

Velocity LREAL 0 Specifies the maximum velocity
(u/s).

StartUpVelocity LREAL 0 Specifies the startup velocity (u/s).

AccDec LREAL 0
Specifies the acceleration /
deceleration (u/s2).

Output

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● For homing, the startup speed does not use the unit parameter settings but instead uses the

value of StartUpVelocity.
● When reading the external signals for home position input or proximity to home position

input, please use PG_ReadStatus.
● Please set the startup speed to 1u/s or higher. The value set as the startup speed will

become the creep speed.
● Please set the maximum speed to 1u/s or higher. Setting it to 0 will cause an error during

execution.

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-15

● Please turn on the servo in advance with PG_Power before execution. Running it with the
servo off will result in an error (PG_AXIS_NOT_READY_FOR_MOTION).

● While in execution (Busy = TRUE), changing the input arguments or re-executing is not
possible. Triggering Execute = TRUE will result in the error (PG_FB_IN_BUSY).

● If the function block is executed as the Velocity setting is less than the startup velocity, an
error is issued. Check the startup velocity from the parameter setting of the pulse output
unit.

12.2 Function Blocks for the Pulse Output Unit

12-16 WUME-GM1PGR-10

12.2.9 PG_SetPosition

This is a function block (FB) that sets the elapsed value and the feedback counter of the pulse
output unit to desired values.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

PositionType PG_POSITION_
TYPE

ABSOLUTE Specify the target settings.
ABSOLUTE: Elapsed value
FEEDBACK: Feedback counter
BOTH: Elapsed value and
feedback counter

AbsoluteCounter LREAL 0 Set value (Elapsed value)

FeedbackCounter LREAL 0 Set value (Feedback counter)

Output

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● If PositionType = BOTH is specified, you can set both the elapsed value and the feedback

counter simultaneously.

● Please execute while the axis is stopped. If executed while the axis is in motion, it will
result in an error (PG_AXIS_IN_DRIVEN).

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-17

12.2.10 PG_WriteParameter

This is a function block (FB) that writes the parameters to the pulse output unit.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

ParamType PG_PARAM_TY
PE 0 Specify the target parameter by

combining PG_PARAM_TYPE and
CtrlCodeBit.CtrlCodeBit PG_CTRLCODE

_BIT 0

WriteValue UDINT 0 Write value

Output

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ Operations when the function block is executed
● Upon startup of GM1, the values set in the "Pulse_4Axes Parameters" of GM Programmer

are applied.
● Parameter changes made with PG_WriteParameter are not saved to the main unit.

If you wish to save parameters to the main unit, please use the retained data.

■ How to Specify "Pulse_4Axes Parameters"
Specify the "Pulse_4Axes Parameters"by combining the argument ParamType and the
argument CtrlCodeBit as shown in the following table.

If ParamType = CONTROL_CODE
● Specify the parameter to be written using the argument CtrlCodeBit.
● The value to be written can be specified using PG_CTRLCODE_VALUE (enumeration) or by

setting the UDINT value in the table as the argument WriteValue.

12.2 Function Blocks for the Pulse Output Unit

12-18 WUME-GM1PGR-10

● Using CtrlCodeBit = ALL_BIT, you can set the bit-wise OR of each parameter to the
argument WriteValue, allowing you to write to all parameters in bulk.

Pulse_4Axes
Parameter

CtrlCodeBit WriteValue UDINT value Description

DirectionOfRo
tationInput

PULSE_INPUT_ROT
ATION_DIRECTION

PULSEIN_DIRECTION_FOR
WARD

16#00000000 Forward

PULSEIN_DIRECTION_REV
ERSE

16#00010000 Reverse

Count PULSE_INPUT_COU
NT

PULSEIN_COUNT_ENABLE 16#00000000 Enable

PULSEIN_COUNT_DISABLE 16#00020000 Cleared

PulseInputMo
de

PULSE_INPUT_MOD
E

PULSEIN_MODE_2PHASE 16#00000000 2-phase input

PULSEIN_MODE_DIRECTIO
N_DISTINCTION

16#00040000 Direction distinction
input

PULSEIN_MODE_INDIVIDUA
L

16#00080000 Individual input

PulseInputCo
untMultiplicati
on

PULSE_INPUT_MUL
TIPLICATION

PULSEIN_MULTIPLICATION_
x1

16#00000000 x1

PULSEIN_MULTIPLICATION_
x2

16#00100000 x2

PULSEIN_MULTIPLICATION_
x4

16#00200000 x4

DirectionOfRo
tationOutput

PULSE_OUTPUT_RO
TATION_DIRECTION

PULSEOUT_DIRECTION_FO
RWARD

16#00000000 Forward

PULSEOUT_DIRECTION_RE
VERSE

16#01000000 Reverse

Pulse output
mode

PULSE_OUTPUT_M
ODE

PULSEOUT_MODE_PULSES
IGN

16#00000000 Pulse/Sign

PULSEOUT_MODE_CWCCW 16#02000000 CW/CCW

PulseOutputF
requencyDivis
ionMode

PULSE_OUTPUT_DI
VIDED_MODE

PULSEOUT_DIVIDED_BY1 16#00000000 Divided by 1

PULSEOUT_DIVIDED_BY2 16#10000000 Divided by 2

PULSEOUT_DIVIDED_BY4 16#20000000 Divided by 4

PULSEOUT_DIVIDED_BY8 16#30000000 Divided by 8

PULSEOUT_DIVIDED_BY16 16#40000000 Divided by 16

PULSEOUT_DIVIDED_BY32 16#50000000 Divided by 32

PULSEOUT_DIVIDED_BY64 16#60000000 Divided by 64

PULSEOUT_DIVIDED_BY128 16#70000000 Divided by 128

DeviationCou
nterClearTime

DEVIATION_COUNT
ER_CLEAR_TIME

DEVIATION_COUNTER_CLE
AR_TIME_1ms

16#00000000 1ms

DEVIATION_COUNTER_CLE
AR_TIME_10ms

16#80000000 10 ms

AccelerationD
ecelerationMe
thod

PULSE_OUT_ACC_D
EC

PULSEOUT_ACC_DEC_LINE
AR

16#00000000 Linear Acceleration /
Deceleration

PULSEOUT_ACC_DEC_SSH
APED

16#00000002 S Acceleration /
Deceleration

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-19

Pulse_4Axes
Parameter

CtrlCodeBit WriteValue UDINT value Description

OriginReturnD
irection

HOMING_DIRECTIO
N

HOME_DIRECTION_NEGATI
VE

16#00000000 (-) Direction of the
elapsed value

HOME_DIRECTION_POSITIV
E

16#00000004 (+) Direction of the
elapsed value

StartUpTime STARTUP_TIME STARTUP_TIME_20us 16#00000000 0.02ms

STARTUP_TIME_5us 16#00000008 0.005ms

STARTUP_TIME_1us 16#00000800 0.001ms

OriginInputLo
gic

HOME_INPUT_LOGI
C

HOME_INPUT_NORMAL_CL
OSE

16#00000000 NC contact

HOME_INPUT_NORMAL_OP
EN

16#00000010 NO contact

OriginNeighbo
rhoodLogic

NEARHOME_INPUT_
LOGIC

NEARHOME_INPUT_NORM
AL_OPEN

16#00000000 NO contact

NEARHOME_INPUT_NORM
AL_CLOSE

16#00000020 NC contact

OriginSearch HOME_SEARCH HOME_SEARCH_DISABLE 16#00000000 Disable

HOME_SEARCH_ENABLE 16#00000040 Enable

LimitInputLogi
c

LIMIT_INPUT_LOGIC LIMIT_INPUT_NORMAL_CLO
SE

16#00000000 NC contact

LIMIT_INPUT_NORMAL_OP
EN

16#00000080 NO contact

SShapedPatt
ern

S_ACC_DEC S_ACC_DEC_SIN_CURVE 16#00000000 Sin curve

S_ACC_DEC_THIRD_CURV
E

16#00003000 Third curve

Write all
ParamTypes
at once

ALL_BIT - - Writes to all
parameters

Example of settings
● Specify with PG_CTRLCODE_VALUE (enumeration).

Startup time = 0.005ms (STARTUP_TIME_5us)

PG_WriteParameter_0(
 UnitID:=1,
 AxisNo:=1,
 Execute:=bExe_Wpara,
 ParamType:=CONTROL_CODE,
 CtrlCodeBit:=STARTUP_TIME,
 WriteValue:=STARTUP_TIME_5us,
);

● Specify with a UDINT value.
Startup time = 0.005ms (16#00000008)

PG_WriteParameter_0(
 UnitID:=1,
 AxisNo:=1,

12.2 Function Blocks for the Pulse Output Unit

12-20 WUME-GM1PGR-10

 Execute:=bExe_Wpara,
 ParamType:=CONTROL_CODE,
 CtrlCodeBit:=STARTUP_TIME,
 WriteValue:=16#00000008,
);

● Use ALL_BIT to set both the acceleration/deceleration mode and the startup time in bulk.
Acceleration/Deceleration method = S-curve acceleration/deceleration (16#00000002),
Startup time = 0.005ms (16#00000008)
(In this example, all other parameters are set to a UDINT value of 0.)

PG_WriteParameter_0(
 UnitID:=1,
 AxisNo:=1,
 Execute:=bExe_Wpara,
 ParamType:=CONTROL_CODE,
 CtrlCodeBit:=ALL_BIT,
 WriteValue:=16#00000009,
);

If ParamType ≠ CONTROL_CODE
● Specify the parameter to be written within the argument ParamType.
● Specify the value to be written as a UDINT type in the argument WriteValue.

Pulse_4Axes
Parameter

ParamType CtrlCodeBit WriteValue

PulseInputAorB
SignalInCnst

PULSE_INPUT_SIGNAL_INCNST - 0: Not InCnst (No input time
constant)
1: 0.1 us
2: 0.5 us
3: 1.0 us
4: 2.0 us
5: 10.0 us

Home input
Input time
constant

HOME_INPUT_INCNST - 0: Not InCnst (No input time
constant)
1: 10 us
2: 100 us

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-21

12.2.11 PG_ReadParameter

This is a function block (FB) that reads the parameters of the pulse output unit.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

ParamType PG_PARAM_TY
PE 0 Specify the target parameter by

combining PG_PARAM_TYPE and
CtrlCodeBit.CtrlCodeBit PG_CTRLCODE

_BIT 0

Output

ReadValue UDINT 0 Read value

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

12.2 Function Blocks for the Pulse Output Unit

12-22 WUME-GM1PGR-10

12.2.12 PG_ClearError

This is a function block (FB) that clears the limit error or the set value error of the pulse output
unit.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Execute BOOL FALSE Starts execution at the rising edge.

Output

Done BOOL FALSE TRUE: FB operation is completed.

Busy BOOL FALSE TRUE: FB operation is in progress.

CommandAborted BOOL FALSE TRUE: FB operation is interrupted.

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR 0 An error ID is output.

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-23

12.2.13 PG_ReadStatus

This is a function block (FB) that reads the status of the pulse output unit.

■ Icon

■ Parameter

Scope Parameter name Type Default Description

Input

UnitID UINT - Specifies the unit ID.

AxisNo UINT - Specifies the axis No.

Enable BOOL FALSE TRUE: Execution of the FB is
enabled.

Output

AbsoluteCounter LREAL 0 Read value (Elapsed value)

FeedbackCounter LREAL 0 Read value (Feedback counter)

InputFlags PG_InputFlags 0 Read value content (Input flag)

Valid BOOL FALSE TRUE:

Error BOOL FALSE TRUE: An error has occurred in the
FB.

ErrorID PG_ERROR NO_ERROR An error ID is output.

■ PG_InputFlags
For the contents of PG_InputFlags, refer to the following table.

Parameter Name Description

PulseOutputBusy Pulse output busy TRUE: Pulse output is in progress

PulseOutputDone Pulse output done TRUE: Pulse output is complete

AccelerationZone Acceleration zone TRUE: Axis is accelerating

ConstantSpeedZone Constant speed zone TRUE: Axis is operating at constant speed

DecelerationZone Deceleration zone TRUE: Axis is decelerating

RotationDirection Rotation direction
Rotation direction monitor
TRUE: Rotating in the direction of increasing
elapsed value

HomeInput Home input
Home position input signal monitor
TRUE: Home position input is active

NearHomeInput Near home input
Close to home position input signal monitor
TRUE: Close to home position input is active

12.2 Function Blocks for the Pulse Output Unit

12-24 WUME-GM1PGR-10

Parameter Name Description

HomingDone Home return done TRUE: Homing complete

OutputStopError Output stop error TRUE: Error occurred in the pulse output unit,
output stopped

SetValueChangeConfirmation Set value change TRUE: Possible to overwrite set values during
P-point control

OverPositiveLimitInput Limit (+) input
Limit (+) input signal monitoring contact
TRUE: Limit (+) input is active

OverNegativeLimitInput Limit (-) input
Limit (-) input signal monitoring contact
TRUE: Limit (-) input is active

TimingInputMonitor Timing input monitor
Position control start input (timing input)
monitoring contact
TRUE: Position control start input is active

SetValueError Set value error RUE: Setting value error occurred

LimitError Limit error TRUE: Limit input was received during operation
or at startup

ServoOnOutputState Servo ON output status TRUE: Servo ON state

12.2 Function Blocks for the Pulse Output Unit

WUME-GM1PGR-10 12-25

12.3 Error Codes

This section describes errors that are output in function blocks for pulse output unit and their
contents. These errors are defined in PG_ERROR.

12.3.1 Error Check Method

With a function block that has the Error and ErrorID output parameters, it is possible to check
whether an error has occurred.
When the Error output becomes TRUE, its error content is output to the ErrorID.

■ Error occurrence example
In the following example, PG_NOT_SUPPORTED has occurred in the PG_Power function
block.

Error = TRUE (An error has occurred.)
ErrorID = PG_NOT_SUPPORTED (The function block not supported in the simulation mode
was executed.)

Declaration section

Implementation section (ST programming language)

Implementation section (LD programming language)

12.3 Error Codes

12-26 WUME-GM1PGR-10

12.3.2 PG_ERROR

For the content of PG_ERROR output in each function block, refer to the following table.

Error name Description

PG_NO_ERROR Normal (no error)

PG_INVALID_UNIT The specified unit ID or axis No. is invalid.

PG_SYSTEM_ERROR This is an internal error in the GM1 Controller.

PG_NOT_SUPPORTED The function block not supported in the simulation mode was
executed.

PG_AXIS_NOT_READY_FOR_MOTION The axis is in the servo OFF state.

PG_AXIS_UNIT_ERROR The output of the pulse output unit has made an error stop.

PG_AXIS_SET_VALUE_ERROR A set value error has occurred in the pulse output unit.

PG_AXIS_LIMIT_ERROR A limit error has occurred in the pulse output unit.

PG_AXIS_IN_STOP The function block could not be executed because stop
processing was being executed by PG_Stop.

PG_AXIS_IN_RESET
The function block could not be executed because axis
information was being changed by PG_ClearError and
PG_SetPosition.

PG_AXIS_IN_DRIVEN The function block could not be executed because the axis was
moving.

PG_CHANGED_DURING_OPERATION The unit ID or axis No. was changed during operation.

PG_INVALID_TARGET_VALUE Abnormal Information (position, speed, acceleration, or
deceleration) was Input.

PG_JOG_INVALID_REQUEST Both JogForward and JogBackward of JOG were simultaneously
set to TRUE.

PG_SET_VALUE_CHANGE_FAILED Failed to change command information.

PG_FB_IN_BUSY Using the timing when Execute is set to TRUE as the trigger is
invalid for the function block being executed (Busy = TRUE).

PG_ERROR_CLEAR_FAILED Failed to clear the error in the pulse output unit.

PG_PARAMETER_WRITE_FAILED Failed to write the parameter.

12.3 Error Codes

WUME-GM1PGR-10 12-27

12.4 Functions for the Serial Communication Unit

This section describes functions for the serial communication unit.

12.4.1 NSC_ReadComStatus (Read COM Port Status)

This function acquires the COM port status of the serial communication unit.

■ Icon

■ Parameter

Category Name Type Description

Input PortNum USINT Specify the COM number of the serial communication
unit. (COM2 to COM31)

Output NSC_ReadComStatus NSC_STATUS This structure stores the COM port status.
Details will be described later.

■ Description of function
● This function acquires the COM port status of the serial communication unit.
● You cannot specify the GM1 Controller's COM port in this instruction. Specify the COM port

of the serial communication unit.
● If a COM port error occurs, Error changes to TRUE and the error information is stored in

Open_ErrorID, Close_ErrorID, Write_ErrorID, and Read_ErrorID.
● Busy is TRUE when the serial communication unit is processing port open, port close, or

data transmission, and FALSE when processing is completed.
● The general-purpose communication instructions COM.Open, COM.Close, and COM.Write

must be used in combination with this instruction.
Since there is a delay until the serial communication unit completes port open, port close, or
data transmission processing after execution of COM.Open, COM.Close, or COM.Write is
completed (xDone changes from FALSE to TRUE), do not execute the next COM.Open,
COM.Close, or COM.Write instruction until Busy becomes FALSE.
If you do, the processing will not be accepted, Error will change to TRUE, and error
information will be stored in Open_ErrorID, Close_ErrorID, and Write_ErrorID.

