Metal Composite Power Inductors

AEC-Q200 Compliant for Automotive & Industrial Use in Harsh Enviroments

- Vibration Resistance up to 50G (5Hz 2kHz)
- Miniaturization up to 50% compared to ferrite products with the same performances
- Fully magnetic shielded structure

IN Your Future

Your Committed Enabler

IN Your Innovation

Power Inductor Automotive Application	
Main Series	4
Main Applications	4
Features and Benefits	
Main Characteristics	5
Metal Composite vs Ferrite Type Inductors	5
Acoustic Noise Reduction	6
Terminal Coating Process	6
Withstanding Voltage Characteristics	8
Robust Design for High Vibration Proof and Large Current	8
Technical Information	9

Explanation of Part Numbers

Panasonic ETQP Series Part Number Breakdown	10

Selection Guide

Panasonic ETQP High Performance Series Selection Guide	11
Panasonic ETQP Low Profile / LE Series Selection Guide	12
Panasonic ETQP High Frequency / High Vibritation Resistance / Large Current Series Selection Guide	13

Panasonic ETQP Design & Sales Support

Panasonic ETQP Design & Sales Support

DC / DC Converter Application Example

Applications

- Noise Filter For Drive Circuits
- DC/DC Converter
- Voltage Regulator
- Buck/Boost Converters

- HEV/EV
- Engine ECU ADAS
- Powertrain
- - Lighting
 - Autonomous Driving

14

Panasonic Industry | 3

Power Inductor Automotive Application

Main Series

Temperature range

Inductance range

Package size (mm)

Rated current

Benefit

Below Panasonic inductors are AEC-Q200 compliant

PCC-MC

-40°C - +150°C

0.33 - 100µH

1.9 - 39.7A

□5.5x5.0x3.0 -

□0.9x10.0x6.0

Robust & high stability

High performance

Low AC-power loss

High saturation

High Performan

PCC-LP

Low profile design

Max 3.0 & 4.0mm

Pin layout compatible

with IHLP series.

height

Low DCR

High current

30G Vibration

½ package size

Lower DCB

Low Profile	LE type	Current	
-55°C - +155°C	-40°C - +150°C	-40°C - +160°C	-40°C - +150°C
0.33 - 47µH	3.3 - 47µH	0.33 - 4.7µH	0.68 - 44µH
2.1 - 23.9A	2.9 - 9.2A	20.2 - 83A	4.1-32.3A
□5.5x5.0x3.0 - □10.7x10.0x4.0	☐6.4x6.0x4.8 ☐7.4x7.0x4.8	□13.2x12.6x8.0 □15.6×17.2×10.5	□9.5x8.0x5.4 □10.9x10.0x5.0-6.0

Lower DCR

· Pin to pin compatible

with Ferrite type

Main Applications

Automotive Application Examples Battery Management E-Power Steering Engine ECU Autonomous Driving Transmission ECU System **E-Compressors** Navigation System **Battery ECU** Panel/HUD **On-board Charger** Camera Radar ADAS Lidar Fan Motor Driver **Domain Controller** Gateway Monitor **48V/EV Inverter** LED Headlamp **Electrical Pump** Zone Controller Door Motor Controller

Features and Benefits Main Charateristics

High Current, High Heat Resistance and Excellent Thermal Stability

Cross-section view of an ETQPM Power Choke Coil.

- The ETQP Power Inductor consists of metal powder, Binding & Coating resin and coil winding. resistance and excellent thermal stability.
- Excellent magnetic saturation characteristics (i.e. Ferrite core = 0.4T vs. Metal Composite Type=above 1.5T) make it difficult to magnetically saturate, resulting in good inductance vs. current performance without substantial drop off.
- By using a high temperature capable resin material, an operating temperature up to 180°C is achievable for several hours.

Metal Composite vs Ferrite Type Inductors

With metal composite power inductors you can save up to 50% space with respect a ferrite type inductor with the same performances.

iah Vibration Series

50G Vibration

High Performance

Low AC-power loss

Your Committed Enabler

Metal Composite Powder and High Temperature Resistance Resin Coil Winding

The magnetic material, which is created from Fe-based powder, enables high current, high heat

INDUSTRY

Panasonic

Acoustic Noise Reduction

Troublesome acoustic noise at audible frequencies is reduced by having a distributed gap structure where the resin replaces the air gap. This enables a large reduction of acoustic noise compared to Ferrite Types.

Terminal Coating Process

The surface of terminal is processed by dip-soldering, which is copper wire and terminals are dipped into solder bath. It enables to good solderability and mountability, also good effect for anti-wisker compared with electric plating.

*For the actual product, dip solder is applied on the copper wire part and terminal to keep good mountability. The corresponding part numbers are included in the Selection Guide on page 13 of this document.

Withstanding Voltage Characteristics

ETQP Series Metal Composite Type achieves excellent withstanding voltage characteristics that can be used in various applications.

