

Application Note PhotoMOS® Automotive Relay

When it comes to passenger safety in xEV cars, PhotoMOS[®] relays are a leading part for battery isolation monitoring. The fast electronic MOSFET relays can be used for leakage current detection between the car chassis and the HV battery.

Isolation monitoring

PRODUCT

Automotive MOSFET relays // PhotoMOS® AQW216HAX, AQV219HAX, AQV258HAX

PURPOSE

High reliability switching within harsh automotive operational conditions

Electric vehicles operate with high-voltage 450 VDC or up to 1000 VDC where a safe separation of low voltage (chassis) and high voltage (power train) is needed

FEATURES

Special lead frame: DIP5 package to meet clearance and creepage requirements Double molding Accordance to AEC-Q101 Ambient temperature range: -40°C to +105°C.

Isolation monitoring

Panasonic INDUSTRY

FACTS & FIGURES

The most common application for MOSFET relays in the automotive sector is isolation monitoring. Target of this application is to check the secure separation between HV+ and chassis as well as HV- and chassis. To do so, two monitoring paths are necessary:

In connection with a highohmic resistor chain (R1 and R2), a PhotoMOS[®] and a shunt resistor (RShunt1 and RShunt2) the secure separation of the high-voltage and low-voltage sides of the electrical system is checked. Range: -40°C to +105°C.

Both paths are switched alternating, means if PhotoMOS[®] of HV+ path is closed, PhotoMOS[®] of HV- path is open and vice versa. Means in normal operation mode, no current will flow due to an always open circuit.

Isolation monitoring

Panasonic INDUSTRY

FACTS & FIGURES

In case of an isolation failure in the system there is a certain resistance (Riso), means a more or less conductive connection between Chassis and HV+ and/or HV-. If the test is performed now, means a PhotoMOS[®] is closed there is a closed circuit between HV+ and HV- and thus,

there is a certain current flow in the corresponding path. Due to that current through the Shunt resistor (RShunt1 and/or RShunt2) a respective voltage drop is detected by the control electronics and as a result a cutoff function for the traction battery is activated.

Application Note - How to solve various tasks with PhotoMOS® Automotive Relays Date: May 2021 Contact: Panasonic Industry Europe GmbH, info@eu.panasonic.com Notes: Data and descriptions in this document are subject to change without notice. Product renderings are for illustration purposes only and may differ from the real product appearance.