■ NSC_STATUS (Structure)

Member Type Default Description

Busy BOOL FALSE TRUE: Open, close, or write processing is in progress.
Do not execute the next open, close, or write
processing until Busy changes to FALSE.

Error BOOL FALSE TRUE: An error occurred in open, close, write, or read
processing.

Open_ErrorID NSC_ERROR NSC_NO_ERRO
R

The error ID of open processing is output.

12.4 Functions for the Serial Communication Unit

12-28 WUME-GM1PGR-10

Member Type Default Description

Close_ErrorID NSC_ERROR NSC_NO_ERRO
R

The error ID of close processing is output.

Write_ErrorID NSC_ERROR NSC_NO_ERRO
R

The error ID of write processing is output.

Read_ErrorID NSC_ERROR NSC_NO_ERRO
R

The error ID of read processing is output.

12.4.2 NSC_ERROR (Error Code)

This is an enumeration type error code that is output when a function for the serial
communication unit is executed.

■ NSC_ERROR (Enumeration type)

Name Value Description

NSC_NO_ERROR 0 No error

NSC_WRONG_PARAMETER 1 The parameter contains an invalid value.

NSC_NO_PORT 2 The specified port number is not set for the serial
communication unit.

NSC_TIMEOUT_ERROR 3 Open or close timeout

NSC_RECEIVE_BUFFER_FULL 4 Receive buffer full

NSC_SEND_DATASIZE_ERROR 5 The send data size exceeds 1024 bytes.

NSC_SEND_BUFFER_USED 6 Send buffer in use

NSC_PORT_STATUS_ERROR 10 Port status error

NSC_PORT_OPEN_FAILED 11 Port open failed.

NSC_PORT_NOT_OPEN 12 The port is not open.

NSC_DATA_TRANSFER_FAILED 13 The transfer of serial data failed.

NSC_MODBUS_COMMAND_LOST 14 Modbus command reception failed.

NSC_OVERRUN_ERROR 15 Overrun error

NSC_FLAMING_ERROR 16 Framing error

NSC_PARITY_ERROR 17 Parity error

12.4 Functions for the Serial Communication Unit

WUME-GM1PGR-10 12-29

(MEMO)

12-30 WUME-GM1PGR-10

13 Reference Information

13.1 Motion Errors (SMC_ERROR Type) ...13-2
13.1.1 Error Check Method... 13-2
13.1.2 SMC_ERROR .. 13-3

13.2 RTEX communication error...13-11
13.2.1 RTEX Error ID .. 13-11
13.2.2 Alarm Codes .. 13-14
13.2.3 Warning Codes .. 13-18

13.3 List of AMP Parameters ..13-21
13.3.1 Class 0: Basic Setting .. 13-21
13.3.2 Class 1: Gain Adjustment .. 13-21
13.3.3 Class 2: Vibration Suppression Function 13-22
13.3.4 Class 3: Speed, Torque Control, Full-closed Control 13-23
13.3.5 Class 4: I/O Monitor Setting ... 13-24
13.3.6 Class 5: Enhancing Setting.. 13-25
13.3.7 Class 6: Special Setting 1 .. 13-27
13.3.8 Class 7: Special Setting 2 .. 13-29
13.3.9 Class 8: Special Setting 3 .. 13-31

13.4 Monitor Commands...13-32

WUME-GM1PGR-10 13-1

13.1 Motion Errors (SMC_ERROR Type)

This section describes errors that are output in motion control instructions and their contents.
Motion control errors are defined in SMC_ERROR.

13.1.1 Error Check Method

This section describes errors that are output in motion control instructions and their contents.
Motion control errors are defined in SMC_ERROR.

■ Error check method
With a function block that has an output Error and output ErrorID, it is possible to check that an
error has occurred.
The following shows an example of an error that has occurred when the MC_MoveVelocity
function block is executed.
“TRUE” is output to the output Error and an error is output to the output ErrorID.

The error name can be checked by double-clicking the output ErrorID.
An error name defined in the enumeration type SMC_ERROR is displayed in the "Current
value" field in the "Presetting values" dialog box.

Double-clicking in the above execution example displays the following dialog box
where error name "SMC_MV_INVALID_ACCDEC_VALUES" can be checked.

13.1 Motion Errors (SMC_ERROR Type)

13-2 WUME-GM1PGR-10

When an error occurs, the value of the error that has occurred (SMC_ERROR) is also recorded
in hexadecimal number on the "Log" screen of the device editor.
The following example shows a record when an error
("SMC_MV_INVALID_ACCDEC_VALUES") with an error value of 12D (301 in decimal) has
occurred.

13.1.2 SMC_ERROR

Error name Valu
e Description

SMC_NO_ERROR 0 No error

SMC_DI_GENERAL_COMMUNICATION_ERROR 1
Communication error
Communication disconnection or another
communication problem occurred.

SMC_DI_AXIS_ERROR 2
Axis error
Amplifier alarm or another axis problem occurred.

SMC_DI_FIELDBUS_LOST_SYNCRONICITY 3 The fieldbus lost synchronicity.

SMC_DI_SWLIMITS_EXCEEDED 10 The software limit has been exceeded.

SMC_DI_HWLIMITS_EXCEEDED 11 The hardware end switch is active.

13.1 Motion Errors (SMC_ERROR Type)

WUME-GM1PGR-10 13-3

Error name Valu
e Description

SMC_DI_LINEAR_AXIS_OUTOFRANGE 12 An overflow occurred in the linear axis.

SMC_DI_HALT_OR_QUICKSTOP_NOT_SUPPO
RTED 13 The drive state is set to Halt or the Quickstop is

unsupported.

SMC_DI_VOLTAGE_DISABLED 14 No power is supplied to the drive.

SMC_DI_IRREGULAR_ACTPOSITION 15 This error is not used.

SMC_DI_POSITIONLAGERROR 16

Position lag error
The difference between the commanded position
and actual position has exceeded the specified
limit when position lag monitoring is active.

SMC_DI_HOMING_ERROR 17 Home return error

SMC_REGULATOR_OR_START_NOT_SET 20

Either the controller is disabled or the brake has
been applied.
Servo OFF or another similar problem occurred
during axis movement.

SMC_WRONG_CONTROLLER_MODE 21 The executed function block is set to unsupported
controller mode (SMC_SetControllerMode).

SMC_INVALID_ACTION_FOR_LOGICAL 25 Invalid operation was performed on the logical
axis.

SMC_FB_WASNT_CALLED_DURING_MOTION 30

The function block was not called on the POU
while the motion instruction was being executed
("Busy").
The operation was stopped while the motion
instruction was being executed ("Busy").

SMC_AXIS_IS_NO_AXIS_REF 31 The type of the AXIS_REF type variable is
different.

SMC_AXIS_REF_CHANGED_DURING_OPERATI
ON 32 The AXIS_REF variable was changed during

operation.

SMC_FB_ACTIVE_AXIS_DISABLED 33
The axis became disabled
(MC_Power.bRegulatorOn) during movement.

SMC_AXIS_NOT_READY_FOR_MOTION 34
The axis cannot execute a motion instruction (an
attempt was made to execute a motion instruction
with MC_Stop enabled, for example).

SMC_AXIS_ERROR_DURING_MOTION 35 An error (such as amplifier alarm) occurred during
motion operation.

SMC_VD_MAX_VELOCITY_EXCEEDED 40 The maximum velocity (fMaxVelocity) was
exceeded.

SMC_VD_MAX_ACCELERATION_EXCEEDED 41 The maximum acceleration (fMaxAccleration) was
exceeded.

SMC_VD_MAX_DECELERATION_EXCEEDED 42 The maximum deceleration (fMaxDeceleration)
was exceeded.

SMC_3SH_INVALID_VELACC_VALUES 50 Either an invalid velocity or acceleration was
specified.

SMC_3SH_MODE_NEEDS_HWLIMIT 51 For safety reasons, a request is made to invoke
the mode in which the end switch is used.

SMC_FRC_NO_FREE_HANDLE 60 There is no file open handle.

13.1 Motion Errors (SMC_ERROR Type)

13-4 WUME-GM1PGR-10

Error name Valu
e Description

SMC_MAC_INITIALIZATION_FAILED 65 SMC_MultiAcyclicCommunicator initialization
failed.

SMC_MAC_INVALID_TASK_HANDLE 66 There is an invalid handle for the axis.

SMC_MAC_TOO_MANY_TASKS 67 There are too many tasks that use an axis
generating SDO.

SMC_MAC_ATOMIC_ADD_FAILED 68 An attempt to add Atomic failed.

SMC_SDO_INVALID_DATALENGTH 69 An invalid data length (> 4) occurred due to SDO
reading.

SMC_SCM_NOT_SUPPORTED 70 An invalid controller mode was set for
SMC_SetControllerMode.

SMC_SCM_AXIS_IN_WRONG_STATE 71
The controller mode cannot be changed in the
current axis state (an attempt was made to execute
SMC_SetControllerMode with MC_Stop enabled,
for example).

SMC_SCM_INTERRUPTED 72 SMC_SetControllerMode was interrupted by
MC_Stop or ErrorStop.

SMC_ST_WRONG_CONTROLLER_MODE 75 The motion instruction was executed in an
incorrect controller mode.

SMC_RAG_ERROR_DURING_STARTUP 80 An error occurred when the axis group was started
up.

SMC_RAG_ERROR_AXIS_NOT_INITIALIZED 81 The axis is not in the specified state.

SMC_PP_WRONG_AXIS_TYPE 85 The function block does not support virtual axes or
logical axes.

SMC_PP_NUMBER_OF_ABSOLUTE_BITS_INVA
LID 86 The number of bits is invalid (between 8 and 32

bits).

SMC_CGR_ZERO_VALUES 90 An invalid value was specified.

SMC_CGR_DRIVE_POWERED 91 A gear parameter was changed while the drive was
in operation.

SMC_CGR_INVALID_POSPERIOD 92 An invalid position (0 or less, or half or more than
the bus bandwidth) was specified.

SMC_CGR_POSPERIOD_NOT_INTEGRAL 93 The modulo period is not an integer.

SMC_P_FTASKCYCLE_EMPTY 110
There is no information in one cycle time.
(fTaskCycle = 0)

SMC_R_NO_ERROR_TO_RESET 120
There is no error to be reset (MC_Reset was
executed when there was no function block error,
for example).

SMC_R_DRIVE_DOESNT_ANSWER 121 There is no response to an error reset.

SMC_R_ERROR_NOT_RESETTABLE 122 An error reset cannot be executed.

SMC_R_DRIVE_DOESNT_ANSWER_IN_TIME 123 Communication with the axis is not working.

SMC_R_CANNOT_RESET_COMMUNICATION_E
RROR 124 A reset cannot be executed due to a

communication error.

SMC_RP_PARAM_UNKNOWN 130 The parameter number is undefined.

SMC_RP_REQUESTING_ERROR 131 An error occurred in communication with the drive.

SMC_RP_DRIVE_PARAMETER_NOT_MAPPED 132 Parameters are not assigned to the drive.

13.1 Motion Errors (SMC_ERROR Type)

WUME-GM1PGR-10 13-5

Error name Valu
e Description

SMC_RP_PARAM_CONVERSION_ERROR 133
Conversion of drive parameter values failed.
Soft motion parameters are undefined.

SMC_WP_PARAM_INVALID 140 The parameter number is undefined or write
operations are inhibited.

SMC_WP_SENDING_ERROR 141 Refer to the error number for WriteDriveParameter.

SMC_WP_DRIVE_PARAMETER_NOT_MAPPED 142 Parameters are undefined for the drive.

SMC_WP_PARAM_CONVERSION_ERROR 143
Conversion of drive parameter values failed.
Soft motion parameters are undefined.

SMC_H_AXIS_WASNT_STANDSTILL 170 The axis is not in a standstill state.

SMC_H_AXIS_DIDNT_START_HOMING 171 An error occurred when home return was started.

SMC_H_AXIS_DIDNT_ANSWER 172 An error occurred when home return was started.

SMC_H_ERROR_WHEN_STOPPING 173
An error occurred after the axis stopped in home
return mode. It is possible that deceleration was
not set.

SMC_H_AXIS_IN_ERRORSTOP 174
The drive is in the ErrorStop state.
Home return cannot be executed.

SMC_MS_UNKNOWN_STOPPING_ERROR 180 Undefined error

SMC_MS_INVALID_ACCDEC_VALUES 181 Either an invalid velocity or acceleration was
specified.

SMC_MS_DIRECTION_NOT_APPLICABLE 182 "shortest" cannot be applied to the direction.

SMC_MS_AXIS_IN_ERRORSTOP 183 Because the drive is in the ErrorStop state, stop
operation cannot be executed with MC_Stop.

SMC_BLOCKING_MC_STOP_WASNT_CALLED 184
MC_Stop (Execute=TRUE) blocks the axis.
MC_Stop (Execute=FALSE) must be executed.

SMC_UNKNOWN_TASK_INTERVAL 200 The task interval of the bus task is undefined.

SMC_MA_INVALID_VELACC_VALUES 201 Either an invalid velocity or acceleration was
specified.

SMC_MA_INVALID_DIRECTION 202 There is an error in the specified direction
("Direction").

SMC_MR_INVALID_VELACC_VALUES 226 Either an invalid velocity or acceleration was
specified.

SMC_MR_INVALID_DIRECTION 227 There is an error in the specified direction
("Direction").

SMC_MAD_INVALID_VELACC_VALUES 251 Either an invalid velocity or acceleration was
specified.

SMC_MAD_INVALID_DIRECTION 252 There is an error in the specified direction
("Direction").

SMC_MSI_INVALID_VELACC_VALUES 276 Either an invalid velocity or acceleration was
specified.

SMC_MSI_INVALID_DIRECTION 277 There is an error in the specified direction
("Direction").

SMC_MSI_INVALID_EXECUTION_ORDER 278 The same instance of MC_MoveSuperImposed
was called more than once in a single cycle.

13.1 Motion Errors (SMC_ERROR Type)

13-6 WUME-GM1PGR-10

Error name Valu
e Description

SMC_LOGICAL_NO_REAL_AXIS 300 Unused error

SMC_MV_INVALID_ACCDEC_VALUES 301 Either an invalid velocity or acceleration was
specified.

SMC_MV_DIRECTION_NOT_APPLICABLE 302 "shortest" or "fastest" cannot be applied to the
direction ("Direction").

SMC_PP_ARRAYSIZE 325 There is an error in the specified array size.

SMC_PP_STEP0MS 326 The step time is 0s.

SMC_VP_ARRAYSIZE 350 There is an error in the specified array size.

SMC_VP_STEP0MS 351 The step time is 0s.

SMC_AP_ARRAYSIZE 375 There is an error in the specified array size.

SMC_AP_STEP0MS 376 The step time is 0s.

SMC_TP_TRIGGEROCCUPIED 400 The trigger is already enabled.

SMC_TP_COULDNT_SET_WINDOW 401 The drive does not support the window function.

SMC_TP_COMM_ERROR 402 Communication error

SMC_AT_TRIGGERNOTOCCUPIED 410 The trigger is already disabled.

SMC_MCR_INVALID_VELACC_VALUES 426 Either an invalid velocity or acceleration was
specified.

SMC_MCR_INVALID_DIRECTION 427 An invalid direction was specified.

SMC_MCA_INVALID_VELACC_VALUES 451 Either an invalid velocity or acceleration was
specified.

SMC_MCA_INVALID_DIRECTION 452 An invalid direction was specified.

SMC_MCA_DIRECTION_NOT_APPLICABLE 453 "fastest" cannot be applied to the direction
("Direction").

SMC_SDL_INVALID_AXIS_STATE 475
Function block "SMC_ChangeDynamicLimits" was
executed in a state other than "Standstill" or
"Power_off".

SMC_SDL_INVALID_VELACC_VALUES 476 An invalid velocity, acceleration, deceleration, or
jerk was specified.

SMC_CR_NO_TAPPETS_IN_CAM 600 The cam is not equipped with a tappet.

SMC_CR_TOO_MANY_TAPPETS 601 The tappet group ID exceeds
MAX_NUM_TAPPETS.

SMC_CR_MORE_THAN_32_ACCESSES 602 There are 32 or more accesses to one cam.

SMC_CI_NO_CAM_SELECTED 625
No cam is selected.
It is possible that the correct cam table is not set in
the CamTableID parameter of MC_CamIn.

SMC_CI_MASTER_OUT_OF_SCALE 626 The current commanded position on the master
axis is outside the range of the cam table.

SMC_CI_RAMPIN_NEEDS_VELACC_VALUES 627 A velocity and acceleration must be specified when
StartMode is set to ramp_in.

SMC_CI_SCALING_INCORRECT 628 The scaling variables (fEditor, TableMasterMin, and
Max) are incorrect.

SMC_CI_TOO_MANY_TAPPETS_PER_CYCLE 629 The number of tappet outputs is too many to be
enabled in one cycle.

13.1 Motion Errors (SMC_ERROR Type)

WUME-GM1PGR-10 13-7

Error name Valu
e Description

SMC_CB_NOT_IMPLEMENTED 640 The function block for cam format is not
implemented.