Maximum Operation Voltage Target

DCC Sorias	Size (mm)		Withstanding Voltage												
PCC Series Size (mm)		0.68µH	1.0µH	1.5µH	2.2µH	3.3µH	4.7µH	6.8uH	10µH	15µH	22µH	33µH	47µH	68µH	100µH
Large Current	13.2x12.6x8.0			50	VC										
High Performance	10.9x10.0x6.0				70	VC									
High Performance	10.9x10.0x5.0	70	V												
High Performance	10.7x10.0x5.4								70V						65V
Low Profile	10.7x10.0x4.0						6	5V						60V	
High Performance	8.5x8.0x5.4						70V					65	5V		
Low Profile	8.5x8.0x4.0						65V								
High Performance	7.5x7.0x5.4						6	5V					60V		
High Performance	6.5x6.0x4.5						6	VC				55V			
High Performance	6.5x6.0x3.0		60V												
Low Profile	6.4x6.0x3.0				60V					58	5V				
High Performance	5.5x5.0x4.0								55V						
High Performance	5.5x5.0x3.0				5	5V									
Low Profile	5.5x5.0x3.0				55V					50V					

Large Current Series Features

Robust Design for High Vibration Proof and Large Current

High Vibration Design Features

Technical Information

Design Information

Temperature Measurement Conditions by Panasonic

Your Committed Enabler

ETQP8M__JFA & ETQPAM__JFW series

- Large current in compact size as 12x12mm & 15x15mm SMD .
- Designed for harsh environments up to 30G vibration proof •
- High saturation current up to 100A •

PCB specification:

1) 1.6mm, FR4 / 4layers or Multi-layer PCB

- 2) PCB with high heat dissipation performance
 - PCB size: 110 × 80 × T1.6 mm
 - Land pattern; Using Panasonic recommendation pattern by series (shown in WEB catalog)

Explanation of Part Numbers

Selection Guide

Panasonic ETQP Series Selection Guide

High Performance Series

Туре	5» ETQP*M	(5 YFP	6) ETQP*M	(6 YFN	7) ETQP5M	k7 └YFM	8x ETQP5M	ά8 Υ*Κ	10) ETQP5N	x10 1Y*C	10x10 (Lo ETQP*M	ow DCR)
(Size) WxLxT Height=t	5.5x5. t=3.0mm t=4.0mm	.0mm (<4.7µH) (≥4.7µH)	6.5x6 t=3.0mm t=4.5mm	.0mm (<2.2μH) (>=2.2μH)	7.5x7. t=5.4mm t=5.0mm	0mm ı (<95µH) (≥95µH))	8.5x8. t=5.4mm t=5.0mm	0mm (<95µH) (≥95µH)	10.7x10 t=5.4mm t=5.0mm	0.0mm n (<95µH) n (≥95µH)	10.9x10 t=5.0mm t=6.0mm	D.0mm ı (<1.5µH) ı (≥1.5µH)
LO (µH)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)
100					1.9 (*1)	348	2.1	302	2.7(*5)	208		
68					2.3	251			3.6 (*7)	136		
47			2.2	210	2.9 (*3)	156	3.4 (*3)	125	4.2	99		
33			2.5	172	3.3	120			5.0	68.5		
22	2.3	163	2.9	126	3.7	92.0	4.8	63.0	6.2	45.0		
15							5.5	48.2	7.0	35.6	7.9 (*8)	28.0
10			4.5	54.2	5.7	37.6	6.7	33.4	8.5	23.8		
6.8			5.2	39.3	6.9	26.7						
4.7	4.8	36.0			8.0	20.4			13.1	10.2	14.1	8.7
3.3	5.0	31.3	8.2	16.1	10.4	11.9	12.5	9.5	15.7	7.1	17.0	6.0
2.2	5.8	22.6	10.2	10.4			14.0 (*4)	7.6	18.1 (*4)	5.3	19.6(*9)	4.55
1.5									21.4	3.8	23.3	3.2
1.0			10.7	7.9							27.5	2.3
0.68			12.0	6.3							31.5	1.75
0.33											39.7	1.1

*Other part numbers available upon request

Note: Current value (Rated Current) is the typical value when overall temperature rise is 40K up with multi-layer PWB (high-heat dissipation) (*1) 95µH (*2) 97µH (*3) 48µH (*4) 2.5µH (*5) 97.0µH (*6) 3.2µH (*7) 66µH (*8) 14.0µH (*9) 2.5µH