SMC_GI_RATIO_DENOM 675 RatioDenominator (denominator of the gear ratio)
is set to 0.

SMC_GI_INVALID_ACC 676 The value specified in "Acceleration" is invalid.

SMC_GI_INVALID_DEC 677 The value specified in "Deceleration" is invalid.

SMC_GI_MASTER_REGULATOR_CHANGED 678 The Enable / Disable state of the master axis was
changed without permission.

SMC_GI_INVALID_JERK 679 The value specified in "Jerk" is invalid.

SMC_PH_INVALID_VELACCDEC 725 The specified velocity, acceleration, or deceleration
were invalid.

SMC_PH_ROTARYAXIS_PERIOD0 726 fPositionPeriod for the rotation axis is set to 0.

SMC_NO_CAM_REF_TYPE 750 The cam type is not an MC_CAM_REF structure.

SMC_CAM_TABLE_DOES_NOT_COVER_MAST
ER_SCALE 751 The master axis area (xStart and xEnd) of the cam

table is outside the curve data range.

SMC_CAM_TABLE_EMPTY_MASTER_RANGE 752 The cam data table is empty.

SMC_CAM_TABLE_INVALID_MASTER_MINMAX 753 The maximum value and minimum value of the
master axis in the cam data are invalid.

SMC_CAM_TABLE_INVALID_SLAVE_MINMAX 754 The maximum value and minimum value of the
slave axis in the cam data are invalid.

SMC_GIP_MASTER_DIRECTION_CHANGE 775 The rotation direction of the master axis was
changed while the salve axis was connected.

SMC_GIP_SLAVE_REVERSAL_CANNOT_BE_AV
OIDED 776 The AvoidReversal input is set, but reverse rotation

of the slave axis cannot be avoided.

SMC_GIP_AVOID_REVERSAL_FOR_FINITE_AXI
S 777 The AvoidReversal input cannot be set for the finite

slave axis.

SMC_BC_BL_TOO_BIG 800 The fBacklash gear backlash is too large (larger
than position period/2).

SMC_QPROF_DIVERGES 825 Internal error: Failed in calculating the secondary
path

SMC_QPROF_INVALID_PARAMETER 826 Internal error: Failed in calculating the secondary
path

SMC_QPROF_NO_RESULT 827 Internal error: Failed in calculating the secondary
path

SMC_QPROF_INVALID_NEW_LBD 828 Internal error: Failed in calculating the secondary
path

SMC_QPROF_BAD_NEGOTIATION 829 Internal error: Failed in calculating the secondary
path

SMC_QPROF_INVALID_INTERVAL 830 Internal error: Failed in calculating the secondary
path

SMC_QPROF_NOT_ENOUGH_PHASES 831 Internal error: Failed in calculating the secondary
path

SMC_TG_INTERNAL_ERROR 832 Internal error: Failed in calculating the secondary
path

13.1 Motion Errors (SMC_ERROR Type)

13-8 WUME-GM1PGR-10

Error name Valu
e Description

SMC_SRT_NOT_STANDSTILL_OR_POWEROFF 850 Execution is possible only in the standstill or
power_off state.

SMC_SRT_INVALID_RAMPTYPE 851 The value specified in RampType is invalid.

SMC_SMT_NOT_STANDSTILL_OR_POWEROFF 852 Execution is possible only in the standstill or
power_off state.

SMC_SMT_INVALID_MOVEMENTTYPE_OR_
POSITIONPERIOD 853 The value specified in MovementType or

PositionPeriod is invalid.

SMC_SMT_AXIS_NOT_VIRTUAL 854 The function block is valid only for the virtual axis.

SMC_NO_LICENSE 1000 License error

SMC_INT_VEL_ZERO 1001 Because Velocity is set to 0, path processing
cannot be performed.

SMC_INT_NO_STOP_AT_END 1002 The final velocity of the path is other than 0.

SMC_INT_DATA_UNDERRUN 1003 GEOINFO-List was processed by DataIn, but the
end of the list has not been reached.

SMC_INT_VEL_NONZERO_AT_STOP 1004 The velocity at the time of stoppage is greater than
0.

SMC_INT_TOO_MANY_RECURSIONS 1005 There are too many recursions of
SMC_Interpolator.

SMC_INT_NO_CHECKVELOCITIES 1006 SMC_CheckVelocities is not called by
SMC_OUTQUEUE.

SMC_INT_PATH_EXCEEDED 1007 Internal error or calculation error

SMC_INT_VEL_ACC_DEC_ZERO 1008 The specified velocity and acceleration /
deceleration are 0 or less.

SMC_INT_DWIPOTIME_ZERO 1009 The motion task was called when dwIpoTime = 0.

SMC_INT_JERK_NONPOSITIVE 1010 A negative value was set for "Jerk".

SMC_INT_QPROF_DIVERGES 1011
Internal error
The calculation algorithm is incorrect.

SMC_INT_INVLALID_VELOCITY_MODE 1012 The specified velocity mode is invalid.

SMC_INT_TOO_MANY_AXES_INTERPOLATED 1013 The maximum allowable number of axes for
interpolation has been exceeded.

SMC_INT_DEGENERATE_SEGMENT 1014

SMC_INT2DIR_BUFFER_TOO_SMALL 1050

SMC_INT2DIR_PATH_FITS_NOT_IN_QUEUE 1051

SMC_XINT_INVALID_DIRECTION 1070

SMC_XINT_NOINTERSECTION 1071

SMC_WAR_INT_OUTQUEUE_TOO_SMALL 1080

SMC_WAR_END_VELOCITIES_INCORRECT 1081 The specified final velocity is incorrect.

SMC_CV_ACC_DEC_VEL_NONPOSITIVE 1100 The velocity and acceleration/deceleration values
are not positive

SMC_CA_INVALID_ACCDEC_VALUES 1120 Negative values are specified for fGapVelocity,
fGapAcceleration, and fGapDeceleration.

SMC_DEC_ACC_TOO_LITTLE 1200 The specified acceleration is unacceptable.

13.1 Motion Errors (SMC_ERROR Type)

WUME-GM1PGR-10 13-9

Error name Valu
e Description

SMC_DEC_RET_TOO_LITTLE 1201 The specified deceleration is unacceptable.

SMC_DEC_OUTQUEUE_RAN_EMPTY 1202
Data underrun
The queue was read, but it was empty.

SMC_DEC_JUMP_TO_UNKNOWN_LINE 1203 Because the line number is unknown, the cursor
cannot jump to the line.

SMC_DEC_INVALID_SYNTAX 1204 The syntax is invalid.

SMC_DEC_3DMODE_OBJECT_NOT_SUPPORT
ED 1205 The object is not supported in 3D mode.

SMC_DEC_NEGATIVE_PERIOD 1206 A negative value is specified for the period during
which an additional axis is disabled.

SMC_DEC_DIMENSIONS_EXCLUSIVE_AU 1207
Both axis A and axis U are not always interpolated.
PA and PU are mutually exclusive.

SMC_DEC_DIMENSIONS_EXCLUSIVE_BV 1208
Both axis B and axis V are not always interpolated.
PB and PV are mutually exclusive.

SMC_DEC_DIMENSIONS_EXCLUSIVE_CW 1209
Both axis C and axis W are not always
interpolated.
PC and PW are mutually exclusive.

SMC_IPR_TOO_SMALL＿BUFFER 1259 The buffer size specified for OutOueue is too
small.

SMC_GCV_BUFFER_TOO_SMALL 1300

SMC_GCV_BUFFER_WRONG_TYPE 1301

SMC_GCV_UNKNOWN_IPO_LINE 1302

SMC_NO_CNC_REF_TYPE 1500

SMC_NO_OUTQUEUE_TYPE 1501 The specified pointer is not SMC_OUTQUEUE.

SMC_GEOINFO_BUFFER_MISALIGNED 1502 The buffer segments aligned by four-byte
boundaries are not used by pbyBuffer.

SMC_3D_MODE_NOT_SUPPORTED 1600 The FB functions only with 2D paths.

13.1 Motion Errors (SMC_ERROR Type)

13-10 WUME-GM1PGR-10

13.2 RTEX communication error

13.2.1 RTEX Error ID

■ WARNING_CODE (Union type)

Member Type Description

uiWarningCode UINT Warning code

tWarningCodeMember ALARM_WARNING_C
ODES

Main code (warning number) and sub-code (0) of the
warning code

■ List of RTEX Error IDs

Category Error_Code /
Sub_Error_Cod

e

Cause

Command
header related

0011h ● Mismatched node address (MAC-ID)

0012h ● C/R bit is 1 despite of command.
● Sub_Chk is 0 in 32-byte mode.

Command
code, control
mode related

0021h ● Cyclic command is not defined.

0022h ● Non-cyclic command is not defined (when cyclic command is normal).
● Combination error of control mode and non-cyclic command.
● Subcommand is undefined in 32-byte mode.

002Eh ● Combination of communication cycle, semi-closed/full-closed, 16 / 32
byte mode, and control mode is not correct.

● Control mode has been changed in less than 2 ms.
● Control mode has been changed during profile position latch

positioning / profile home return (Type_Code = 12h, 13h, 31h, 32h, 33h,
34h, 36h) operation.

● Control mode has been changed during execution of non-cyclic
command (Busy = 1).

● Run the home return command (□4h) Type_Code = 1□h / 2□h during the
velocity control (CV) / torque control (CT).

● Control mode has been changed to the velocity control during the 2
degrees of freedom control (synchronous) mode.

● Control mode has been changed to the torque control during the 2
degrees of freedom control (standard / synchronous) mode.

● Control mode has been changed during the retracting operation.

Argument
related

0031h ● Type_Code / Sub_Type_Code is not defined.

0032h ● Non-cyclic data / sub-command data other than Type_Code /
Sub_Type_Code is out of setup range.

0033h ● Cyclic data (Command_Data1) is out of setup range.

0034h ● Feed forward data (Command_Data3, Sub_Command_Data2 / 3) is out
of setup range.

Not executable
1
(general)

0041h ● Write access is attempted to read only media.

0042h ● Alarm clear command is executed while an alarm that cannot be cleared
has occurred and no warning was issued.

13.2 RTEX communication error

WUME-GM1PGR-10 13-11

Category Error_Code /
Sub_Error_Cod

e

Cause

0043h ● External scale error clear command is executed when not in full-closed
control mode or when no external scale error is detected.

0045h ● In servo on state, reset command is executed in attribute C parameter
validation mode.

0046h ● After deceleration and stop according to the drive inhibit input (POT /
NOT), direction command POT / NOT is applied.

● During deceleration according to the drive inhibit input (POT / NOT), a
profile operation (except Type_Code = 31h, 32h, 33h, 34h, and 36h) is
started.

Not executable
2
(related to
home return)

0051h ● Multi-turn clearing of the home return command was executed while the
encoder was in the incremental mode.

● Multi-turn clearing of the home return command was executed even
when the single-turn absolute function was effective.

0052h ● During cyclic position control (CP) (* including full-closed control) in
absolute mode, Type_Code = 1□h of the home return command (□4h)
has been executed.

● During profile position control (PP) (* including full-closed control) in
absolute mode, profile home return has been executed.

0053h ● During cyclic position control (CP) (* including full-closed control) in
absolute mode, actual position set / command position set (Type_Code
= 21h, 22h) of the home return command (□4h) have been executed.

0055h ● Multi-turn clearing of the home return command is executed while in the
full-closed control mode.

0056h ● Multi-turn clearing of the home return command is executed while in the
servo-on condition.

0057h ● Type_Code = 1□h of the home return command is executed while in the
servo-off state.

0058h ● While the external input is not assigned to the latch correction terminal,
Type_Code is executed by using the external input as a trigger.

● Started the latch mode with a stop function operated by the amplifier
output signal as the trigger signal when Pr7.111 “Trigger signal
assignment setting for the latch mode with a stop function” was set to 0
“Disabled”.

0059h ● Executed the home return command (□4h) while the profile position
latch positioning / profile home return (Type_Code = 12h, 13g, 31h, 32h,
33h, 34h, 36h) was operated.

● During profile positioning / profile continuous revolution (Type_Code =
10h, 11h, 20h), initialization mode (Type_Code = 1□h, 31h) of home
return command (□4h) has been executed.

005Ah ● Z phase is set to latch trigger signal despite absolute external scale.

005Bh ● Received the following commands in the virtual full-closed control mode.
• Home return command (□4h)
• Profile position latch absolute positioning (12h) of the profile

command (17h)
• Profile position latch absolute positioning (13h) of the profile

command (17h)
• Profile home return (31h to 34h, 36h) of the profile command (17h)
• Config command

13.2 RTEX communication error

13-12 WUME-GM1PGR-10

Category Error_Code /
Sub_Error_Cod

e

Cause

● Received a command to change to the virtual full-closed control mode
under the following conditions.
• While initialization mode of home return command (□4h) was

operated, latch mode was operated, or latch mode with stop function
was operated

• Changed to a command other than command code (□4h) after
starting home return command (Type_Code: 51h to 53h)

• During a period from starting the latch to detecting the latch after
starting home return command (Type_Code: 51h to 53h)

• While profile position latch absolute positioning (12h) of the profile
command (17h) was operated

• While profile position latch absolute positioning (13h) of the profile
command (17h) was operated

• While profile home return (31h to 34h, 36h) of the profile command
(17h) was operated

• After starting profile command (12h, 13h, 31h to 34h, 36h), during
the period from when a change was made to a command other than
command code (17h) until the latch or home was detected

• While Config command was executed

005Fh ● Latch mode with stop function (Type_Code = F1h) was used in a setting
other than the cyclic position control (CP).

● Latch mode with stop function (Type_Code = F1h) was used in a setting
other than the communication cycle of 0.5 ms/command update cycle of
1.0 ms

● Latch mode with stop function (Type_Code = F1h) was used in a setting
other than the electronic gear ratio of less than 1.

Not executable
3
(Related to
hardware
factor)

0061h ● EEPROM writing is not permitted because of under voltage of the
control power.

Not executable
4
(in process)

0101h ● Not permitted to be accepted because the previous command is in
process.

0102h ● Command is not permitted to be accepted because the servo driver is
accessing to the encoder now.

0103h ● Command is not permitted to be accepted because the servo driver is
accessing to the external scale now.

0104h ● Type_Code has been changed while operating under profile position
control (PP).

0105h ● During execution of the PANATERM command (test run operation, FFT,
Z phase search, pin assignment setting, or fit gain), received the RTEX
command (reset command, home return command, or parameter
command).

Not executable
5
(access
inhibited)

0201h ● Command is not permitted to be accepted because parameter writing or
writing to EEPROM is inhibited now.

● Write parameter command or write EEPROM command is issued while
bit 0 of Pr7.23 RTEX function expansion setup 2 is set at 1.