Your Committed Enabler

Selection Guide

Panasonic ETQP Series Selection Guide

Low Profile Series // LE Series

Part Number	M053	0M-LP	M063	0M-LP	M064	8M-LE	M0748	3M-LE	M0840)M-LP	M1040	OM-LP
Туре	5» ETQP3M	κ5 ΚVΡ	6) ETQP3M	(6 KVN	8) ETQP4M	κ8 └ΚVΚ	10» ETQP4M	10 KVC	6x ETQP4M	6 KFN	7) ETQP4M	(7 KFM
(Size) WxLxT Height=t	5.5x5 t=3.0	.0mm)mm	6.4x6 t=3.0	.0mm)mm	8.5x8 t=4.0	.0mm)mm	10.7x10 t=4.0).0mm)mm	6.4x6. t=4.8	0mm mm	7.4x7. t=4.8	Omm Bmm
LO (µH)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)
47							3.4	132.0			2.9	148.6
33			2.1	206	3.1	118	4.2	84.6				
22			2.7	128	3.8	78.4	5.0	60.0			3.9	84.1
15			3.0	99.2	4.5	55	6.3	37.0	4.2	63.8		
10	2.9	96	3.6	71.0	5.2	41.6	7.6	25.4	5.2	40.4	6.0	36.0
6.8	3.5	65.7	4.5	45.6	6.9	23.5	8.9	18.5	5.9	32.1		
4.7	4.1	45.6	5.6	29.0	8.3	16.1	11.2	12.3	7.3	20.7	8.8	16.8
3.3	5.4	27.3	6.1	24.1	8.9	14.1	12.6	9.4	9.2	13.1		
2.2	6.3	20.0	7.9	14.5	11.4	8.5	14.8	6.8				
1.5	8.1	12.0	9.1	11.0	15.1	4.9	17.4	4.9				
1.0	9.0	9.6	12.1	6.2	17.3	3.7	23.9	2.6				
0.68	10.2	7.6	13.2	5.2	19.5	2.92						
0.47	11.6	5.8										
0.33	12.7	4.85										

*please contact Panasonic for availability

Note: Current value (Rated Current) is the typical value when overall temperature rise is 40K up with multi-layer PWB (high-heat dissipation)

Panasonic ETQP Series Selection Guide

High Frequency Series // High Vibration Resistance Series // Large Current Series

Туре	5x ETQP3M	:5 HFP	6x ETQP3M	(6 HFN	8) ETQP5M	κ8 ΙΥSΚ	10) ETQP5M	c10 YSC	12> ETQP*M	(12 JFA	15: ETQPAM	c15 JFW
(Size) WxLxT Height=t	5.5x5. t=3.0	Omm)mm	6.5x6. t=3.0	.0mm)mm	8.5x8 t=5.4	.0mm Imm	10.9x1(t=5.0).0mm)mm	13.2x12 t=8.0	2.8mm)mm	15.6x1 t=10.	7.2mm 0mm
LO (µH)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)	Rated Current (A)	DCR (mΩ)
47							4.1 (*5)	102				
33												
22			2.5	144			6.2 (*4)	45.5				
15												
10			3.7	68								
6.8												
4.7									20.2	4.9		
3.3									23.6	3.6		
2.2	6.3	19.5			14.1 (*1)	7.4	19.7 (*2)	4.48	27.7 (*1)	2.6		
1.5							29.8 (*3)	19.8	33.3	1.8		
1.0									38.3	1.36		
0.68							32.3	1.66	42.6	1.1	65	0.70
0.47												
0.33									53.5	0.7	83	0.42

*please contact Panasonic for availability

Note: Current value (Rated Current) is the typical value when overall temperature rise is 40K up with multi-layer PWB (high-heat dissipation) (*1) 2.45 \mu H (*2) 2.5 \mu H (*3) 1.9 \mu H (*4) 20.0 \mu H (*5) 44.0 \mu H

Your Committed Enabler

Panasonic ETQP Design & Sales Support

Panasonic offers many tools to help with your circuit designs. Follow the links below for a device library for circuit simulators, CAD data and further information.

Scan and find all the information about Panasonic Power Inductors	Simulation Data Libraries	Industrial & Automotive use LC filter simulator	Power Inductor Loss Simulator
	Equivalent circuit models and S-parameter data can be downloaded for each individual item number.	The Industrial & Automotive use LC filter simulator enables the simulation of attenuation amounts when configuring a filter using Panasonic power inductor and aluminum electrolytic capacitor suitable for industrial & automotive use.	The Power Inductor loss simulator for automotive application enables the simulation of losses and temperature rises according to the current for Panasonic power inductors designed for automotive use.
	L Start Selection	Start Simulation	Start Simulation

CAD Data	Characteristic Viewer	Local Technical Support
Find inductor CAD data for download (3D STEP, 3D PDF)	Characteristic Viewer is the tool which represent various characteristics of a selected part by means of a graph of the frequency axis and temperature axis, etc.	Our Business Development Team as well as our respective Product Managers are available for technical on-site support. Or if you have any further inquiries, you can contact them at Inductor@eu.panasonic.com
占 Start Selection	Start Simulation	

Panasonic Industry Europe GmbH Caroline-Herschel-Str. 100 · 85521 Ottobrunn · Germany Inductor@eu.panasonic.com http://industry.panasonic.eu

Q Panasonic Industry

Search