13.2 RTEX communication error

WUME-GM1PGR-10 13-13

13.2.2 Alarm Codes

■ ALARM_CODE (Union type)

Member Type Description

uiAlarmCode UINT Alarm code

tAlarmCodeMember ALARM_WARNING_C
ODES

Main code and sub-code of the alarm code

■ ALARM_WARNING_CODES (Structure)

Member Type Description

byMainCode BYTE Main alarm number code

bySubCode BYTE Sub alarm number code

■ List of alarm codes

Error No. Alarm name Attribute

Main Sub History Can be
cleared

Emergency
stop(Note 6)

11 0 Control power supply undervoltage protection ○

12 0 Over-voltage protection ○ ○

13 0 Main power supply undervoltage protection
(Insufficient voltage between P and N)

○ ○

1 Main power supply undervoltage protection (AC
interception detection)

○ ○

14 0 Over-current protection ○

1 IPM error protection ○

15 0 Overheat protection ○ ○

1 Encoder overheat error protection ○ ○

16 0 Overload protection ○ ○(Note 1)

1 Torque saturation error protection ○ ○

18 0 Regenerative overload protection ○ ○

1 Regenerative transistor error protection ○

21 0 Encoder communication line breakage fault
protection

○

1 Encoder communication error protection ○

23 0 Encoder communication data error protection ○

24 0 Position deviation excess protection ○ ○ ○

1 Speed deviation excess protection ○ ○ ○

25 0 Hybrid deviation excess protection ○ ○

26 0 Overspeed protection ○ ○ ○

1 2nd overspeed protection ○ ○

13.2 RTEX communication error

13-14 WUME-GM1PGR-10

Error No. Alarm name Attribute

Main Sub History Can be
cleared

Emergency
stop(Note 6)

27 1 Absolute clearing protection ○

4 Command error protection ○ ○

5 Command generation error protection ○ ○

6 Operation command contention protection ○ ○

7 Position information initialization error protection ○

28 0 Pulse regeneration limit protection ○ ○ ○

29 1 Counter overflow protection 1 ○

2 Counter overflow protection 2 ○

31 0 Safety function error protection 1 ○

2 Safety function error protection 2 ○

33 0 Input duplicated allocation error-1 protection ○

1 Input duplicated allocation error-2 protection ○

2 Input function number error-1 protection ○

3 Input function number error-2 protection ○

4 Output function number error-1 protection ○

5 Output function number error-2 protection ○

8 Latch input allocation error protection ○

34 0 Motor operable range setting error protection ○ ○

1 One revolution absolute operable range error
protection

○ ○

36 0 to 1 EEPROM parameter error protection

37 0 to 2 EEPROM check code error protection

38 0 Over-travel inhibit input protection 1 ○

1 Over-travel inhibit input protection 2 ○

2 Over-travel inhibit input protection 3 ○

40 0 Absolute system failure protection ○ ○(Note 2)

41 0 Absolute counter limit excess protection ○

42 0 Absolute overspeed protection ○ ○(Note 2)

44 0 Single-turn counter error protection ○

45 0 Multi-turn counter error protection ○

47 0 Absolute status error protection ○

50 0 External scale wiring error protection ○

1 External scale communication error protection ○

2 External scale communication data error protection ○

51 0 External scale ST error protection 0 ○

1 External scale ST error protection 1 ○

13.2 RTEX communication error

WUME-GM1PGR-10 13-15

Error No. Alarm name Attribute

Main Sub History Can be
cleared

Emergency
stop(Note 6)

2 External scale ST error protection 2 ○

3 External scale ST error protection 3 ○

4 External scale ST error protection 4 ○

5 External scale ST error protection 5 ○

55 0 Phase-A wiring error protection ○

1 Phase-B wiring error protection ○

2 Phase-Z wiring error protection ○

70 0 Phase U current detector error protection ○

1 Phase W current detector error protection ○

72 0 Thermal relay error protection ○

80 3 PLL incomplete error protection ○ ○

82 0 RTEX node addressing error protection ○

83 0 RTEX continuous communication error protection 1 ○ ○ ○

1 RTEX continuous communication error protection 2 ○ ○ ○

84 0 RTEX Communication timeout error protection ○ ○ ○

3 RTEX communication synchronization error
protection

○

5 RTEX communication cycle error protection ○ ○ ○

85 0 Retracting operation completion (I/O)(Note 7) ○ (Note 8) ○

2 Retracting operation error(Note 7) ○ (Note 8) ○

86 0 RTEX cyclic data error protection 1 ○ ○ ○

1 RTEX cyclic data error protection 2 ○ ○ ○

2 RTEX update counter error protection ○ ○

87 0 Forced alarm input protection ○ ○

1 Retracting operation completion (I/O)(Note 7) ○ (Note 8) ○

3 Retracting operation error(Note 7) ○ (Note 8) ○

90 2 RTEX multi-axis synchronization establishment
error protection

○

91 1 RTEX command error protection ○ ○

3 RTEX command error protection 2 ○ ○

92 0 Encoder data restoration error protection ○

1 External scale data restoration error protection ○

3 Multi-turn data upper-limit value mismatch error
protection

○

93 0 Parameter setting error protection 1 ○

2 Parameter setting error protection 2 ○

13.2 RTEX communication error

13-16 WUME-GM1PGR-10

Error No. Alarm name Attribute

Main Sub History Can be
cleared

Emergency
stop(Note 6)

3 External scale connection error protection ○

5 Parameter setting error protection 4 ○

8 Parameter setting error protection 6 ○

94 2 Home return error protection ○ ○

3 Home return error protection 2 ○ ○

95 0 to 4 Motor automatic recognition error protection

96 2 Control unit error protection 1 ○

3 Control unit error protection 2 ○

4 Control unit error protection 3 ○

5 Control unit error protection 4 ○

6 Control unit error protection 5 ○

7 Control unit error protection 6 ○

98 1 RTEX hardware error protection 1 ○

2 RTEX hardware error protection 2 ○

3 RTEX hardware error protection 3 ○

Other numbers Other error protections - - -

(Note 1) When Err 16.0 “Over-load protection” occurs, it can be cleared approx. 10 seconds after it occurs. The
alarm clear command is received as is and clearing process takes place after it is ready to be cleared.

(Note 2) When Err 40.0 “Absolute system failure protection” or Err 42.0 ”Absolute overspeed protection” occurs,
the error cannot be cleared until absolute clear is performed.

(Note 3) When an alarm that cannot be cleared occurs, cycle the control power supply after removing the
cause of the error or use RTEX software reset command to clear the alarm.

(Note 4) When an alarm that can be cleared occurs, use RTEX communication or USB communication (setup
support software) to clear the alarm. Always clear the alarm while all axes are stopped and after
securing safety.

(Note 5) If the internal control circuit of the servo amplifier malfunctions due to excessive noise etc., the display
will be as shown below.

In such a case, immediately turn OFF the power.
(Note 6) Emergency stop refers to an alarm that is triggered if Pr 5.10 “Sequence at alarm” is set to 4 to 7 and

that causes an immediate stop. For details, refer to the instruction manual and other technical
references for the servo amplifier.

(Note 7) The alarm generated during retracting operation is switched by Pr 6.86 “Retreat operation alarm
setup” bit 15.

Example: When bit 15 = 0, Err 85.0 and Err 85.2 will occur (A5N compatible specification).
When bit 15 = 1, Err 87.1 and Err 87.3 will occur (A6B compatible specification).

(Note 8) Whether alarm can be cleared or not is determined by the setting (bit 0 or 2) of Pr 6.86.
Bit 0: Err 85.0 / Err 87.1 (Retracting operation completion (I/O)) alarm clear attribute

13.2 RTEX communication error

WUME-GM1PGR-10 13-17

Bit 2: Err 85.2 / Err 87.3 (Retracting operation error) alarm clear attribute; For either case, 0: Alarm
clear invalid, 1: Alarm clear valid

13.2.3 Warning Codes

■ WARNING_CODE (Union type)

Member Type Description

uiWarningCode UINT Warning code

tWarningCodeMember ALARM_WARNING_C
ODES

Main code and sub-code of the warning code

■ ALARM_WARNING_CODES (Structure)

Member Type Description

byMainCode BYTE Main alarm number code

bySubCode BYTE Sub alarm number code

■ General warnings

Warning
No.

(hexade
cimal)

Warning name Description Warning
latch

Output
setting

Warning
mask

Pr6.27
(Note 1)

Pr4.40 /
Pr4.41
(Note 2)

Pr6.38 /
Pr6.39

Correspond
ing bit
(Note 3)

A0 Overload
warning
Warning

Load factor is 85% or more of the
protection level.

○ 1 Pr6.38
bit7

A1 Over-
regeneration

warning

Regenerative load factor has
exceeded 85% of the protection level.

○ 2 Pr6.38
bit5

A2 Battery warning
(Note 4)

Battery voltage is 3.2 V or less. Latch fixed 3 Pr6.38
bit0

A3 Fan warning Fan has stopped for 1 second. ○ 4 Pr6.38
bit6

A4 Encoder
communication

warning

The number of successive encoder
communication errors has exceeded
the specified value.

○ 5 Pr6.38
bit4

A5 Encoder
overheat warning

The encoder temperature exceeds the
specified value.

○ 6 Pr6.38
bit3

A6 Oscillation
detection
warning

Oscillation state was detected. ○ 7 Pr6.38
bit13

13.2 RTEX communication error

13-18 WUME-GM1PGR-10

Warning
No.

(hexade
cimal)

Warning name Description Warning
latch

Output
setting

Warning
mask

Pr6.27
(Note 1)

Pr4.40 /
Pr4.41
(Note 2)

Pr6.38 /
Pr6.39

Correspond
ing bit
(Note 3)

A7 Lifetime
detection
warning

The remaining life expectancy of a
capacitor or a fan
dropped below the specified value.

Latch fixed 8 Pr6.38
bit2

A8 External scale
error warning

The external scale detected a warning. ○ 9 Pr6.38
bit8

A9 External scale
communication

warning

The number of successive external
scale communication errors has
exceeded the specified value.

○ 10 Pr6.38
bit14

AC Deterioration
diagnosis
warning
(Note 6)

Load characteristic estimated value or
torque command value at a constant
velocity has exceeded the set range.

○ 22 Pr6.39
bit7

■ Extended warning

Warning
No.

(hexade
cimal)

Warning name Description Warning
latch

Output
setting

Warning
mask

Pr6.27
(Note 1)

Pr4.40 /
Pr4.41
(Note 2)

Pr6.38 /
Pr6.39

Correspond
ing bit
(Note 3)

C0 RTEX continuous
communication
error warning

The number of successive errors (CRC
error) detected when reading the
received data sent to the local node
The number of successive errors (CRC
error) has exceeded the value set by
Pr 7.26 “RTEX continuous
communication error warning setup”.

○ 11 Pr6.38
bit9

C1 RTEX
accumulated

communication
error warning

The number of successive errors (CRC
error) detected when reading the
received data sent to the local node

has exceeded the value set by Pr 7.27
“RTEX accumulated communication
error warning setup”.

Latch fixed 12 Pr6.38
bit10

C2 RTEX_
Update_Counter

error warning

The Update_Counter was not updated
properly because the data
accumulated exceeded the count
value set by Pr 7.28
“RTEX_Update_Counter error warning
setup”.

Latch fixed 13 Pr6.38
bit11

C3 Main power OFF
warning

When Pr 7.14 “Main power OFF
warning detection time” was set to 10
to 1999, instantaneous power failure

○ 14 Pr6.38
bit12

13.2 RTEX communication error

WUME-GM1PGR-10 13-19

Warning
No.

(hexade
cimal)

Warning name Description Warning
latch

Output
setting

Warning
mask

Pr6.27
(Note 1)

Pr4.40 /
Pr4.41
(Note 2)

Pr6.38 /
Pr6.39

Correspond
ing bit
(Note 3)

that occurred between L1 and L3
exceeded the time set by Pr 7.14.

D2 PANATERM
command
execution
warning

While bit 0 of Pr 7.99 “RTEX function
enhancement setting 6” was set to 1
and RTEX communication was
established, an operation command
(test run, FFT, etc.) was executed by
the setup support software
“PANATERM”.

○ 30 Pr6.39
bit8

(Note 1) The symbol “○” marked in the “Warning latch” column indicates that it is possible to switch the mode
between non-latch mode (latch for 1 second) and latch mode by using Pr 6.27 ”Warning latch state
setup”. Only latch mode is available for the battery warning and the lifetime detection warning.

(Note 2) Select the warning output signal 1 (WARN 1) or warning output signal 2 (WARN 2) through Pr 4.40
“Warning output select 1” or Pr 4.41 “Warning output select 2”. When the set value is 0, all warnings
are ORed before being output. Do not use any settings other than the settings shown in the above
table.

(Note 3) Each warning detection can be disabled by Pr 6.38 “Warning mask setting” or Pr 6.39 “Warning mask
setting 2”. The corresponding bits are shown in the table. Set the bit to 1 to disable the warning
detection. For extended warning, warning detection can be disabled by parameter settings.
Also note that bit arrangements of these masks are different from those of general-purpose type
MINAS-A6 series.

(Note 4) When the single-turn absolute function is enabled, a battery alarm is not detected.
(Note 5) Warning can be cleared by alarm clear. If warning cause is not resolved yet, the warning is cleared

once, but a warning is issued again.
(Note 6) If bit 1 of Pr 6.97 “Function enhancement setup 3” is set to 0, it is disabled.

13.2 RTEX communication error

13-20 WUME-GM1PGR-10

13.3 List of AMP Parameters

13.3.1 Class 0: Basic Setting

Class No. Parameter name Unit Setting range

0

00 Rotational direction setup ─ 0 to 1

01 Control mode setup ─ 0 to 6

02 Real-time auto-gain tuning setup ─ 0 to 6

03 Selection of machine stiffness at
real-time auto-gain tuning ─ 0 to 31

04 Inertia ratio % 0 to 10000

08 Command pulse counts per one
motor revolution pulse 0 to 223

09 Numerator of electronic gear ─ 0 to 230

10 Denominator of electronic gear ─ 1 to 230

11 Number of output pulses per motor
rotation pulse/r 1 to 2097152

12 Reversal of pulse output logic /
output source selection ─ 0 to 3

13 1st torque limit % 0 to 500

14 Position deviation excess setup Command unit 0 to 230

15 Absolute encoder setup ─ 0 to 4

16 External regenerative resistor setup ─ 0 to 3

17 Load factor of external regenerative
resistor selection ─ 0 to 4

13.3.2 Class 1: Gain Adjustment

Class No. Parameter name Unit Setting range

1

00 1st gain of position loop 0.1/s 0 to 30000

01 1st gain of velocity loop 0.1 Hz 1 to 32767

02 1st time constant of velocity loop
integration 0.1 ms 1 to 10000

03 1st filter of speed detection ─ 0 to 5

04 1st time constant of torque filter 0.01 ms 0 to 2500

05 2nd gain of position loop 0.1/s 0 to 30000

06 2nd gain of velocity loop 0.1 Hz 1 to 32767

07 2nd time constant of velocity loop
integration 0.1 ms 1 to 10000

08 2nd filter of speed detection ─ 0 to 5

13.3 List of AMP Parameters

WUME-GM1PGR-10 13-21

Class No. Parameter name Unit Setting range

09 2nd time constant of torque filter 0.01 ms 0 to 2500

10 Velocity feed forward gain 0.1% 0 to 4000

11 Velocity feed forward gain 0.1% 0 to 4000

12 Velocity feed forward gain 0.01 ms 0 to 6400

13 Torque feed forward filter 0.01 ms 0 to 6400

14 2nd gain setup ─ 0 to 1

15 Mode of position control switching ─ 0 to 10

16 Delay time of position control
switching 0.1 ms 0 to 10000

17 Level of position control switching ─ 0 to 20000

18 Hysteresis at position control
switching ─ 0 to 20000

19 Position gain switching time 0.1 ms 0 to 10000

20 Mode of velocity control switching ─ 0 to 5

21 Delay time of velocity control
switching 0.1 ms 0 to 10000

22 Level of velocity control switching ─ 0 to 20000

23 Hysteresis at velocity control
switching ─ 0 to 20000

24 Mode of torque control switching ─ 0 to 3

25 Delay time of torque control
switching 0.1 ms 0 to 10000

26 Level of torque control switching ─ 0 to 20000

27 Hysteresis at torque control
switching ─ 0 to 20000

13.3.3 Class 2: Vibration Suppression Function

Class No. Parameter name Unit Setting range

2

00 Adaptive filter mode setup ─ 0 to 6

01 1st notch frequency Hz 50 to 5000

02 1st notch width selection ─ 0 to 20

03 1st notch depth selection ─ 0 to 99

04 2nd notch frequency Hz 50 to 5000

05 2nd notch width selection ─ 0 to 20

06 2nd notch depth selection ─ 0 to 99

07 3rd notch frequency Hz 50 to 5000

08 3rd notch width selection ─ 0 to 20

09 3rd notch depth selection ─ 0 to 99

13.3 List of AMP Parameters

13-22 WUME-GM1PGR-10

Class No. Parameter name Unit Setting range

10 4th notch frequency Hz 50 to 5000

11 4th notch width selection ─ 0 to 20

12 4th notch depth selection ─ 0 to 99

13 Selection of damping filter switching ─ 0 to 6

14 1st damping frequency 0.1 Hz 0 to 3000

15 1st damping filter setup 0.1 Hz 0 to 1500

16 2nd damping frequency 0.1 Hz 0 to 3000

17 2nd damping filter setup 0.1 Hz 0 to 1500

18 3rd damping frequency 0.1 Hz 0 to 3000

19 3rd damping filter setup 0.1 Hz 0 to 1500

20 4th damping frequency 0.1 Hz 0 to 3000

21 4th damping filter setup 0.1 Hz 0 to 1500

22 Command smoothing filter 0.1 ms 0 to 10000

23 Command FIR filter 0.1 ms 0 to 10000

24 5th notch frequency Hz 50 to 5000

25 5th notch width selection ─ 0 to 20

26 5th notch depth selection ─ 0 to 99

27 1st vibration control width setting ─ 0 to 1000

28 2nd vibration control width setting ─ 0 to 1000

29 3rd vibration control width setting ─ 0 to 1000

30 4th vibration control width setting ─ 0 to 1000

13.3.4 Class 3: Speed, Torque Control, Full-closed Control

Class No. Parameter name Unit Setting range

3

12 Acceleration time setting ms/(1000 r/min) 0 to 10000

13 Deceleration time setting ms/(1000 r/min) 0 to 10000

14 Sigmoid acceleration/
deceleration time setup ms 0 to 10000

17 Speed limit selection ─ 0 to 1

21 Speed limit value 1 r/min 0 to 20000

22 Speed limit value 2 r/min 0 to 20000

23 External scale selection ─ 0 to 6

24 External scale numerator
of division ─ 0 to 223

25 External scale
denominator of division ─ 1 to 223

13.3 List of AMP Parameters

WUME-GM1PGR-10 13-23

Class No. Parameter name Unit Setting range

26 External scale reversal of
direction ─ 0 to 3

27
External scale Z phase
disconnection detection
disable

─ 0 to 1

28 Hybrid deviation excess
protection Command unit 1 to 227

29 Hybrid deviation clear
setting Rotation 0 to 100

32
External scale movement
judgment threshold at
virtual full-closed control
mode

External scale unit 0 to 65534

13.3.5 Class 4: I/O Monitor Setting

Class No. Parameter name Unit Setting range

4

00 SI1 input selection ─ 0 to 00FFFFFFh

01 SI2 input selection ─ 0 to 00FFFFFFh

02 SI3 input selection ─ 0 to 00FFFFFFh

03 SI4 input selection ─ 0 to 00FFFFFFh

04 SI5 input selection ─ 0 to 00FFFFFFh

05 SI6 input selection ─ 0 to 00FFFFFFh

06 SI7 input selection ─ 0 to 00FFFFFFh

07 SI8 input selection ─ 0 to 00FFFFFFh

10 SO1 output selection ─ 0 to 00FFFFFFh

11 SO2 output selection ─ 0 to 00FFFFFFh

12 SO3 output selection ─ 0 to 00FFFFFFh

16 Type of analog monitor 1 ─ 0 to 28

17 Analog monitor 1 output gain ─ 0 to 214748364

18 Type of analog monitor 2 ─ 0 to 28

19 Analog monitor 2 output gain ─ 0 to 214748364

21 Analog monitor output setup ─ 0 to 2

31 Positioning complete range Command unit 0 to 2097152

32 Positioning complete (In-position)
output setup ─ 0 to 10

33 INP hold time ms 0 to 30000

34 Zero-speed r/min 10 to 20000

35 Speed coincidence range r/min 10 to 20000

36 At-speed (Speed arrival) r/min 10 to 20000

13.3 List of AMP Parameters

13-24 WUME-GM1PGR-10

Class No. Parameter name Unit Setting range

37 Mechanical brake action at stalling
setup ms 0 to 10000

38 Mechanical brake action at running
setup ms 0 to 32000

39 Brake release speed setup r/min 30 to 3000

40 Selection of alarm output 1 ─ 0 to 40

41 Selection of alarm output 2 ─ 0 to 40

42 2nd Positioning complete (In-
position) range Command unit 0 to 2097152

44 Position compare output pulse
width setting 0.1 ms 0 to 32767

45 Position compare output polarity
select ─ 0 to 7

47 Pulse output select ─ 0 to 1

48 Position compare value 1 Command unit -2147483648 to
2147483647

49 Position compare value 2 Command unit -2147483648 to
2147483647

50 Position compare value 3 Command unit -2147483648 to
2147483647

51 Position compare value 4 Command unit -2147483648 to
2147483647

52 Position compare value 5 Command unit -2147483648 to
2147483647

53 Position compare value 6 Command unit -2147483648 to
2147483647

54 Position compare value 7 Command unit -2147483648 to
2147483647

55 Position compare value 8 Command unit -2147483648 to
2147483647

56 Position compare output delay
compensation amount 0.1 us -32768 to 32767

57 Position compare output
assignment setting ─ -2147483648 to

2147483647

13.3.6 Class 5: Enhancing Setting

Class No. Parameter name Unit Setting range

5

03 Denominator of pulse
output division ─ 0 to 8388608

04 Over-travel inhibit input
setup ─ 0 to 2

05 Sequence at over-travel
inhibit ─ 0 to 2

13.3 List of AMP Parameters

WUME-GM1PGR-10 13-25

Class No. Parameter name Unit Setting range

06 Sequence at Servo-Off ─ 0 to 9

07 Sequence at main power
OFF ─ 0 to 9

08 LV trip selection at main
power OFF ─ 0 to 3

09 Detection time of main
power off ms 20 to 2000"13.3.9 Class 8:

Special Setting 3"

10 Sequence at alarm ─ 0 to 7

11 Torque setup for
emergency stop % 0 to 500

12 Over-load level setup % 0 to 500

13 Over-speed level setup r/min 0 to 20000

14 Motor working range
setup 0.1 revolution 0 to 1000

15 Control input signal read
setting ─ 0 to 3

20 Position setup unit select ─ 0 to 1

21 Selection of torque limit ─ 0 to 4

22 2nd torque limit % 0 to 500

23 Torque limit switching
setup 1 ms/100 % 0 to 4000

24 Torque limit switching
setup 2 ms/100 % 0 to 4000

25 Positive direction torque
limit % 0 to 500

26 Negative direction torque
limit % 0 to 500

31 USB axis address ─ 0 to 127

33 Pulse regenerative output
limit setup ─ 0 to 1

45
Quadrant projection
positive direction
compensation value

0.1% -1000 to 1000

46
Quadrant projection
negative direction
compensation value

0.1% -1000 to 1000

47 Quadrant projection
compensation delay time ms 0 to 1000

48
Quadrant projection
compensation filter setting
L

0.01 ms 0 to 6400

49
Quadrant projection
compensation filter setting
H

0.1 ms 0 to 10000

56 Slow stop deceleration
time setting ms/(1000 r/min) 0 to 10000

13.3 List of AMP Parameters

13-26 WUME-GM1PGR-10

Class No. Parameter name Unit Setting range

57
Slow stop S-shape
acceleration and
deceleration setting

ms 0 to 1000

66
Deterioration diagnosis
convergence judgment
time

0.1 s 0 to 10000

67 Deterioration diagnosis
inertia ratio upper limit % 0 to 10000

68 Deterioration diagnosis
inertia ratio lower limit % 0 to 10000

69
Deterioration diagnosis
unbalanced load upper
limit

0.1% -1000 to 1000

70
Deterioration diagnosis
unbalanced load lower
limit

0.1% -1000 to 1000

71
Deterioration diagnosis
dynamic friction upper
limit

0.1% -1000 to 1000

72 Deterioration diagnosis
dynamic friction lower limit 0.1% -1000 to 1000

73 Deterioration diagnosis
viscous friction upper limit 0.1%/ (10000 r/min) 0 to 10000

74 Deterioration diagnosis
viscous friction lower limit 0.1%/ (10000 r/min) 0 to 10000

75 Deterioration diagnosis
velocity setting r/min -20000 to 20000

76 Deterioration diagnosis
torque average time ms 0 to 10000

77 Deterioration diagnosis
torque upper limit 0.1% -1000 to 1000

78 Deterioration diagnosis
torque lower limit 0.1% -1000 to 1000

(Note 1) When using this setup value at a value smaller than the default value, confirm that it matches the
user’s power supply environment.

13.3.7 Class 6: Special Setting 1

Class No. Parameter name Unit Setting range

6

02 Speed deviation excess setup r/min 0 to 20000

05 Position control 3rd gain effective
time 0.1 ms 0 to 10000

06 Position control 3rd gain scale
factor % 50 to 1000

07 Additional value to torque command % -100 to 100

13.3 List of AMP Parameters

WUME-GM1PGR-10 13-27

Class No. Parameter name Unit Setting range

08 Torque compensation value in
positive direction % -100 to 100

09 Torque compensation value in
negative direction % -100 to 100

10 Function expansion setup ─ -32768 to 32767

11 Current response setup % 10 to 100

14 Immediate stop time at the time of
alarming ms 1000

15 2nd over-speed level setup r/min 0 to 20000

18 Power turn-on wait time 0.1 s 0 to 100

22 A, B phase external scale pulse
output method selection ─ 0 to 1

23 Load fluctuation correction gain % -100 to 100

24 Load fluctuation correction filter 0.01 ms 10 to 2500

27 Alarm latch time selection ─ 0 to 3

31 Real time auto tuning estimation
speed ─ 0 to 3

32 Real time auto tuning custom setup ─ -32768 to 32767

34 Hybrid vibration suppression gain ─ 0 to 30000

35 Hybrid vibration suppression filter 0.1/s 0 to 32000

36 Dynamic brake operation input
setup 0.01 ms 0 to 1

37 Oscillation detecting level ─ 0 to 1000

38 Alarm mask setup 0.1% -32768 to 32767

39 Alarm mask setup 2 ─ -32768 to 32767

41 1st damping depth ─ 0 to 1000

42 Two-stage torque filter time
constant ─ 0 to 2500

43 Two-stage torque filter damping
term 0.01 ms 0 to 1000

47 Function expansion settings 2 -32768 to 32767 -32768 to 32767

48 Adjustment filter 0 to 2000 0 to 2000

49
Command response filter /
adjustment filter damping term
setting

0 to 99 0 to 99

50 Viscous friction compensation gain 0.1%/ (10000 r/min) 0 to 10000

51 Immediate stop completion wait
time ms 0 to 10000

57 Torque saturation error protection
detection time ms 0 to 5000

60 2nd damping depth ─ 0 to 1000

61 1st resonance frequency 0.1 Hz 0 to 3000

13.3 List of AMP Parameters

13-28 WUME-GM1PGR-10

Class No. Parameter name Unit Setting range

62 1st resonance damping ratio ─ 0 to 1000

63 1st anti-resonance frequency 0.1 Hz 0 to 3000

64 1st anti-resonance damping ratio ─ 0 to 1000

65 1st response frequency 0.1 Hz 0 to 3000

66 2nd resonance frequency 0.1 Hz 0 to 3000

67 2nd resonance damping ratio ─ 0 to 1000

68 2nd anti-resonance frequency 0.1 Hz 0 to 3000

69 2nd anti-resonance damping ratio ─ 0 to 1000

70 2nd response frequency 0.1 Hz 0 to 3000

71 3rd damping depth ─ 0 to 1000

72 4th damping depth ─ 0 to 1000

73 Load estimation filter 0.01 ms 0 to 2500

74 Torque compensation frequency 1 0.1 Hz 0 to 5000

75 Torque compensation frequency 2 0.1 Hz 0 to 5000

76 Load estimation count ─ 0 to 8

85 Retracting operation condition
setting ─ -32768 to 32767

86 Retracting operation alarm setting ─ -32768 to 32767

88 Absolute multi-rotation data upper
limit ─ 0 to 65534

97 Function expansion setting 3 ─ -2147483648 to
2147483647

98 Function expansion setting 4 ─ -2147483648 to
2147483647

13.3.8 Class 7: Special Setting 2

Class No. Parameter name Unit Setting range

7

00 Display on LED ─ 0 to 32767

01 Display time setup upon power-up 100 ms -1 to 1000

03 Output setup during torque limit ─ 0 to 1

09 Correction time of latch delay 1 25 ns -2000 to 2000

10 Soft limit function ─ 0 to 3

11 Positive side software limit value Command unit -1073741823 to
1073741823

12 Negative side software limit value Command unit -1073741823 to
1073741823

13 Absolute home position offset Command unit -1073741823 to
1073741823

13.3 List of AMP Parameters

WUME-GM1PGR-10 13-29

Class No. Parameter name Unit Setting range

14 Main power OFF warning detection
time ms 0 to 2000

15 Positioning adjacent range Command unit 0 to 1073741823

16 Torque saturation error protection
frequency No. of times 0 to 30000

20 RTEX communication cycle setup ─ -1 to 12

21 RTEX command updating cycle
ratio setting ─ 1 to 2

22 RTEX function extended setup 1 ─ -32768 to 32767

23 RTEX function extended setup 2 ─ -32768 to 32767

24 RTEX function extended setup 3 ─ -32768 to 32767

25 RTEX speed unit setup ─ 0 to 1

26 RTEX continuous error warning
setup No. of times 0 to 32767

27 RTEX accumulated error warning
setup No. of times 0 to 32767

28 RTEX_Update_Counter error
warning setup No. of times 0 to 32767

29 RTEX monitor select 1 ─ 0 to 32767

30 RTEX monitor select 2 ─ 0 to 32767

31 RTEX monitor select 3 ─ 0 to 32767

32 RTEX monitor select 4 ─ 0 to 32767

33 RTEX monitor select 5 ─ 0 to 32767

34 RTEX monitor select 6 ─ 0 to 32767

35 RTEX command setting 1 ─ 0 to 2

36 RTEX command setting 2 ─ 0 to 2

37 RTEX command setting 3 ─ 0 to 2

38 RTEX_Update_Counter error
protection setup No. of times 0 to 32767

41 RTEX function extended setup 5 ─ -32768 to 32767

78 Signal reading setting for latch
trigger with stop function ─ 0 to 3

91 RTEX communication cycle
extended setup ns 0 to 2000000

92 Correction time of latch delay 2 25 ns -2000 to 2000

93 Home return limit speed r/min 0 to 20000

95
Number of RTEX continuous
communication error protection 1
detections

No. of times 0 to 17

96
Number of RTEX continuous
communication error protection 2
detections

No. of times 0 to 17

13.3 List of AMP Parameters

13-30 WUME-GM1PGR-10

Class No. Parameter name Unit Setting range

97 Number of RTEX communication
timeout error protection detections No. of times 0 to 17

98 Number of RTEX cyclic data error
protection 1 / 2 detections No. of times 0 to 17

99 RTEX function extended setup 6 ─ -32768 to 32767

108 RTEX communication
synchronization setup ─ 0 to 7

110 RTEX function extended setup 7 ─ -2147483648 to
2147483647

111 Trigger signal allocation setting of
latch mode with stop function ─ 0 to 64

112 Selection of RTEX communication
status flag ─ 0 to 1

13.3.9 Class 8: Special Setting 3

Class No. Parameter name Unit Setting range

8

01 Profile linear acceleration constant
10000 Command unit/s
２ 1 to 429496

04 Profile linear deceleration constant
10000 Command unit/s
２ 1 to 429496

10 Amount of travel after profile
position latch detection Command unit -1073741823 to

1073741823

12 Profile home return position mode
setup ─ 0 to 1

13 Profile home return velocity 1 Command unit/s or
r/min 0 to 2147483647

14 Profile home return velocity 2 Command unit/s or
r/min 0 to 2147483647

17 Relative movement of retracting
operation Command unit -2147483648 to

2147483647

18 Retracting operation speed Command unit/s or
r/min 0 to 2147483647

13.3 List of AMP Parameters

WUME-GM1PGR-10 13-31

13.4 Monitor Commands

These commands are specified with RTEX_ReadAmpData (amplifier monitor).

Type_Code
(Note 1) (Note 3)

Name Index
(Note 2)

Unit Description

A4N
comp
atible

Stand
ard

101h 01h Position deviation PERR 0
(1,2)

Command
unit

<In position control mode>
Position deviation
<In full-closed control mode>
External scale deviation
* The computation method (reference) of
position deviation and external scale
deviation is set in bit 14 of Pr 7.23
“Command position deviation output
switching”.

Pr7.23
bit14

Computation method of
positional deviation

0 Deviation from the
command after filtering

1 Deviation from the
command before filtering

<In speed / torque control mode>
Undefined
Note: Although the same data is returned
whether Index is 1 or 2, use Index = 0.

102h 02h Encoder
resolution

- 0 pulse/r Encoder resolution of the motor
connected

104h 04h Command
position
(after filtering)

MPOS 0 Command
unit

Command position (after filtering)

105h 05h Actual speed ASPD 0 Set the
unit

through
Pr 7.25.

Motor actual speed
* Set the unit through Pr 7.25 “RTEX
speed unit setup”.

Pr7.25 Unit

0 [r/min]

1 [Command unit/s]

106h 06h Internal
command torque

TRQ 0 0.1% Command torque to motor

- 07h Actual position APOS 0 Command
unit

Motor actual position
* Position of the external scale in full-
closed mode

- 08h Internal
command
position (before
filtering)

IPOS 0 Command
unit

Internal command position before filtering

13.4 Monitor Commands

13-32 WUME-GM1PGR-10

Type_Code
(Note 1) (Note 3)

Name Index
(Note 2)

Unit Description

A4N
comp
atible

Stand
ard

- 09h Latch position 1 LPOS1 0 Command
unit

Motor actual position latched in CH1

- 0Ah Latch position 2 LPOS2 0 Command
unit

Motor actual position latched in CH2

- 0Ch Command
velocity
(after filtering)

MSPD 0 Set the
unit

through
Pr 7.25.

Command velocity after filtering
* Set the unit through Pr 7.25 “RTEX
speed unit setup”.

Pr7.25 Unit

0 [r/min]

1 [Command unit/s]

* The value is undefined in torque control
mode.

- 0Dh External scale
position(Note 4)

EXPOS 0 Pulse
(External

scale)

External scale position

(Note 1) When a Type_Code error occurs, command error (0031h) will be returned.
Manufacturer will use a Type_Code not listed above.
When a Type_Code used by the manufacturer is set, undefined value will be returned in place of
command error (0031h).

(Note 2) When an Index error occurs, command error (0032h) will be returned.
(Note 3) A4N compatible: Type_Code compatible with A4N series can be used, but only with main commands.

Standard: Type_Code newly created for A5N and A5N series and can be used with both main
commands and subcommands. When using with main commands, set leftmost 4 bits to 0.
* Although the product supports the A4N compatible Typer_Code to maintain compatibility, basically
use the standard Type_Code.

(Note 4) The version before the function extended version 1 is not supported.

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

111h 11h Regenerative
load ratio

- 0 %
(Note 2)

Ratio of the regenerative overload
protection to the alarm occurrence level

112h 12h Overload ratio - 0 0.1% Ratio of the actual load to the rated motor
load

- 21h Logical input
signal

- 0 - Logic level of input signal

- 22h Logical output
signal

- 0 - Logic level of output signal

- 23h Logical input
signal

- 0 - Logic level of input signal (expansion
portion)

13.4 Monitor Commands

WUME-GM1PGR-10 13-33

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

(expansion
portion)

- 24h Logical output
signal
(expansion
portion)

- 0 - Logic level of output signal (expansion
portion)

- 25h Physical input
signal

- 0 - Physical level of input signal

- 26h Physical output
signal

- 0 - Physical level of output signal

131h 31h Inertia ratio - 0 % The ratio of load inertia to the motor’s
rotor inertia (equivalent of value in Pr
0.04) Inertia ratio
= (load inertia / rotor inertia) × 100

132h 32h Automatic motor
recognition

- 0 - 0: Invalid
1: Valid

133h 33h Cause of no
revolution

- 0 - The number which shows the cause that
the motor is not running.

134h 34h Warning flags - 0 - The flag that shows the state of the
waring currently occurring.
* The corresponding bit is set to 1 to
activate the flag (showing warning status).

- 37h Multiple alarm
occurrences
/Warning
information(Note 1)

- Refer to
Section
6-9-6.

- Information of all the alarms or warnings
currently occurring

201h 41h Mechanical angle
(Single turn data)

- 0 pulse The mechanical angle (one revolution
data of an absolute encoder) of the motor
* The polarity is fixed and data increases
at CCW rotation.

One revolution data = 0 to (Encoder
resolution - 1)

.

202h 42h Electrical angle - 0 0.7031° Motor electrical angle
* The polarity is fixed and data increases
at CCW rotation.

Electrical angle = 0 to 1FF [Hex]

- 43h Multi-turn data - 0 Turn Multi-turn data of the absolute encoder
* In the incremental mode (Pr 0.15 = 1),
multi-turn data becomes an indefinite
value.

- 44h Encoder
status(Note 1)

- 0 - The status of the encoder

- 47h Encoder pulse - 0 pulse The sum of encoder feedback pulses

13.4 Monitor Commands

13-34 WUME-GM1PGR-10

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

sum(Note 1)

- 48h External scale
pulse sum(Note 1)

- 0 Pulse
(External

scale)

The sum of external scale feedback
pulses

- 49h External scale
absolute
position(Note 1)

- 0 Pulse
(External

scale)

The absolute position of the external
scale

- 61h Power on
cumulative time

- - 30 min Cumulative on-time of control power to
the servo amplifier
* Because the power ON time is recored
in unit of 30 minutes, a turn-on period
shorter than 30 minutes is not recorded in
the cumulative on-time.
not recorded in the cumulative on-time.

(Note 1) The version before the function extended version 1 is not supported.
(Note 2) Be careful that the unit is different from that used for A4N and A5N. (A4N, A5N: [0.1%], A6N: [%])

* With the function extended version 3 or higher, the unit can be changed through bit 7 of Pr 7.99.
Pr7.99 bit7 0: [%], 1: [0.1%]

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

- 62h Servo amplifier
temperature

- - °C Temperature inside the servo amplifier

- 63h Encoder
temperature

- - °C Temperature inside the encoder
* Applicable only to 23-bit encoder. 0 for
unsupported encoder.

- 64h Number of inrush
resistance relay
operations

- - Cycle Operating cycles of inrush current
suppression resistor relay
* Saturation will occur at maximum value
of 40000000h.
* Because the power ON time is recored
in unit of 30 minutes, a turn-on period
shorter than 30 minutes is not recorded in
the cumulative cycles.

- 65h No. of dynamic
brake operations

- - Cycle Number of operations of dynamic brake
relay
* Saturation will occur at maximum value
of 40000000h.
* Because the power ON time is recored
in unit of 30 minutes, a turn-on period
shorter than 30 minutes is not recorded in
the cumulative time.

- 66h Fan operating
time

- - 30 min Operating time of cooling fan
* Because the power ON time is recored
in unit of 30 minutes, a turn-on period

13.4 Monitor Commands

WUME-GM1PGR-10 13-35

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

shorter than 30 minutes is not recorded in
the cumulative time.
* 0 when no fan is installed.

- 67h Fan
life expectancy

- - 0.1% Percent of fan life expectancy
* Because the power ON time is recored
in unit of 30 minutes, a turn-on period
shorter than 30 minutes is not recorded in
the cumulative time.
* 0 when no fan is installed.

- 68h Capacitor life
expectancy

- - 0.1% Percent of life expectancy of main power
source capacitor
* Because the power ON time is recored
in unit of 30 minutes, a turn-on period
shorter than 30 minutes is not recorded in
the cumulative time.

- 69h Voltage across
PN

- - V Main power source PN voltage

- 6Ch Consumed power
of motor
(Note 1)

- - W Momentary power consumption of the
motor

- 6Dh Motor power
consumption
(Note 1)

- - Wh Power consumption of the motor

- 6Eh Cumulative motor
power
consumption
(Note 1)

- - Wh Cumulative value of motor power
consumption

401h 71h RTEX
Cumulative
communication
errors

- 0 Cycle Cumulative number of RTEX
communication errors
* Saturation will occur at maximum value
of FFFFh.
The count will be cleared upon restarting
of servo amplifier or resetting of control
power source.

- 77h RTEX
UpdateCounter
cumulative error
count(Note 1)

- 0 Cycle Cumulative number of communication
errors of RTEX UpdateCounter
* Saturation will occur at maximum value
of 7FFFh.
The count will be cleared upon restarting
of servo amplifier or resetting of control
power source.

- 78h RTEX
communication
Cumulative
RTEX
communication
timeout
errors(Note 1)

- 0 Cycle Cumulative number of RTEX
communication data reception interruption
errors
* Saturation will occur at maximum value
of FFFFh.
The count will be cleared upon restarting
of servo amplifier or resetting of control
power source.

13.4 Monitor Commands

13-36 WUME-GM1PGR-10

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

411h 81h Encoder
cumulative
communication
errors

- 0 Cycle Cumulative number of communication
errors between encoders
* Saturation will occur at maximum value
of FFFFh.
The count will be cleared upon restarting
of servo amplifier or resetting of control
power source.

(Note 1) The version before the function extended version 1 is not supported.

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

413h 83h External scale
cumulative
communication

errors(Note 1)

- 0 Cycle Cumulative number of communication
errors between external scales
* Saturation will occur at maximum value
of FFFFh.
The count will be cleared upon restarting
of servo amplifier or resetting of control
power source.

- 84h External scale
abnormal
communication
data errors
(Note 1)

- 0 Cycle Cumulative number of communication
data errors in communication between
external scales
* Saturation will occur at maximum value
of FFFFh.
The count will be cleared upon restarting
of servo amplifier or resetting of control
power source.

- 85h For
manufacturer’s
use

- - - -

- 86h Hybrid position
deviation (Note 1)

- - Command
unit

Tolerance between encoder position and
external scale position

- 87h External scale
data(Note 1)

(Leftmost 24
bits)

- 0 Pulse
(External

scale)

Rightmost 24 bits of external scale data

- 88h External scale
data(Note 1)

(Rightmost 24
bits)

- 0 Pulse
(External

scale)

<Virtual full-close control mode function
disabled>
Leftmost 24 bits of external scale data is
output.
<Virtual full-close control mode function
enabled>
● When an AB-phase output type scale

is connected, position data (16 bits) is
output that is set to 0 when the power
is turned ON. Note that it is not
affected by Pr 3.26 Reversal of
direction.

13.4 Monitor Commands

WUME-GM1PGR-10 13-37

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

● When a serial incremental scale is
connected, position data (24 bits) of
the serial incremental scale is output.
Note that the data output is position
data affected by Pr 3.26 Reversal of
direction.

- 89h External scale
status(Note 1)

- 0 - Status of external scale

- A1h Velocity control
command
(Note 1)

- 0 Command
unit/s

Velocity control command

- A5h Internal position
command
speed(Note 1)

- 0 Command
unit/s

Internal position command speed

- A6h Speed
deviation(Note 3)

- 0 Command
unit/s

Speed deviation

- A8h Positive direction
torque limit
value(Note 1)

- 0 0.05% Positive direction torque limit value

- A9h Negative
direction torque
limit (Note 1)

- 0 0.05% Negative direction torque limit value

- AAh Speed limit value
(Note 1)

- 0 Command
unit/s

Speed limit value

- ABh Gain switching
flag (Note 1)

- 0 - Gain switching flag

- B1h Deterioration
diagnosis state
(Note 1)

- 0 - Deterioration diagnosis state

- B2h Deterioration
diagnosis torque
average time
(Note 1)

- 0 0.1%
(Note 2)

Deterioration diagnosis torque command
average time

- B3h Deterioration
diagnosis torque
command
standard value
(Note 3)

- 0 0.1% Deterioration diagnosis torque command
standard value

- B4h Deterioration
diagnosis inertia
ratio
estimate(Note 1)

- 0 % Deterioration diagnosis inertia ratio
estimate

(Note 1) The version before the function extended version 1 is not supported.
(Note 2) Be careful that the unit is different from the one of the data displayed on the setup support software

(PANATERM).

13.4 Monitor Commands

13-38 WUME-GM1PGR-10

(Note 3) The version before the function extended version 2 is not supported.

Type_Code Name Index Unit Description

A4N
comp
atible

Stand
ard

- B5h Deterioration
diagnosis
unbalanced load
estimate
(Note 1)

- 0 0.1% *2) Deterioration diagnosis unbalanced load
estimate

- B6h Deterioration
diagnosis
unbalanced load
estimate
(Note 1)

- 0 0.1% *2) Deterioration diagnosis unbalanced load
estimate

- B7h Deterioration
diagnosis
unbalanced load
estimate
(Note 1)

- 0 0.1%/
(10000 r/

min)
*2)

Deterioration diagnosis unbalanced load
estimate

- FAh Monitor flag (Note

1)
- 0 - Various flag information of the servo

amplifier
The contents of Monitor_Data, the
response data, are as follows.

Byte bit Description

12, 20 7 to 0 For manufacturer’s
use

13, 21 7 to 0 For manufacturer’s
use

14, 22 7 to 6 For manufacturer’s
use

5 Semi-closed / full-
closed selection state

0: Semi-closed
1: Full-closed

4 Incremental / absolute
selection state

0: Incremental mode
1: Absolute mode

3 to 0 For manufacturer’s
use

15, 23 7 to 0 For manufacturer’s
use

(Note 1) The version before the function extended version 2 is not supported.

13.4 Monitor Commands

WUME-GM1PGR-10 13-39

(MEMO)

13-40 WUME-GM1PGR-10

Revision History

The manual code is shown at the bottom of the cover page.

Date of issue Manual No. Revision details

February 2021 WUME-GM1PGR-01 1st edition

August 2021 WUME-GM1PGR-02

2nd Edition
Added instructions related to EtherCAT.
Changed PMC_ReadLatchPosition parameters.
Added instructions related to PID control.
Added instructions related to the GM1 Pulse Output Unit.

March 2022 WUME-GM1PGR-03

3rd Edition
Clerical corrections
Added function block argument for pulse output unit
● Added switching of P-point / E-point control for

positioning control
● Added specification of creep speed to home return

April 2022 WUME-GM1PGR-04
4th Edition
● Changed the company name.

June 2022 WUME-GM1PGR-05

5th Edition
● Added new instructions related to CNC control.
● Added instructions related to motor setting changes.
● Added instructions related to recipe manager

functions.
● Added description of ladder instruction execution box.
● Clerical corrections

August 2023 WUME-GM1PGR-06

6th Edition
● Added a description of instructions on single axis

control.
● Added new direct commands and buffer mode to

single axis control.
● Added new instructions related to cam synchronous

control.
● Added new instructions related to CNC control.
● Added new function for clearing system error.

November 2023 WUME-GM1PGR-07

7th Edition
● Made changes associated with provision for RTEX

maximum 32 axes.
● Added new instructions related to EtherCAT

communication control.
● Added new instructions related to EtherCAT slave

enable/disable setting.
● Added new instructions related to MQTT client.
● Added new instructions related to DNS client.
● Added new instructions related to SNTP client.
● Added new instructions related to CSV file operation.
● Added new instructions related to project management

functions.
● Added descriptions on the axis structure.

April 2024 WUME-GM1PGR-08
8th Edition
● Updated description of instructions related to COM

port (general-purpose communication).

WUME-GM1PGR-10

Date of issue Manual No. Revision details
● Updated description of instructions related to LAN port

(MQTT, general-purpose communication).
● Updated description of instructions related to SD card

operation (CSV file operation, file operation).
● Updated description of instructions related to function

blocks for the pulse output unit.
● Updated description of instructions related to motion

control function blocks (single axis control,
synchronous control, CNC control).

● Clerical corrections

August 2024 WUME-GM1PGR-09

9th Edition
● Added new instructions related to CNC control.
● Added new instructions related to serial

communication unit.
● Clerical corrections

May 2025 WUME-GM1PGR-10

10th Edition
● Corrected errors.

• Update of instructions not available for motion
control

• Correction of SMC_FollowVelocity support status
• Description of hDir in FILE.DirList, path notation for

sDirName
• Description of Override of SMC_Interpolator
• Description of F_TRIG
• Description of MC_CAM_REF
• Description of axis structure velocity information

● Addition of description
• Execution rules for buffer mode
• SMC_GetCamSlaveSetPosition (Calculate

Condition for Slave Synchronization Start)
• Sample example: Read the POT/NOT signal of the

servo amplifier and forcibly stop it.
• Supplementary explanation when executing FB for

pulse output unit

WUME-GM1PGR-10

(MEMO)

WUME-GM1PGR-10

© Panasonic Industry Co., Ltd 2021-2025
WUME-GM1PGR-10

	Cover
	Introduction
	Types of Manuals
	Copyright / Trademarks
	Table of Contents
	1 List of Instructions
	1.1 List of Ladder Instructions
	1.2 List of Function Instructions
	1.3 List of Function Block Instructions
	1.3.1 Basic Instructions
	1.3.2 Motion Control Function Blocks (Single Axis Control)
	1.3.3 Motion Control Function Blocks (Synchronous Control)
	1.3.4 Motion Control Function Blocks (Interpolation Control)
	1.3.5 Motion Control Function Blocks (CNC Control)
	1.3.6 Motion Control Function Blocks (Motion Communication Control)
	1.3.7 Motion Control Function Blocks (Auxiliary Function)
	1.3.8 Function Blocks (Others)
	1.3.9 Function Blocks (For the GM1 Expansion Unit)

	1.4 List of Function Block Instructions that Cannot Be Used with the GM1

	2 Ladder Instructions
	2.1 Ladder Instructions
	2.1.1 NO Contact
	2.1.2 NC Contact
	2.1.3 Rising Edge Detection Contact
	2.1.4 Falling Edge Detection Contact
	2.1.5 Parallel NO Contact
	2.1.6 Parallel NC Contact
	2.1.7 Coil
	2.1.8 Negated Coil
	2.1.9 Set Coil
	2.1.10 Reset Coil
	2.1.11 Execute Box

	3 Functions
	3.1 Basic Instructions
	3.1.1 MOVE (Substitution)
	3.1.2 SIZEOF (Get the Size)
	3.1.3 ADR (Get the Address)

	3.2 Arithmetic Operation Instructions
	3.2.1 ADD (Addition)
	3.2.2 SUB (Subtraction)
	3.2.3 MUL (Multiplication)
	3.2.4 DIV (Division)
	3.2.5 MOD (Remainder)

	3.3 Boolean Operation Instructions
	3.3.1 AND (Logical AND)
	3.3.2 OR (Logical OR)
	3.3.3 NOT (Negation)
	3.3.4 XOR (Exclusive OR)
	3.3.5 AND_THEN (Logical AND)
	3.3.6 OR_ELSE (Logical OR)

	3.4 Comparison Operation Instructions
	3.4.1 EQ (“Equal” Comparison)
	3.4.2 NE (“Not Equal” Comparison)
	3.4.3 LT (“Less Than” Comparison)
	3.4.4 LE (“Less Than or Equal” Comparison)
	3.4.5 GT (“Greater Than” Comparison)
	3.4.6 GE (“Greater Than Or Equal” Comparison)

	3.5 Bit Shift Instructions
	3.5.1 SHL (Shift Left)
	3.5.2 SHR (Shift Right)
	3.5.3 ROL (Rotate Left)
	3.5.4 ROR (Rotate Right)

	3.6 Numerical Operation Instructions
	3.6.1 ABS (Absolute Value)
	3.6.2 SQRT (Square Root)
	3.6.3 LN (Natural Logarithm)
	3.6.4 LOG (Common Logarithm)
	3.6.5 EXP (Natural Exponent)
	3.6.6 EXPT (Exponentiation)
	3.6.7 SIN (Trigonometric Function Sine)
	3.6.8 COS (Trigonometric Function Cosine)
	3.6.9 TAN (Trigonometric Function Tangent)
	3.6.10 ASIN (Trigonometric Function Arc Sine)
	3.6.11 ACOS (Trigonometric Function Arc Cosine)
	3.6.12 ATAN (Trigonometric Function Arc Tangent)
	3.6.13 Triangular function operator constant

	3.7 Data Type Conversion Instructions
	3.7.1 Type 1_TO_Type 2 (Type 1>Type 2 Conversion)
	3.7.2 TRUNC (Real Number to DINT Conversion)
	3.7.3 TRUNC_INT (Real Number to INT Conversion)
	3.7.4 BCD_TO_** (BCD to Binary Conversion)
	3.7.5 **_TO_BCD (Binary to BCD Conversion)
	3.7.6 GRAY_TO_** (Gray Code to Binary Conversion)
	3.7.7 **_TO_GRAY (Binary to Gray Code Conversion)
	3.7.8 BYTE_TO_HEXinASCII (Binary to ASCII Conversion)
	3.7.9 HEXinASCII_TO_BYTE (ASCII to Binary Conversion)
	3.7.10 MEM.Decode (4BYTE to DWORD Conversion)
	3.7.11 MEM.Encode (DWORD to 4BYTE Conversion)
	3.7.12 MEM.PackArrayOfBoolToArrayOfByte (BOOL Array to BYTE Conversion)
	3.7.13 MEM.PackBitsTo**(Bit Data to BYTE/WORD/DWORD Conversion)
	3.7.14 MEM.PackBytesTo**(BYTE to WORD/DWORD Conversion)
	3.7.15 MEM.PackWordsToDword (WORD to DWORD Conversion)
	3.7.16 MEM.UnpackArrayOfByte (BYTE to BOOL Array Conversion)

	3.8 Bit operation instructions
	3.8.1 EXTRACT (Bit Extraction)
	3.8.2 PUTBIT (Bit Change)
	3.8.3 SWITCHBIT (Bit Inversion)
	3.8.4 MEMUtils.BitCpy (Bit Copying)
	3.8.5 MEM.ReverseBitsIn** (Bit Order Change)

	3.9 Memory operation instructions
	3.9.1 SEL (Binary Selector)
	3.9.2 MUX (Multiplexer)
	3.9.3 LIMIT (Limiter)
	3.9.4 MAX (Maximum Value)
	3.9.5 MIN (Minimum Value)
	3.9.6 MEMUtils.Swap (Byte Swapping)
	3.9.7 MEM.Compare (Memory Comparison)
	3.9.8 MEM.FindBlock(Memory block search)
	3.9.9 MEM.FindByte (Find Byte Data)
	3.9.10 MEM.MemFill (Memory Fill)
	3.9.11 MEM.MemMove (Memory Copying)
	3.9.12 MEM.High** (High Byte/High WORD Extraction)
	3.9.13 MEM.Low** (Low Byte/Low WORD Extraction)
	3.9.14 MEM.ReverseBYTEsIn** (Byte Order Change)
	3.9.15 MEM.ReverseWORDsInDWORD (WORD Order Change)

	3.10 Character string instructions
	3.10.1 LEN/WLEN (string length)
	3.10.2 LEFT/WLEFT (extract text from left edge)
	3.10.3 RIGHT/WRIGHT (Extract text from the right end)
	3.10.4 MID/WMID (extract string from specified position)
	3.10.5 CONCAT/WCONCAT (string concatenation)
	3.10.6 INSERT/WINSERT (Inserting a Character String)
	3.10.7 DELETE/WDELETE (delete string)
	3.10.8 REPLACE/WREPLACE (replace string)
	3.10.9 FIND/WFIND (find text)
	3.10.10 ConvertUTF16toUTF8 (UTF-16 → UTF-8)
	3.10.11 ConvertUTF8toUTF16(UTF-8 → UTF-16)

	3.11 SD Memory Card Slot Instruction
	3.11.1 SYS_GetSDCoverState (Get SD Card Cover Open / Close State)
	3.11.2 SYS_GetSDAccessRdy (Get SD Card Access Ready State)

	3.12 CRC operation instructions
	3.12.1 MEM.CRC16_standard (CRC16)
	3.12.2 MEM.CRC32(CRC32)

	3.13 System Time Instructions
	3.13.1 SysTimeGetMs(Get System Time in units of milliseconds)
	3.13.2 SysTimeGetUs(Get System Time in units of microseconds)
	3.13.3 SysTimeGetNs(Get System Time in units of nanoseconds)

	4 Function Blocks (Basic Instructions)
	4.1 Timer Instructions
	4.1.1 TON (Timer ON)
	4.1.2 TOF (Timer OFF)
	4.1.3 TP (Timer Pulse)
	4.1.4 RTC (Realtime Clock)

	4.2 Counter Instructions
	4.2.1 CTU (Up Counter)
	4.2.2 CTD (Down Counter)
	4.2.3 CTUD (Up-down Counter)

	4.3 Edge Detection Instructions
	4.3.1 R_TRIG (Rising Edge Detection)
	4.3.2 F_TRIG (Falling Edge Detection)

	4.4 Bistable Circuit Instructions
	4.4.1 SR (Set-priority Bistable Circuit)
	4.4.2 RS (Reset-priority Bistable Circuit)

	4.5 Data Type Conversion Instructions
	4.5.1 MEM.Unpack** (BYTE/WORD/DWORD to Bit Data Conversion)

	4.6 Data manipulation instructions
	4.6.1 LIN_TRAFO (linear conversion)
	4.6.2 STATISTICS_REAL (maximum, minimum, and average input values)
	4.6.3 LIMITALARM (Monitoring of input values)

	4.7 Other instructions
	4.7.1 BLINK (output of blinking signal)

	5 Motion Control Function Blocks (Single Axis Control)
	5.1 Servo ON
	5.1.1 MC_Power (motion readiness)

	5.2 Home Return
	5.2.1 PMC_Home (Home Return)
	5.2.2 MC_Home (Home Return)

	5.3 Control Switch
	5.3.1 SMC_SetControllerMode (Control Mode Setting)

	5.4 Stop
	5.4.1 MC_Stop (Forced Stop)
	5.4.2 MC_Halt (Halt)
	5.4.3 Example: Stop

	5.5 JOG / Inching
	5.5.1 MC_Jog (Jogging)
	5.5.2 SMC_Inch (Inching)
	5.5.3 Example: JOG Operation

	5.6 Position Control
	5.6.1 MC_MoveAbsolute (Absolute Value Positioning)
	5.6.2 MC_MoveRelative (Relative Value Positioning)
	5.6.3 MC_MoveAdditive (Target Position Change)
	5.6.4 MC_MoveSuperImposed (Superimposed positioning)
	5.6.5 MC_PositionProfile (Position Profile Move)
	5.6.6 Default Setting for Variables of the MC_TP_REF Type Structure
	5.6.7 SMC_MoveContinuousAbsolute (Absolute Value Position Velocity Move)
	5.6.8 SMC_MoveContinuousRelative (Relative Value Position Velocity Move)
	5.6.9 Example: Absolute Positioning, Relative Positioning
	5.6.10 Example: Target Position Change

	5.7 Velocity Control
	5.7.1 MC_MoveVelocity (Velocity Control)
	5.7.2 MC_VelocityProfile (Velocity Profile Movement)
	5.7.3 MC_AccelerationProfile (Acceleration Profile Movement)
	5.7.4 Example: Speed Control

	5.8 Torque Control
	5.8.1 PMC_SetTorque (Torque Control)
	5.8.2 SMC_SetTorque (Torque Control)
	5.8.3 Example: Torque Control

	5.9 Direct commands
	5.9.1 SMC_FollowPosition (Target Position Command at Every Interval)
	5.9.2 SMC_FollowVelocity (Target Velocity Command at Every Interval)

	5.10 Buffer Mode
	5.10.1 Buffer Mode Execution Rules
	5.10.2 MC_BUFFER_MODE (Enumeration type)
	5.10.3 Usage Example of Buffer Mode

	5.11 Axis Structure

	6 Motion Control Function Blocks (Synchronous Control)
	6.1 Gear Operation
	6.1.1 MC_GearIn (Start Gear Operation)
	6.1.2 MC_GearInPos (Position Specified Gear Operation)
	6.1.3 MC_GearOut (Cancel Gear Operation)
	6.1.4 Example: Gear Synchronization

	6.2 Cam Synchronous Control
	6.2.1 Overview of Cam Synchronous Control
	6.2.2 MC_CAM_REF (Cam Profile)
	6.2.3 MC_CamTableSelect (Select Cam Profile)
	6.2.4 MC_CamIn (Start Cam Synchronization)
	6.2.5 MC_CamOut (Cancel Cam Synchronization)
	6.2.6 SMC_GetTappetValue (Get Single Tappet Information)
	6.2.7 SMC_CamRegister (Get All Tappet Information)
	6.2.8 SMC_CAMBounds (Calculate Maximum/Minimum Parameters of Slave)
	6.2.9 SMC_GetCamSlaveSetPosition (Calculate Condition for Slave Synchronization Start)
	6.2.10 Sample Example: Allow Different MC_CAM_REF Profiles to Work
	6.2.11 Sample Example: Adjust Phase of Cam Control Using MC_Phasing
	6.2.12 Sample Example: Create MC_CAM_REF by POU
	6.2.13 Sample Example: Create MC_CAM_REF Using Recipe Function

	6.3 Phase Correction
	6.3.1 MC_Phasing (Master Axis Phase Correction)

	7 Motion Control Function Blocks (Interpolation Control)
	7.1 Interpolation Control
	7.1.1 PMC_Interpolator2D (2-axis Interpolation Control)
	7.1.2 PMC_Interpolator3D (3-axis Interpolation Control)
	7.1.3 PMC_NCDecoder (CNC Table Conversion)

	8 Motion Control Function Blocks (CNC Control)
	8.1 Overview of CNC Control and How to Use It
	8.2 CNC Data Decoding
	8.2.1 SMC_NCDecoder (CNC Program Conversion)
	8.2.2 SMC_ReadNCFile2 (Read CNC File)
	8.2.3 SMC_NCInterpreter (Convert CNC File)
	8.2.4 SMC_GEOINFO (CNC Executable Format Data)

	8.3 Pre-processing after decoding
	8.3.1 SMC_CheckVelocities (Check Angle between Paths)
	8.3.2 SMC_SmoothPath (path smoothing)
	8.3.3 SMC_RoundPath (Arc correction between paths)
	8.3.4 SMC_ToolRadiusCorr (Tool Radius Correction for Path)

	8.4 Control calculation
	8.4.1 SMC_Interpolator (CNC Control Operation)
	8.4.2 SMC_GetMParameters (Get M-code Parameters)
	8.4.3 SMC_PreAcknowledgeMFunction (Deactivate M-code)

	8.5 Control command & kinematics conversion
	8.5.1 SMC_ControlAxisByPos (Axis Position Control)
	8.5.2 SMC_ToolLengthCorr (Tool Length Correction)
	8.5.3 SMC_TRAFO_Polar (Conversion from Two-dimensional (X, Y) Coordinates to Polar Coordinates)
	8.5.4 SMC_TRAFOF_Polar (Conversion from Polar Coordinates to Two-dimensional (X, Y) Coordinates)
	8.5.5 SMC_TRAFO_Bipod_Arm (Bipod robot hand XY coordinates → conversion of each axis position)
	8.5.6 SMC_TRAFO_Gantry2 (Convert XY Gantry Coordinates to Positions of Axes)
	8.5.7 SMC_TRAFOF_Gantry2 (Conversion Positions of Axes -> XY Gantry Coordinates)
	8.5.8 SMC_TRAFO_Gantry3 (Convert XYZ Gantry Coordinates to Positions of Axes)
	8.5.9 SMC_TRAFOF_Gantry3 (Conversion Positions of Axes -> XYZ Gantry Coordinates)
	8.5.10 SMC_TRAFO_GantryCutter2 (Convert XY Gantry Coordinates with Tool rotation to Positions of Axes)
	8.5.11 SMC_TRAFO_GantryCutter3 (Convert XYZ Gantry Coordinates with Tool rotation to Positions of Axes)
	8.5.12 SMC_TRAFO_Scara2 (Conversion from Hand Coordinates of a 2-link SCARA Robot to Angle Information of Each Axis Motor)
	8.5.13 SMC_TRAFO_Scara3 (Conversion from Hand Coordinates of a 3-link SCARA Robot to Angle Information of Each Axis Motor)
	8.5.14 SMC_TRAFOF_Scara2 (Conversion from Angle Information of Each Axis Motor to Hand Coordinates of a 2-link SCARA Robot)
	8.5.15 SMC_TRAFOF_Scara3 (Conversion from Angle Information of Each Axis Motor to Hand Coordinates of a 3-link SCARA Robot)

	8.6 CNC Program Operation and Setting Method
	8.6.1 CNC Editor and Coding Rules
	8.6.2 List of G-codes
	8.6.3 G00, G01: Linear Interpolation
	 Setting rules for linear interpolation
	 Example: 2-axis linear interpolation
	 Example: 3-axis linear interpolation

	8.6.4 G02, G03: Circular Interpolation
	 Setting rules for circular interpolation
	 Example: Circular interpolation
	 Example: Helical interpolation

	8.6.5 G04: Dwell Time
	 Setting rules for dwell time
	 Example: Dwell time setting

	8.6.6 G05, G10: Spline Interpolation
	 Setting rules for spline interpolation
	 Example: Spline interpolation

	8.6.7 G08, G09: Elliptic Interpolation
	 Setting rules for elliptic interpolation
	 Example: Elliptic interpolation

	8.6.8 G15, G16, G17, G18, G19: Plane Specification
	 Setting rules for plane selection
	 Example: Plane specification

	8.6.9 G20, G36, G37: Jump and Loop Process
	 Setting rules for jump
	 Example: Loop Process with a conditional jump
	 Example: Loop Process Using Variable
	 Example: Repeated processing by jump label
	 Example: Conditional branching by jump label

	8.6.10 G40, G41, G42: Tool Radius Correction for Path
	 Rules for Tool Radius Correction
	 Example: Tool radius correction in XY plane
	 Example: Change of corrected plane

	8.6.11 G43: Tool Length Correction
	 Rules for Tool Length Correction
	 Example: Tool length correction in z-axis direction
	 Example: Tool length correction during coordinate conversion
	 Example: Combined use of timing synchronization by G75 and tool correction

	8.6.12 G50, G51, G52: Path Smoothing
	 Setting rules for smoothing
	 Example: Smoothing by SMC_SmoothPath
	 Example: Arc correction by SMC_RoundPath

	8.6.13 G53, G54, G55, G56: Coordinate Conversion
	 Setting rules for coordinate conversion resetting
	 Setting rules for absolute coordinate conversion
	 Setting rules for relative coordinate conversion
	 Setting rules for Coordinate reference point resetting
	 Example: Absolute coordinate conversion
	 Example: Absolute coordinate conversion and relative coordinate conversion
	 Example: Absolute coordinate conversion and coordinate conversion resetting
	 Example: Coordinate conversion combination
	 Settings for coordinate reference point resetting
	 Confirmation items on coordinate conversion

	8.6.14 G75: Timing Synchronization
	 Setting rules for timing synchronization
	 Example: Settings for timing synchronization

	8.6.15 G90, G91: Coordinate Specification
	 Setting rules for coordinate specification
	 Example: Absolute coordinates specification
	 Example: Relative coordinates specification

	8.6.16 G92: Start position specification
	 Setting rules for start position specification
	 Example: Setting start position

	8.6.17 G98, G99: Circular arc coordinate specification
	 Setting rules for coordinate specification
	 Example: Circular arc relative coordinate specification
	 Example: Circular arc absolute coordinate specification

	8.6.18 M-code
	 Setting rules for M-code
	 Example: Updating variables

	8.6.19 H-Switch
	 Setting rules for H-switch
	 Example: Specifying relative position in travel path
	 Example: Specifying travel distance

	8.6.20 CNC Program File
	 Coding rules for CNC program files
	 Use of variables in CNC program files
	 Operators and functions
	 Notes on the use of CNC program files

	8.7 Example of Use of CNC Control
	8.7.1 Example of USE: Specifying Starting Coordinates
	8.7.2 Example of Use: C-point Control and P-point Control
	8.7.3 Example of Use: Repeating Processes
	8.7.4 Example of use: Pre-processing and tool correction

	9 Motion Control Function Blocks (Motion Communication Control)
	9.1 RTEX/EtherCAT Common
	9.1.1 SetCommunicationState (Set Device Communication State)
	9.1.2 CheckSupportedCommunicationState (Check if Device Provides Communication State Setting)
	9.1.3 CheckCurrentSupportedCommunicationState (Check if Device in Current State Provides Communication State Setting)

	9.2 RTEX
	9.2.1 Types of Data To Be Handled by AMP Function Blocks
	9.2.2 RTEX_ClearAmpAlarm (Clear Amplifier Alarm)
	9.2.3 RTEX_ReadAmpAlarm (Read Amplifier Alarm)
	9.2.4 RTEX_ReadAmpState (Amplifier Alarm Status)
	9.2.5 RTEX_ReadAmpData (Amplifier Monitor)
	9.2.6 RTEX_ReadAmpParameter (Read Amplifier Parameter)
	9.2.7 RTEX_WriteAmpParameter (Write Amplifier Parameter)
	9.2.8 RTEX_WriteAmpEEPROM (Write Amplifier EEPROM)
	9.2.9 RTEX_Reset (Reset RTEX)
	9.2.10 RTEX_ClearAmpMultiTurnData (Clear Amplifier Multi-turn Data)
	9.2.11 RTEX_ClearAmpPositionalDeviation (Clear Amplifier Deviation Counter)
	9.2.12 RTEX_GetTrackingCommandError (Read RTEX Command Send Statistics Information)
	9.2.13 RTEX_ReadPot (Read POT of Amplifier)
	9.2.14 RTEX_ReadNot (Read NOT of Amplifier)
	9.2.15 Sample example: Read the POT/NOT signal of the servo amplifier and forcibly stop it.

	9.3 EtherCAT
	9.3.1 ETC_CO_SdoRead (Read Slave Parameter)
	9.3.2 ETC_CO_SdoRead4 (Read Four Bytes of Slave Parameter)
	9.3.3 ETC_CO_SdoReadDWord (Read Double Word of Slave Parameter)
	9.3.4 ETC_CO_SdoRead_Access (Read Slave Parameter Index)
	9.3.5 ETC_CO_SdoRead_Channel (Read Priority Specification of Slave Parameter)
	9.3.6 ETC_CO_SdoWrite (Write Slave Parameter)
	9.3.7 ETC_CO_SdoWrite4 (Write Four Bytes of Slave Parameter)
	9.3.8 ETC_CO_SdoWriteDWord (Write Double Words of Slave Parameter)
	9.3.9 ETC_CO_SdoWrite_Access (Write Slave Parameter Index)
	9.3.10 ReadIdentification (Read Slave Identification Data)
	9.3.11 ReadMemory (Read Slave Memory)
	9.3.12 ReadNbrSlaves (Read the Number of Connected Slaves)
	9.3.13 WriteMemory (Write Slave Memory)
	9.3.14 PETC_ClearAmpPositionalDeviation (Clear Amplifier Deviation Counter)

	9.4 EtherCAT Master/Slave
	9.4.1 EtherCAT Master/Slave Communication Control and Monitoring
	9.4.2 IoDrvEtherCAT (Control EtherCAT Master Communication)
	9.4.3 IoDrvEtherCAT.GetStatistics (Get EtherCAT Communication Statistics Information)
	9.4.4 IoDrvEtherCAT.ClearStatistics (Clear EtherCAT Communication Statistics Information)
	9.4.5 ETCSlave (Control EtherCAT Slave Communication)
	9.4.6 Sample Example: Process for Monitoring EtherCAT Master Communication
	9.4.7 Sample Example: Process for Monitoring EtherCAT Slave Communication
	9.4.8 Sample Example: Stop/Restart EtherCAT Master Communication

	10 Motion Control Function Blocks (Auxiliary Function)
	10.1 Motion Auxiliary Function (Monitoring)
	10.1.1 MC_ReadActualPosition (Read Current Position)
	10.1.2 MC_ReadActualVelocity (Read Current Velocity)
	10.1.3 PMC_ReadActualTorque (Read Current Torque)
	10.1.4 MC_ReadActualTorque (Read Current Torque)
	10.1.5 MC_ReadAxisError (Read Axis Error)
	10.1.6 MC_ReadStatus (Read Status)
	10.1.7 SMC_InPosition (In-position Judgment)
	10.1.8 SMC_ReadFBError (Read Oldest Error)
	10.1.9 SMC_ClearFBError (Clear Oldest Error)
	10.1.10 SMC_CheckAxisCommunication (Check Axis Communication Status)
	10.1.11 SMC_CheckLimits (Check Exceeding Limits)
	10.1.12 SMC_GetMaxSetAccDec (Measure Maximum Acceleration / Deceleration)
	10.1.13 SMC_GetMaxSetVelocity (Measure Maximum Velocity)
	10.1.14 SMC_GetTrackingError (Measure Tracking Error)
	10.1.15 SMC_MeasureDistance (Measure Turnaround Travel Distance)
	10.1.16 SMC_ReadSetPosition (Read Axis Set Position)

	10.2 Motion Auxiliary Function (Change / Reset)
	10.2.1 MC_Reset (Axis Error Reset)
	10.2.2 SMC3_ReinitDrive (Reinitialize Axis)
	10.2.3 MC_SetPosition (Change Current Position)
	10.2.4 SMC_ChangeDynamicLimits(Dynamic limit change)
	10.2.5 SMC_ChangeGearingRatio(Gear ratio and axis type change)
	10.2.6 SMC_SetMovementType(Virtual axis type change)
	10.2.7 SMC_SetRampType(Velocity ramp type change)
	10.2.8 SMC_SetSoftwareLimits(Soft limit change)

	10.3 Motion Auxiliary Function (Other Functions)
	10.3.1 PMC_ReadLatchPosition (Amplifier Latch Monitor)
	10.3.2 PMC_StopLatchPosition (Stop Amplifier Latch)
	10.3.3 MC_TouchProbe (Enable AMP Latch Monitoring)
	10.3.4 MC_AbortTrigger (Disable AMP Latch Monitoring)
	10.3.5 MC_DigitalCamSwitch (Enable Digital Cam Switch)
	10.3.6 SMC_BacklashCompensation (Compensate Backlash)

	11 Other Function Blocks
	11.1 COM Port (General-purpose Communication)
	11.1.1 COM.Open (Open COM port)
	11.1.2 COM.Close (Close COM Port)
	11.1.3 COM.Read (Read COM Port)
	11.1.4 COM.Write (Write COM Port)
	11.1.5 COM.ERROR (Error ID)

	11.2 COM port (Modbus COM)
	11.2.1 IoDrvModbusComPort
	11.2.2 IoDrvModbus.ModbusChannel(Start Sending Modbus Command)
	11.2.3 IoDrvModbus.ModbusRequest (Modbus Request)
	11.2.4 IoDrvModbus.ModbusRequest 2 (Modbus Request 2)
	11.2.5 IoDrvModbus.ModbusSlaveComPort
	11.2.6 IoDrvModbus.MB_ErrorCodes (Error Codes)

	11.3 LAN port (IoDrvEthernet)
	11.3.1 IoDrvEthernet
	11.3.2 IoDrvEthernet.IPARRAY_TO_INADDR (Array Type to Union Type)
	11.3.3 IoDrvEthernet.IPARRAY_TO_IPSTRING (Array Type to Character String Type)
	11.3.4 IoDrvEthernet.IPARRAY_TO_UDINT (Array Type to UDINT Type)
	11.3.5 IoDrvEthernet.IPSTRING_TO_UDINT (Character String Type to UDINT Type)
	11.3.6 IoDrvEthernet.UDINT_TO_IPARRAY (UDINT Type to Array Type)
	11.3.7 IoDrvEthernet.UDINT_TO_IPSTRING (UDINT Type to Character String Type)

	11.4 LAN Port (General-purpose Communication)
	11.4.1 NBS.TCP_Client (Connect to TCP Client)
	11.4.2 NBS.TCP_Connection (Connect TCP)
	11.4.3 NBS.TCP_Read (Receive TCP Data)
	11.4.4 NBS.TCP_Server (Connect TCP Server)
	11.4.5 NBS.TCP_Write (Send TCP Data)
	11.4.6 NBS.UDP_Peer (Open UDP Port)
	11.4.7 NBS.UDP_Receive (Receive UDP Data)
	11.4.8 NBS.ERROR (Error Code)
	11.4.9 NBS.UDP_Send (Send UDP Data)
	11.4.10 Program example: General communication (Ethernet) TCP CLIENT processing
	11.4.11 Program example: General communication (Ethernet) TCP SERVER processing
	11.4.12 Program example: General communication (Ethernet) UDP processing
	11.4.13 Program example:General-purpose Communication(Serial)COM transmission / reception processing

	11.5 LAN Port (Modbus TCP)
	11.5.1 IoDrvModbusTCP
	11.5.2 IoDrvModbusTCP.ModbusChannel (Start Sending Modbus Command)
	11.5.3 IoDrvModbusTCP.ModbusRequest (Modbus Request)
	11.5.4 IoDrvModbusTCPSlave
	11.5.5 IoDrvModbus.MB_ErrorCodes (Error Codes)

	11.6 LAN Port (EtherNet/IP)
	11.6.1 IoDrvEtherNetIP (EtherNet/IP Scanner Device)
	11.6.2 RemoteAdapter (Remote Adapter Device)
	11.6.3 IoDrvEtherNetIPAdapter (EtherNet/IP adapter device)
	11.6.4 Module (EtherNet/IP Module Device)
	11.6.5 Apply_Attributes (Apply_Attributes Service)
	11.6.6 Generic_Service (Generic Service Execution)
	11.6.7 Get_Attribute_Single (Inquire Specific Attributes of a Specific Instance)
	11.6.8 Get_Attributes_All (Inquire All Attributes of a Specific Instance)
	11.6.9 Set_Attribute_Single (Set Specific Attributes of a Specific Instance)
	11.6.10 Set_Attributes_All (Set All Attributes of a Specific Instance)
	11.6.11 NOP (NOP Service)
	11.6.12 Reset (Reset Service)
	11.6.13 Start (Start Service)
	11.6.14 Stop (Stop Service)
	11.6.15 ENIP.ERROR (Message Service Instruction Error Code)
	11.6.16 ENIP.CIPClass (Service Class Code)

	11.7 LAN Port (MQTT)
	11.7.1 What is MQTT?
	11.7.2 MQTT Client Specifications
	11.7.3 Overview of MQTT Functions
	11.7.4 MQTT.MQTTClient (MQTT Client Connection)
	11.7.5 MQTT.MQTTPublish (MQTT Publish Function)
	11.7.6 MQTT.MQTTSubscribe (MQTT Subscribe Function)
	11.7.7 MQTT.MQTT_REASON_CODE (Reason Code)
	11.7.8 MQTT.MQTT_ERROR (Error Code)
	11.7.9 Sample Example: MQTT Communication
	11.7.10 Example: MQTT Communication Using Filter Mode
	11.7.11 MQTT Communication: Request/Response Type Communication
	11.7.12 Example: MQTT Communication Using Topic Alias

	11.8 LAN Port (DNS)
	11.8.1 What is DNS?
	11.8.2 DNS_GetIPAddress (Name Resolution)
	11.8.3 DNS_CLI_ERROR (Enumeration Type)
	11.8.4 Sample Example: DNS Name Resolution

	11.9 SD Card Operation (File Operation)
	11.9.1 FILE.Open (Open File)
	11.9.2 FILE.Close (Close File)
	11.9.3 FILE.Read (Read File)
	11.9.4 FILE.Write (Write File)
	11.9.5 FILE.Flush (Flush File)
	11.9.6 FILE.Copy (Copy File)
	11.9.7 FILE.Rename (Rename File)
	11.9.8 FILE.Delete (Delete File)
	11.9.9 FILE.EOF (End of File)
	11.9.10 FILE.GetAttribute (Get File Attribute)
	11.9.11 FILE.GetPos (Get File Offset)
	11.9.12 FILE.GetSize (Get File Size)
	11.9.13 FILE.GetTime (Get File Update Time)
	11.9.14 FILE.SetPos (Set File Offset)
	11.9.15 FILE.ERROR (Error ID)
	11.9.16 Program example:SD CardFile write processing
	11.9.17 Program example:SD CardFile read processing

	11.10 SD Card Operation (Directory Operation)
	11.10.1 FILE.DirCreate (Create Directory)
	11.10.2 FILE.DirOpen (Open Directory)
	11.10.3 FILE.DirClose (Close Directory)
	11.10.4 FILE.DirCopy (Copy Directory)
	11.10.5 FILE.DirRename (Rename Directory)
	11.10.6 FILE.DirRemove (Delete Directory)
	11.10.7 FILE.DirList (Directory List)

	11.11 SD Card Operation (CSV File Operation)
	11.11.1 Overview of CSV File Reading
	11.11.2 CSV.CSVReaderInit (Specify Target CSV File To Be Read)
	11.11.3 CSV.ReadAll (Read All File Data by Batch)
	11.11.4 CSV.NextElement (Read One Element)
	11.11.5 CSV.NextLine (Read One Line)
	11.11.6 CSV.CSV_ERROR (Reading Error Code)
	11.11.7 Overview of CSV File Writing
	11.11.8 CSV.Init (Specify Target CSV File To Write)
	11.11.9 CSV.Add’Type’ (Add Data to Internal Buffer)
	11.11.10 CSV.NewLine (Add Line Separator to Internal Buffer)
	11.11.11 CSV.WriteFile (Write, Save Data to CSV File)
	11.11.12 CSV.NewFile (Change Target To Write to New CSV File)
	11.11.13 CSV.CSVWriter
	11.11.14 CSV.ERROR (Writing Error Code)
	11.11.15 Example of Process for Reading All Data from CSV File
	11.11.16 Example of Process for Reading Data from Multiple CSV Files
	11.11.17 Example of Process for Writing Log Data to CSV File

	11.12 Clock Setting
	11.12.1 SYS_GetTime (Get Time)
	11.12.2 SYS_SetTime (Set Time)
	11.12.3 SYS_GetTimezone (Get Time Zone Information)
	11.12.4 SYS_SetTimezone (Set Time Zone Information)
	11.12.5 SYS_DateConcat (Convert from UINT Type to DATE Type)
	11.12.6 SYS_DateSplit (Convert from DATE Type to UINT Type)
	11.12.7 SYS_DTConcat (Convert from UINT Type to DT Type)
	11.12.8 SYS_DTSplit (Convert from DT Type to UINT Type)
	11.12.9 SYS_GetDayOfWeek (Get Day of the Week)
	11.12.10 SYS_TODConcat (Convert from UINT Type to TOD Type)
	11.12.11 SYS_TODSplit (Convert from TOD Type to UINT Type)
	11.12.12 ERROR (Clock Instruction Error Code)
	11.12.13 SNTP.SNTPGetUTCTime (Get SNTP Time)
	11.12.14 SNTP.ERROR (SNTP Error Code)
	11.12.15 Example of SNTP Time Synchronization

	11.13 System Data
	11.13.1 SYS_GetSystemError (Get System Error)
	11.13.2 SYS_ClearSystemError (Clear System Error)

	11.14 PID Control
	11.14.1 PD (PD Control)
	11.14.2 PID (PID Control)
	11.14.3 PID_FIXCYCLE ［PID Control (Any Cycle Time)］

	11.15 Recipe function
	11.15.1 CreateRecipe (Create Recipe)
	11.15.2 DeleteRecipe (Delete Recipe)
	11.15.3 LoadFromAndWriteRecipe (Load and Write Recipe File)
	11.15.4 ReadAndSaveRecipe (Recipe File Overwrite Save)
	11.15.5 prvCompareRecipe (Compare Recipes)
	11.15.6 ReloadRecipes (Load Recipe File in SD Card)
	11.15.7 GetRecipeCount (Count Recipes)
	11.15.8 GetRecipeNames (Get Recipe Names)
	11.15.9 GetLastError (Get Last ReturnValues)
	11.15.10 GetLastInfo (Get Last InfoValues)
	11.15.11 ResetLastError (GetLastError Reset)
	11.15.12 ResetLastInfo (GetLastInfo Reset)

	11.16 Enable/Disable Devices
	11.16.1 Overview of Device Enable/Disable Settings
	11.16.2 INode.Enable (Enable/Disable Setting)
	11.16.3 Reconfigure (Reconfigure Devices)
	11.16.4 DED.ERROR (Error Code)
	11.16.5 Sample Example: Changing EtherCAT Slave Enable/Disable Setting

	11.17 Project Management Function
	11.17.1 What is Project Management Function?
	11.17.2 SYS_PRJBackup (Project Backup)
	11.17.3 SYS_PRJRestore (Restore Project)
	11.17.4 PRJMNG_ERROR (Error Code)
	11.17.5 SYS_GetPRJRestoreResult (Project Restoration Results)

	12 Function Blocks for Units
	12.1 Basic Configuration of Function Blocks for the Pulse Output Unit
	12.1.1 Specifications of the Function Block
	12.1.2 Notes for Executing the Function Block

	12.2 Function Blocks for the Pulse Output Unit
	12.2.1 PG_Power
	12.2.2 PG_Jog
	12.2.3 PG_MoveAbsolute
	12.2.4 PG_MoveRelative
	12.2.5 PG_LatchPosition
	12.2.6 PG_Pulser
	12.2.7 PG_Stop
	12.2.8 PG_Home
	12.2.9 PG_SetPosition
	12.2.10 PG_WriteParameter
	12.2.11 PG_ReadParameter
	12.2.12 PG_ClearError
	12.2.13 PG_ReadStatus

	12.3 Error Codes
	12.3.1 Error Check Method
	12.3.2 PG_ERROR

	12.4 Functions for the Serial Communication Unit
	12.4.1 NSC_ReadComStatus (Read COM Port Status)
	12.4.2 NSC_ERROR (Error Code)

	13 Reference Information
	13.1 Motion Errors (SMC_ERROR Type)
	13.1.1 Error Check Method
	13.1.2 SMC_ERROR

	13.2 RTEX communication error
	13.2.1 RTEX Error ID
	13.2.2 Alarm Codes
	13.2.3 Warning Codes

	13.3 List of AMP Parameters
	13.3.1 Class 0: Basic Setting
	13.3.2 Class 1: Gain Adjustment
	13.3.3 Class 2: Vibration Suppression Function
	13.3.4 Class 3: Speed, Torque Control, Full-closed Control
	13.3.5 Class 4: I/O Monitor Setting
	13.3.6 Class 5: Enhancing Setting
	13.3.7 Class 6: Special Setting 1
	13.3.8 Class 7: Special Setting 2
	13.3.9 Class 8: Special Setting 3

	13.4 Monitor Commands

	Revision History
	Contact us

